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A theory is proposed for the scattering of a scalar field by statistically rough surfaces. This theory 
does not use the customary approximation, based on the Rayleigh assumption, in which the field 
throughout the half-space is sought in the same form as that of the field at infinity. The 
components of the scattering amplitude and of the mean field which stem from waves scattered by 
the surface more than once are calculated. This new approach is shown to be valid if the mean 
slope of the roughness is small in comparison with both unity and the ratio of the wavelength to 
the mean height of the roughness. Close to the surface, the mean field has a structure more 
complex than previously believed. 

1. INTRODUCTION 

The scattering of waves by rough surfaces arises in sev- 
eral problems in optics, acoustics, seismology, radiophysics, 
and electronics. The basic theoretical and practical task here 
is to determine the relationship between the characteristics 
of the scattered field and the properties of the scattering sur- 
face. Once this relationship has been established, one can 
work from the known characteristics of the surface to calcu- 
late the scattered field. Inversely, one can work from mea- 
surements of the scattered field to find information about the 
surface structure. Because of the wide range of applications 
and the importance of this problem, many papers have been 
published on the scattering of waves by statistically rough 
surfaces (see Refs. 1-3 and the bibliographies there). How- 
ever, there is no really complete and systematic theory which 
meets the needs of experimentalists. 

The existing approximate calculation methods yield a 
description of various limiting cases, but their own range of 
applicability needs to be e~amined .~  The methods used most 
widely are the small-perturbation me th~d"~ '~ - '  and the tan- 
gent-plane method (the Kirchhoff approximation).'93-6*8 
Certain other approaches are reviewed in Refs. 2, 3, and 9. 
The range of applicability of the small-perturbation method 
is limited by the requirement that the Rayleigh parameter be 
small, Ku cos 8< 1, where u is the characteristic height of 
the roughness, K is the wave number, and 8 is the angle 
between the wave propagation direction and the normal to 
the mean plane. Under this condition, the boundary condi- 
tions can be transferred to the mean plane. The range of 
applicability of the Kirchoff approximation is given by the 
condition4~'' DR cos 3 X )  1, where R is the radius of curva- 
ture of the surface, and x is the local glancing angle. Under 
this inequality, the small diffraction corrections to the tan- 
gent-plane method can be assumed small. Liska and Mc- 
Coy "have pointed out that diffraction corrections are taken 
into account in the single-scattering approximation of the 
waves. 

Several recent papers1'-l4 have used the Rayleigh as- 
~umpt ion , '~ , '~  assuming a small roughness slope to attempt 
to develop a description which combines these two ap- 
proaches. The Rayleigh assumption can be summarized by 
saying that the asymptotic representation of the field far 
from the scattering surface is also used to describe the field 
near the surface. It has been shown'52" that the use of the 

Rayleigh hypothesis in the case of a sinusoidal surface re- 
quires an upper limit on the surface slope angle 
8, : tan 8, < 0.448. For a randomly rough surface, the ap- 
plicability of the Rayleigh assumption remains an open 
question. It is thus exceedingly important to develop a theo- 
ry which does not lean on the Rayleigh hypothesis and which 
has both the small-perturbation method and the Kirchoff 
approximation as limiting cases. 

In this paper we propose a systematic theory for the 
scattering of scalar fields by absolutely reflecting, statistical- 
ly rough surfaces. This theory does not assume the Rayleigh 
assumption. The range of applicability of this theory is 
pointed out. The values of the field or of its normal derivative 
are not specified at the outset; they are instead regarded as 
solutions of integral equations which follow from the exact 
formulation of the problem. A solution of these equations is 
sought as an expansion in the number of times the waves are 
scattered by the surface. When only singly scattered waves 
are considered, one obtains the Kirchoff approximation. In 
order to describe the results of the small-perturbation meth- 
od adequately, the doubly and triply scattered waves must 
also be taken into account. 

2. EXPANSION OFTHE FIELD IN THE NUMBER OFTIMESTHE 
WAVES ARE SCATTERED BY THE SURFACE 

According to Green's theorem," a scalar field in the 
inner region of a half-space with a rough boundary specified 
by the equation z = ~ ( r )  [R = (r,z) ] can be expressed in 
terms of the value of the field and of its normal derivative of 
the boundary: 

Here Uo(R) = Jd R@(R,)G(R,R,) is the field of the inci- 
dent wave, p(Ro) is the density of field sources, 

is the derivative along the normal to the surface, 
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is a surface area element, and G(R,R,) is the free-space 
Green's function, given by 

1 exp{iKIR-R,I) 
G (R, R,) = - 

4n IR-RoI 3 

01 
K = - , I R-R, I = I  (r-r,) 2+ (z-z,) '1 ". 

C 

In the case of an absolutely soft surface, the field vanishes at 
the boundary, i.e., U(r,z = ~ ( r ) )  = 0. In the case of a hard 
surface, the derivative along the normal to the boundary 
vanishes, i.e., (d/dn) U( r,z = ~ ( r ) )  = 0. The expressions 
for the fields in the half-space are 

x exp[ik(r-rr) +iv 1 z-q (rr) I ] 

for a soft surface and 

x [sign (z-q (r') ) - k V q  (r') ] uN (rf, q (rr) ) 
v 

for a hard one. Here 

Here we have represented the Green's function as a Weyl 
expansion of spherical waves in plane waves," 

Y= (K2-k2) for K>k, v=i(k2-KZ)"' for, K<k. 

The asymptotic behavior of the field far from the scat- 
tering part of the surface [z > max 7 (1-1 ] is of interest in 
several problems. In this case the total field can be written as 
the sum of incident and reflected plane waves: 

U (r, z) = Uo (r, z) + 1 dLA (k) exp (ikr+ivz) , 

whereA ( K )  is the scattering amplitude. It follows from ( la)  
and ( lb)  that the scattering amplitudes for an absolutely 
rough surface, A,, and an absolutely hard one, A, , are given 
by 

We wish to stress that the scattering amplitude can be uti- 
lized to calculate the asymptotic behavior of the scattered 
field far from the scattering surface. The use of the represen- 
tation (3) near the surface and actually at the surface (the 
latter use is equivalent to the Rayleigh assumption) is thus 
incorrect. For the functions U,(r,v(r)) and 

one finds the following equations from ( l a )  and ( lb)  : 

{ ~ ~ , ~ ~ ) ~ } = 2  exp[ikor-ivoq (r)] {-i[vo+:Vq(r) 1 

In the case ~ ( r )  = const, i.e., in the case of a plane surface, 
the integral terms in (4) vanish, and one finds the known 
boundary conditions at absolutely reflecting level surfaces, 
specifically, a doubling of the field or of its derivative along 
the normal at the boundary. 

It can be shown that a corresponding result is found 
when the surface is a sloping plane, 7 ( r  ) = nr. For this pur- 
pose, we integrate the terms containing the signature by 
parts (over the variable k )  in (4).  The integral terms in (4) 
then takes the form 

1 
- jdk jdrr exp[ik(r-r') +iv I q (r) -q (rf)  I ] 

(2n) ' 

where R = [ ( r  - r'I2 + ( ~ ( r )  - ~ ( r ' ) ) ~ ]  It follows 
from the representation (4a) that for ~ ( r )  = nr the integral 
term vanishes. After (4) is substituted into (3),  we find the 
following expression for the scattering amplitude: 

This expression describes the field specularly reflected from 
the sloping plane. 

Expressions (3) and (4)  can also be written in a form 
which has the same structure as was chosen in Ref. 11 on the 
basis of the transformation properties of the scattering am- 
plitude. Specifically, from the quantities V,  and U, we fac- 
tor out the phase corresponding to the incident wave: 

-ivov (r) } =2 exp[ik,r-ivoq (r) ] { 
u (r) 
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For the scattering amplitude we then find the representation 

where u(r) and u( r )  satisfy the equations 

x exp[i (ko-k)rl { (" )exp[ivo (q (r) 
u (r) 

Since the kernel of Eq. (4b) depends on only the difference 
~ ( r )  - ~ ] ( r ' )  andVl;l(r), asolutionofEq. (4b) forsurfaces 
of sufficiently gentle slope can be found through a power- 
series expansion in the surface slopes, as was postulated in 
Ref. 1 1. 

Equations (4)  are integral Fredholm equations of the 
second kind; applicable solution methods have been worked 
out in detail. Here we will use an iterative procedure to solve 
Eqs. (4) .  The formal solution found as a result can be writ- 
ten in the form 

x exptiki (ri-i-ri) I exp [ ivi I q (rt-i) 

where 

= {-2 i [vozkoVq (r) I }axp[ik.r-ivoq (r) 1 .  

Representation (5) is an expansion in the number of times 
the waves are scattered by the surface, as can be seen by 
rewriting expression (5 ) in the equivalent form 

m 

where the integrals are to be understood in the principal- 
value sense, and the local reflection operators 0 are of the 
form 

Using representation (6),  we can draw the following picture 
of the field propagation: The field which is incident on the 
boundary at the point R, subsequently propagates freely to 
the next surface point, R, , where it is reflected from the sur- 
face (this is the effect of the operator 0 ) .  The process then 
repeats itself in such a way that the field is reflected n times 
along the path from the point R, to the point R,. The total 
field at R, is written as a sum of fields with different numbers 
of reflections and with all possible initial and intermediate 
points of reflection from the surface. A finite number of 
terms in the sum in (5)  thus reflects the part of the total field 
due to waves which are scattered no more than a given num- 
ber of times. 

A detailed study of the solution of Eq. (4) found by 
iterative procedure (6)  in the limit K- cu was carried out by 
Liska and McCoy," who treated the case of 2 0  roughness. 
They showed that the component of the first term of the 
iterative series which stems from the region which is a neigh- 
borhood of the point r with radius 1/K results in the incorpo- 
ration of diffraction corrections for the surface curvature. 
This curvature is small under the condition 
(KR cos3 X )  - ' 1. The component due to the external re- 
gion is related to the existence of stationary points deter- 
mined by the equation 

-iK (r-r') + [q  (r) -q ( r r )  I Vq (r') 
[ (r-r')'+ (q  (r) -q (r'))2]'1s 

where no is a unit vector along the direction of the incident 
wave, r' is the tangent to the surface at the point r', and e ,  , is 
a unit vector along the direction connecting the surface 
points with coordinates r and r'. If the condition n , ~ '  
= - e R . r l  holds, the stationary point is the point where 
repeated specular reflection occurs. If the condition 
n, = - e ,  , holds, the stationary point is in a shadow. In the 
limit K--. CU, the contribution from the neighborhood of the 
stationary points can be found through a power-series ex- 
pansion in the parameter (KR ) - I. This expansion contains 
contributions from K-independent terms. As was shown in 
Ref. 10, the K-independent contribution from the stationary 
points in shadows is canceled out exactly, in the first iter- 
ation, by corresponding contributions from iterative terms 
of higher orders. Overall, waves scattered specularly from 
the surface (possibly more than once) thus completely de- 
termine the K-independent contribution. 

If there are no stationary points (specular or shad- 
owed), i.e., if the condition tan $ > 2 max (Vq1 holds, where 
$ = 90 " - 8 is the glancing angle, then the diffraction cor- 
rection to the approximation of single wave scattering, 
U(r) = 2U0(r), found by retaining the first iterative term in 
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( 6 ) ,  is'' 2iU0(r)/(2KR cos3 X) .  As was stated above, this 
correction is small because of the small parameter 
(KR cos3x) - ' 41 .  

These comments regarding the behavior of the solution 
of Eq. (4) in the limit K- are necessary for a correct 
interpretation of the expressions derived below for mean val- 
ues. 

3. CALCULATION OF SCATTERING AMPLITUDES 

The representation (5)  can be used to calculate both the 
field itself and the scattering amplitude. In a statistical for- 
mulation of the problem, in which the realizations of the 
surface z = ~ ( r )  are random, we are interested in calculat- 
ing mean values. If only the n = 0 term in sum (5)  is taken 
into account, we find the approximation of singly scattered 
waves. This approximation is equivalent to the tangent- 
plane approximation, in which the surface or its derivative 
along the normal is twice its value in the incident wave.'s6 
When these values are substituted into integral representa- 
tion (3)  for the scattering amplitude, and an average is then 
taken over the ensemble of realizations of the surface 
z = ~ ( r ) ,  one finds the well-known expre~sions.',~ For a 
Gaussian process of random realizations of the surface, for 
example, the amplitude of the scattered field is given by 

where C? = ($( r ) )  is the mean square roughness height, 
and (here and in similar cases) the upper sign on the right 
side (the minus sign in this case) corresponds to the sub- 
script D, while the lower one (the plus sign in this case) 
corresponds to N. 

We now consider the contribution from doubly scat- 
tered waves [then = 1 term in (5)] .  Substituting then = 1 
term from (5)  into (3), we find 

Taking an average of this expression over the random real- 
izations of the surface (the corresponding expressions for 
the mean values are given in the Appendix), and assuming 
that the roughness correlation function 

depends on only the difference p = r, - r , ,  by virtue of the 
uniformity on the average over the surface, we find the fol- 
lowing expressions for the mean scattering amplitudes [the 
integration over the variable R = r, + r,, after the change of 
variables ( r  ) + ( R ,  generates a 8-function 
( 2 7 ~ ) ~ S ( k '  - kO): 

Expression (9) can be put in a more convenient form. 
Using the Efros theorem19 to evaluate the integral over k (to 
do this, we need to switch from kx,ky to the new variables 
p, = ik, ,py = ik,, we find an expression for ( A  b,, (k t )  ) : 

i 
( A D :  ( k ' )  )=6 (1'-ko)  - 1 d p  exp (- ikop)  

(2n) 
m 

x ~ X P { - ~ : ~ ~ [ I + W ( P )  11 J d g ~ ( g )  v w ( ~ ) ? )  
0 8P 

exp [iK ( p L + g 2 )  ' I 1 ]  

( p Z + t Z ) ' "  
(10) 

where 

Q ( 6 )  = 2 jdk exp ( i k ~ )  exp {-k202 
2n 

Since the last factor in ( 10) is the free-space Green's func- 
tion and therefore satisfies the wave equation 

we can find an expression for the second derivative 
6' 2G( p,<)6'c from this equation. Noting that the term with 
the 8-function vanishes, we can rewrite ( 10) as 

If the correlation function is isotropic, i.e., if W(p) = W(p), 
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expression ( 12) can be simplified further, through integra- 
tion over the angular variable q,(dp = pdpdq,) and a switch 
to the dimensionless variables y = p/a,z = 5 /a (a  is the cor- 
relation radius). We find 

OD 

x j d z  
2 

{ 4 n ~ 2 [ 1 - w ( y )  1)'" exp {-id[ i-wiy) z2a2 1 1 
x exp [ iKa (y2+z2) % ]  7 

(13) 
(y2+2) 'la 

where J,(x) and J, ( x )  are Bessel functions. 
After the change of variables u2 = z2 + y2, th integral 

over z becomes 

This integral is'dominated by values of u near the lower 
limit, so we can assume (u2 - y2) =: [2y(u - y)  ] 'I2. The 
integral found as a result can be evaluated exactly:20 

where KI4 (z) is the modified Bessel function. 
Under the two conditions 

expression (15) simplifies dramatically, becoming 
exp (iKay)/y. The first of the inequalities (16) can be re- 
written as 

or, when we use the second inequality in ( 16), 

o2 
yZ ~ 8 - - [ l - w ( ~ )  1. 

az 

This inequality always holds for y%u/a, while for y 5 u/a it 
may hold ify 5 u/a 5 1 (a is the roughness correlation radi- 
US) and W "  (0) (d /a2)  4 1 [we are making use of the fact 

that the expansion of the correlation function near its maxi- 
mum is of the form W(y) =: 1 - + W "  (0)y2) ]. The first con- 
dition thus holds for arbitrary y if u S a  and 
W "  (0)  ( d / a 2 )  & 1. The second of conditions ( 16) always 
holds for ys Kd/a;  for y 5 K d / a  it may hold if 

In other words, for arbitrary y the second condition in ( 16) 
holds if the following inequalities hold: 

From the physical standpoint, the meaning of these in- 
equalities is that the mean slope angles of the roughness are 
small, u/a 4 1, and we are incorporating the fact that under 
the condition K d / a  & 1 the field of a doubly reflected wave 
is dominated by the waves calculated in the Fraunhofer ap- 
proximation. 

Analysis of (13) in the opposite limit, 
K d / a >  1, u/a 5 1, i.e., in the geometric-optics limit, leads 
to an expression which shows that ( A  ') is dominated by 
regions y 2 1 (the component of ( A  ') which comes from 
these regions may be greater than the component of ( A  ) 
resulting from the single-scattering approximation). It is 
clear from physical considerations that a systematic account 
of the shadowing for multiply reflected waves should have 
the result that such regions make a small contribution. This 
contradiction can be explained as follows: When we take an 
average with a Gaussian probability density of realizations 
of the random surface, we encounter, albeit with an expon- 
entially small probability, realizations with arbitrarily large 
surface slopes. In this case, as was mentioned above, the 
number of shadowed points can be arbitrarily high, and 
since the contribution from each such point contains a K- 
independent part we find that although the relative number 
of realizations with large surface slopes is small their contri- 
bution may be large. We should emphasize that, as was 
pointed out in Ref. 10, the K-independent contribution from 
the shadowed points cancels out when the multiply scattered 
waves are taken into account. To take that approach, how- 
ever, we need to examine a fairly large number of terms in the 
iterative series ( 5 ) ,  i.e., deal with a very involved problem. 
Physically, a better approach to the solution of Eq. (4)  is to 
exclude the contributions of the shadowed points at the out- 
set, through an appropriate transformation of this equation. 
The derivation of a systematic theory incorporating shadow- 
ing in the multiple scattering of waves by a surface is a matter 
for the future, however. 

In the present paper we consider the case in which the 
shadowed points are not important, and the iterative proce- 
dure (5)  is correct in the sense that the correction terms 
calculated for the scattering amplitude in the Kirchoff ap- 
proximation are small. 

Assuming that the conditions 

hold, so that the integral is dominated by small values of y, 
we find an expression for the scattering amplitude in which 
double reflection is taken into account: 
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(AD,, (k') >=6 (k'-k,) exp (-2v0202) BNt(ko,Bt, ro, r,) =sign[q ( r ~ )  -q (rt) l+iv~[q @a) -1 (r,) I 

The requirement that double scattering contribute little 
to the scattering amplitude is satisfied if the conditions 
d / a 2  < 1, K d / a  < 1, a 2 / d )  tan 0; hold. The last of these 
conditions is equivalent to the absence of any shadowing of 
the rough surface for the incident wave (our original as- 
sumption was that the entire surface was "illuminated" by 
the incident wave). 

Note that when the Fresnel parameter Ko2/a is small 
one can derive a simplified expression for the scattering am- 
plitude even before the averaging procedure, which becomes 
considerably more complicated when waves reflected larger 
numbers of times are taken into account. When the param- 
eters u/a and K d / a  are small, the quantity Vr](r) is small 
(the slope angles of the roughness are small), as is the com- 
bination Y, Jr](r) - r](rt) 1, which is equal to KoZ/a by virtue 
of the estimates Ir](r) - r](rr) I S u ,  vY1 = K  sin 8 , s  Ko/a 
(8, is the angle between the z = 0 plane and the direction of 
the rescattered wave). Physically, a small value of the pa- 
rameter vl lr](r) - r](rf) l means that the integral in (8)  is 
dominated by intermediate waves which have undergone re- 
peated reflection in the first Fresnel zone with respect to the 
point of the preceding scattering. The contributions of the 
other waves cancel out. As the points of successive scattering 
become further and further apart, waves progressively closer 
to the horizontal contribute to the scattered field. 

Expanding the exponential function containing the ab- 
solute value in (8),  and retaining small terms of up to second 
order collectively in the parameters Vg(r) and 
vllr](r) - q( r l )  1, we find the following expression for the 
scattering amplitude A h, (k t )  : 

Taking an average (see the appendix), we find an expression 
for the mean scattering amplitudes: 

Except for the first term, expression (20) is the same as 
( 9 ) ,  if only the first term in the expansion of the function 

in the parameter YO[ 1 - W ( p )  ] "' 4 1, which is identical to 
K d / a  ( 1 is taken into account in that earlier expression. 
The first term in (20) corresponds to the incorporation of 
the next term in the expansion in this parameter; it can be 
ignored in this approximation. We see that when the condi- 
tions ( 17) hold a preliminary expansion of the exponential 
functions containing absolute values leads to the same result 
which we would find if we systematically carried out the 
averaging and further simplifications. This calculation 
method makes it possible to find the contribution to the scat- 
tering amplitude made by triply scattered waves of terms up 
to second order in the small parameters ( 17). The contribu- 
tion from waves scattered a higher number of times is of a 
higher than second order in these small parameters. The 
contribution of triply scattered waves to the scattering am- 
plitude is thus given, at this accuracy level, by 

where 
e x ~ [ - i ~ ' q  (ro) -ivoq (ri) I B ; , ~  (k,,, ki, ro, r,) , 

(18) 
Bn2 (kO, kt, k2, rO, rt, r2) = - 

where vt 
x [q(rt) -q(r2) I-i -kzVq (rt) [q (ro) -q (rt) I 

vz 
Yo 

B D ' ( ~ o ,  ki, ro, r J =  -{sign11 (ro)Lq (ri) ]+ivi[? (ro)-q (rl) ] va 
v ' - i-ktVq(ro) [q(rl)-rl(~o)l+ 

kiVrl(r0) kzVq(9) 
vt 
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Taking the average of expression (21 ) is a lengthy pro- 
cess, but no difficulties arise. Making use of the uniformity 
on the average of the surface roughness, which means that 
the correlation functions depend on only the coordinate dif- 
ference, (77 ( r i  )q(r, ) ) = 2 W( ri - r, ), and transforming to 
the new coordinate system (r,,r,,r,) + (R, pl,p,), where 
R = r, + r,  + r,, p, = r, - r,, p, = r ,  - r,, we find the fol- 
lowing expression for the contribution of triply scattered 
waves to the amplitude: 

1 <A& (k') >=F6 (ko-k')- 
(2n) 

x CD,N (ko, k1, k2, pi, pz), 
where 

Cn-=a2v1v2D (1-02v,2D) 

and where we have introduced W, = W( p, ), 
W2= W(p,), W,,, = W(p ,+p , ) , andD= 1 +  W , , ,  
- W, - W,. A subscript on V specifies the variable on 

which this operator is acting. Expressions (7) ,  (9), and (22) 
determine the scattering amplitude up to and including 
quantities of second order in the small parameters ( 17). For 
a small roughness, avo 4 1, we find the following expres- 
sions, retaining the terms to within 0%; inclusively in ex- 
pressions (71, (9),  and (22) : 

x exp [ i  (k-ko) p] { (v2-2v.v) W (p) +ikV W (p) 

v 
X [ i ~ k V ~ ( ~ ) - i - k ~ V ~ ( p ) +  v YO (kV) (koV) vvo W(P) 

Correspondingly, we have the following expressions for the 
total scattering amplitudes for scattering by rough surfaces: 

oa 
( A ,  (k') )=-6 (kt-ko) [ 1-04.' +--I (2x1 dp dk 

x exp[i(k-ko)p] { (v2--2v.v) w (p) +ikv w (p) - 2 i 2  v kv  w (p) 

Expressions (24a) and (24b) can be simplified by integrat- 
ing by parts the terms containing gradients of the correlation 
function: 

(25b) 
where 

w(k-k0) = J dp exp[i(k-k0)pl W(P) 

is the Fourier spectrum of the correlation function, and 
where we have used the equation 

Expressions (25a) and (25b) are completely identical to the 
results found through the use of standard perturbation theo- 
ry.' In particular, using the chain of equalities 

i i 
- dk v exp (ikp) = lim - dk v exp (ikp+ivz) 
2n s+o (237) 

i az J dk exp (ikp+ivz) =- lim -- 
r-o (237) dzZ v 

we can easily put expression (25a) in the form 

exp [iK (pZ+ z2) "'1 
x IdPeXP(-ikoP)w(P) (p2+z2) Ib 

Further manipulations of this expression are carried out as 
in Ref. 1; they lead to the following expression in the case of 
an isotropic correlation function: 
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a detailed analysis of the latter integral for various limiting 
cases has been carried out by Bass and Fuks.' 

4. MEAN FIELD 

The structure of the mean field is of considerable inter- 
est. Substituting the expresions for the fields at the surface in 
the single-scattering approximation into the exact expres- 
sions ( l a )  and ( lb)  for the field, we find the following 
expression for the mean field: 

{ ~ ~ ~ , ~ ~ ~ }  = exp (ikor-ivoz) 7 exp (ikor) 

Away from the boundary [z < min q ( r )  1, the mean field is 
zero. This result is in complete accordance with the physics 
of the process. If the random realizations of the surface are 
Gaussian, we find the following expression, making use of 
the expressions for the mean values given in the Appendix: 

1 (UD,N (r, Z) )= exp ( ikor-ivoz)~ -exp (ikor-ivoz) exp 
2 

Under the conditions z/a) 1 and z/u)av0 (this is actually 
the Fraunhofer approximation) we can use the asymptotic 
expressions erfc (z) = exp ( - z2 ) / (zf i)  as Z+ w and 
erfc (2) = 2 - exp ( - 2 ) / (  - z f i )  as z-, - W .  We find 
the standard expression for the mean field in the Kirchoff 
approximation for positive z: 

< U D , N  (r, Z)  )=exp (ikor-ivoz) 
r exp (ikor+ivoz) exp (-202v02). 

For large negative values of z we find from (26) 

In other words, at large negative values o f t  the mean field is 
the incident wave, damped exponentially over depth. With a 
Gaussian distribution of roughness heights we have 
min q ( r )  + - c ~ ,  SO this result does not contradict the van- 
ishing of the mean field at z < min q ( r ) .  

Near the mean plane, z = 0, and under the conditions 
z<u  and z<dv,,  the structure of the mean field is given by 

<UD,,  (r, z) )='I, exp (ikor-ivoz) 
rl/, exp (ikor+ivoz) exp (-2oZvoz) erfc (-2"'iovo). (27) 

It is interesting to note here that the incident wave has half 
the amplitude, and the amplitude of the specularly reflected 
wave is determined by the factor 
3 exp ( - 2 2 4  ) erfc ( - 21'2iayo). It can also be seen 
from (27) that the mean reflected field is formed by both the 
secondary incident waves (reflected from higher parts of the 
surface) and reflected waves. According to the Rayleigh as- 
sumption, one would seek this contribution in the form of 
reflected waves alone. 

5. CONCLUSION 

Summarizing, we have systematically calculated the 
scattering amplitude of the mean field reflected from abso- 
lutely hard and soft surfaces without using the Rayleigh as- 
sumption. The expressions derived here contain as limiting 
cases the results of the Kirchoff method and the small-per- 
turbation method. The ranges of applicability of the expres- 
sions derived here have been found. These ranges are deter- 
mined by the condition that the mean slope angles of the 
roughness be small, u/a( 1, and the condition that the Fres- 
nel parameter be small, K$/a 4 1. No restriction is imposed 
on the Rayleigh parameter $4. Accordingly, the basic re- 
striction on the properties of the roughness is that the slopes 
be gentle. Several results found through this approximation 
agree with results derived in Refs. 11-13. 

In the limit K+ co, Ko2/a) 1, which corresponds to 
the geometric-optics approximation, the only calculation 
which would be valid without consideration of shadowing is 
a calculation of singly reflected waves. (Calculations for 
waves reflected more than once absolutely must include a 
shadowing factor: The small value of the glancing angle of 
the rereflected waves, 9, -o/a 4 1, has the consequence that 
in this limit regions far from the surface point near which the 
field is being calculated dominate, while it is clear from phys- 
ical considerations that such a situation would be unlikely.) 

Another result of this study which we regard as impor- 
tant comes from the analysis of the behavior of the mean 
field near the boundary. It has been shown that the mean 
field has a structure more complex than simply a superposi- 
tion of the incident and specularly reflected waves. The as- 
sumption that this simple superposition is valid was used in 
Ref. 1, for example, in a renormalization of the reflection 
coefficient and in a study of the possibility that surface waves 
could exist at rough surfaces. A consideration of the actual 
structure of the mean field may lead to some revision of the 
results in that area. 

APPENDIX 

The nonanalytic expressions which arose in the text 
proper can be averaged exactly in the case of a Gaussian 
probability density of random realizations of the surface. 
The resulting formulas for certain mean values are 

2. <sign[q (r) -q (r')] exp [-ivq (r) -ivlq (r') ] ) 
=exp {-'I, (v+v') 2 ~ z [  1+W(p) 1) exp {-'I, ( V - V ' ) ~ ~ ~  

X[I-W(p) l)erfc{'lZi(v-v1)a[l-W(p) ]Ih). 
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