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The field structure of the perturbations created in nuclear matter by a fast relativistic particle is 
studied. The equation of state of the medium is assumed to allow extremely high "sound" 
velocitiess-c. The temperature distribution in the jet resulting from the thermal conductivity of 
the nuclear matter is calculated. Conditions for the phase matching of acoustic waves are found 
for the case in which the particle velocity Vand also the "sound" velocity in the medium, s, are 
comparable to the velocity of light. 

1. INTRODUCTION jet in which the thermal conductivity of the nuclear matter is 

Processes in which a large amount of energy is trans- taken into account. 

ferred to a nucleus have always attracted interestjn research 
in nuclear physics. Such processes occur, in particular, in 
collisions of high-energy heavy ions, in which a large num- 
ber of degrees of freedom are excited in the interacting sub- 
systems. It might be suggested that the macroscopic proper- 
ties of the nuclear subsystems are manifested particularly 
clearly here; e.g., motions of a hydrodynamic type, such as 
shock waves or jets,'v2 etc., may arise in the nuclear matter. 

Galitskiiet al. ' have studied various aspects of the prob- 
lem of the passage of a nonrelativistic particle through nu- 
clear matter and the hydrodynamic motions which arise in 
the process. Glassgold et alS2 have analyzed the validity of 
the hydrodynamic approximation for describing processes 
associated with the appearance of shock waves. 

When the interaction energies of heavy ions are high, it 
is often necessary to consider relativistic effects. This com- 
ment applies in particular, to a possible interpretation of the 
experiments of Refs. 3 and 4, in which the fission of heavy 
nuclei by protons with a distinctly relativistic energy, on the 
order of 1-10 GeV, was studied (Fig. 1 ) . 

In the present paper, in contrast with Ref. 1, we focus on 
relativistic effects. In particular, we examine certain effects 
which arise from the passage of a fast particle (V-c) 
through matter whose equation of state allows perturbations 
to propagate through the medium at velocities comparable 
to the velocity of light. We find the conditions under which 
waves are excited. Two factors are taken into account in 
these conditions: the relativistic velocity of the particle itself 
and the relativistic nature of the equation of state of the mat- 
ter. We discuss the effect of the thermal conductivity of the 
nuclear matter in the wake of the particle. 

A brief outline of the paper is as follows. In Sec. 2 we 
derive the equations which we will need in the relativistic 
generalization. Section 3 is devoted to the structure of a 
source which models the interaction of the moving particle 
with the nuclear matter. In Sec. 4 we analyze in the acoustic 
approximation the field of perturbations created in the medi- 
um by the particle. The condition for phase matching in the 
emission of waves is discussed in Sec. 5 for the case in which 

2. DERIVATION OF HYDRODYNAMIC EQUATIONS WITH 
SOURCES 

In the special theory of relativity, the equations of inter- 
est here can be derived from the energy and momentum con- 
servation laws written in the form of a Cdivergence of the 
energy-momentum tensor of the system:596 

Here x0 = ct, xa = {xl, x2, x3}, and c is the velocity of light. 
The Latin indices run over the values 0, 1, 2, 3; the Greek 
indices run over the values 1, 2, 3. 

The tensor T :  = T :  + T:, determined by its mixed 
components, includes, on the one hand, the constitutive ten- 
sor 

T:=p~Z  Wu,uk-pGik, 

which characterizes the ideal relativistic liquid and, on the 
other, the dissipative tensor r:, which describes both the dis- 

the "sound" velocity in the medium and the velocity of the FIG. 1 .  Distribution of the number of events with respect to the difference 

particle passing through it are in magnitude to between the absolute values of the transverse momenta of the fragments.3 
The solid lines correspond to ordinary fission events. The histograms indi- 

the light. Jet is analyzed in Set. 6 .  In Set. 7 cate ''explosions" of the nuclei in their collisions with protons. The proton 
we report numerical calculations of the temperature of the energy is on the order of 1 GeV. 
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sipative properties of the medium and the interaction 
between the medium and the particle moving through it. The 
quantity c2 Win this expression is the enthalpy per unit mass, 
p is the density, andp is the pressure. All these quantities are 
referred to the rest frame of an element of the medium. As 
usual, the Cvelocity is specified by its components: 

Here Y -  = ( 1 - v2/c2), the interval dl  is given by the 
expression dl  = c2dt - dx2, and v is the hydrodynamic ve- 
locity of the medium. It is useful to bear in mind that 
uiui = 1 and d /dl = uia /axi. The specific enthalpy c2 Wand 
the specific enthalpy a are in turn determined by 

Here $ is the internal energy per unit mass, and T is the 
temperature of the medium. 

With these preliminary comments behind ̂ us, we turn 
now to Eqs. ( 1 ) . Substituting the expression for T : into ( 1 ), 
we find 

c2Wuiak (pun) + U ~ C ' ~ U ' ~ ~  W + C ' ~ W U ~ ~ ~ U ~ - ~ ~ P + ~ ~ T : = O .  (3) 

projecting Eqs. ( 3 )  onto the Cvelocity ui, we find 

Using relations (2),  we finally find the equations 

To see the essence of the problem, we assume that no 
mutual conversions of particles occur in the medium. The 
following continuity condition must then hold: 

Equation (5)  therefore becomes 

This equation determines the heat evolution in the medium 
as a result of both the friction of the passing particle with the 
medium and dissipative processes in the medium itself. 

Using the functional dependence a = a(p,p), we can 
express the entropy production in terms of the derivatives of 
the field quantities p and p: 

Here /3 = pT(du/ap), , and the sound velocity in the medi- 
umiss2 = w -I(ap/ap),. 

To derive a system of equations which generalize the 
Euler equation to the relativistic case, we introduce the ten- 
sor P: = 8: - uiuk, which makes it possible to project Eqs. 
( 1 ) onto the direction orthogonal to the Cvelocity ui. Dot- 
ting (3)  with this tensor, we find the equations which we 
need: 

Here we have used P kduk = du,. Using expressions (2)  and 
(7),  we can put Eqs. (9)  in a slightly different form: 

pc2d (Wu,) /dl=dip-dkz:. (10) 

3. STRUCTURE OF THE SOURCE 

We now consider the model situation in which the role 
of the dissipative tensor reduces to just the contribution from 
the friction of the moving particle with the medium. It fol- 
lows from Eqs. (6) ,  (7),  and (9)  that it is sufficient to write 
out the explicit expression for the 4-vector .ii = dkr;k. TO do 
this, we can use the approximation of Ref. 7. According to 
one of the results of that paper, the vector .ii, which describes 
the effective friction in a two-component liquid, can be writ- 
ten in the form 

The invariant coefficient R depends on the collision velocity 
and the average momentum transfer in the collision of the 
particles of the components; n, and n2 are the invariant num- 
ber densities of particles for each of the components; and u,' I )  

and u , ' ~ )  are the 4-velocities of respectively the first and sec- 
ond components. In the case of interest here, the second 
component must be understood as the incident particle. In 
the frame of reference moving with that particle, under the 
condition that the particle is at the origin, the density n2 is 
then equal to a 8-function of x: n2 = 8'" (x) .  

Substituting ( 1 1 ) in Eqs. (7)  and ( lo) ,  we find 

The last of these equations can be put in a form similar to 
that of (9): 

4. ACOUSTIC FIELD IN THE COMOVING FRAME OF 
REFERENCE 

Let us find the structure of the acoustic field in the 
frame of reference moving with the particle. In this case the 
partial derivative of the field quantities with respect to the 
time vanishes, so we have 

d/dl=u'di= (uV) =c-'y ( v V )  . (15) 

Here v is the velocity of the medium in the comoving frame, 
and u = vy/c. 

To linearize Eqs. (6) ,  ( 12) and ( 14), we set 

wherep,, p,, u, are the unperturbed values of the field quan- 
tities; andp,,p,, u, are their variations which result from the 
interaction of the particle with the medium. Using ( 15) and 
(16), we can then put the continuity equation (6)  in the 
form 

po(Vu1) +(uoV)pt=O. (17) 

Correspondingly, Eq. ( 14) reduces in this approximation to 

poc2Wo(uoV)u,=- (V+uo(uoV))  p,-Rnouoyo6(3' (x). (18) 

Finally, using expression ( 8 ), we find 

-p~~W~(u~V)p,+~(u~C)p,=Rn,(y~-1)6'~~(~). (19) 

To solve Eqs. ( 17)-( 19), we use spatial Fourier trans- 
forms, defined by the standard rule: 

rp  (x) = dk (2n)-'rp erp ( ikr)  . 
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As a result we find a system of algebraic equations for the 
Fourier components ofp, p, and u: 

po (ku) f (kuo) p=O, 
p-s2Wop=-iRno(yo---I) /P (ku,) , 

pocZWo (u,k) u+ (k-tu, (u,k) )p=iRnoyouo. 

Straightforward calculations lead to an equation in the 
variable p: 

We separate the longitudinal and transverse components of 
the vector k = {kll ,k, 1; here we have (u,k, ) = 0. We intro- 
duceM= V / s  (theMachnumber) and b 2  = y$(M2 - 1). 
Equation (20) then becomes 

Integrating this expression over k, ,.making use of the cau- 
sality principle, we find the following representation for 
p1(x) ( M >  1): 

m 

p, (x )  =- (4n) -' (Au.) (d /dz )  { ~ d k , , ~ ,  (bk,r) cos (k,la) 
0 

After integration over kll , this expression becomes 

( x )  = (2n) -'Auo (a/&) (0 ( 2 )  6 ( z -  br) (zL-b2r2)-%} . 

It follows from expression (21 ) that the field is localized in a 
conical region behind the source (Fig. 2), just as we would 
expect. 

For the Fourier component of p we then have 

p=p(Wos2)-'+iRn,(y,-1) /PsZWo(uok). 

taking the inverse Fourier transforms of this expression, and 
circumventing the poles in the correct manner, we find 

FIG. 2. Geometry of the problem. The analysis is carried out in the rest 
frame of the particle, which is moving at a velocity - v. The particle is at 
the origin. Surface 1 is the Mach cone; the heated jet (2) forms at the axis. 
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Finally, we find expressions for the components of the 
velocity u, = {uil ,u,). For the longitudinal Fourier compo- 
nent of the velocity we have 

u,,=- [y,Ypoc2Wouol p+i[Rnoyolpoc2Wok,~l. 

In the coordinate representation we find the following 
expression for this component: 

uII (x) =- [yoZ/po~2Wo~~ol  pi (x) - [Rno~olpac~ WOI 0 ( z )  8") (r) . 
(23) 

To determine the orthogonal component of the veloc- 
ity, we introduce the triad of unit vectors of a cylindrical 
frame of reference e, , e, , e,, where e, runs along the z axis, 
and e, and e, correspond to the polar radius rand the polar 
angle p. By virtue of the axial symmetry of the problem, u, 
must be parallel to e,; i.e., u, = e,u, ( x ) .  

For the u, Fourier component we have 

iA (ke,) 
(a,) = - - 

poc2 W ,  k,2-bZk,,2 

After taking inverse Fourier transforms, we find from this 
expression 

u, (x )  =e, ( A / ~ T C ~ ~ C ~  W o )  (bzr / ( z2-b2r~"2)  0 (z) 0 (z-br) . 

Expressions (22) and (23) show that in addition to the 
familiar motion of the hydrodynamic type-Mach shock 
waves-there is an additional collective excitation: a jet mo- 
tion. 

We now consider the subsonic regime, with b < 0. For 
convenience we use the notation a2 = - b *. From expres- 
sion (20) we find 

p=iA~,k.,~/ (1~,2~taZk,12) .  

Taking the inverse Fourier transforms of this expression, we 
find the following result for the pressure: 

Expression (22) for the density p , ( x )  remains valid. 
Differences arise because of a different variation of p,  (x) 
along the coordinates. Nevertheless, again in the subsonic 
regime a jet forms behind the particle. 

5. CONDITION FOR PHASE MATCHING IN CONNECTION 
WITH THE UNIFORM "SUPERSONIC" MOTION OF A 
PARTICLE IN THE MEDIUM 

The direction in which the waves are radiated is deter- 
mined by the locations of the poles in the integrands, for 
which we have (see also Fig. 2) k b - k 2 = 0 and 
tan $ = b. It follows that 

cos I)= ( s /V)  ( I - T ' ~ / c ~ )  'Ic/ ( ~ - S ~ / C ~ ) ' ~ ~ .  (24) 

In the nonrelativistic case, in which we have not only 
V g  c but also s g  c, we find a known result: Radiation is pos- 
sible for cos $ = s / V <  1. This result is of course valid only 
for a particle in uniform motion. 

6. EXISTENCE OF A HEATED JET 

We turn now to the change in the temperature of the 
medium caused by the interaction with a particle. We first 
consider the case of an ideal Fermi liquid. For such a system, 
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at a sufficiently low temperature ( T ( < E ~ ,  where E~ is the 
Fermi energy), the small change in the square of the tem- 
perature is a linear function of the small changes in the den- 
sity and the pressure. Treating the pressure as a function of 
the square of the temperature and the density, and noting 
that under these conditions the isothermal compressibility is 
equal to the adiabatic c~mpressibility,~ we find 
(dp/dp), = WG'. For brevity we use the notation 
f = (dp/aT2), . When these relations are taken into ac- 
count, Eq. ( 19) becomes a closed equation for the tempera- 
ture: 

fig (uoV) T2=(yo-1) RnoG(" (x). 

A solution of this equation found by Fourier transforms is 

It follows from this result that heating occurs only in the jet. 
The temperature does not change in other spatial regions. 

It is useful to compare expression (25) with the expres- 
sion derived by Galitskii et al.' in a nonrelativistic treat- 
ment. Using the equation of state of the medium which was 
used in Ref. 1 to calculate the coefficient = p(d8/dT2),  
in (25), we find the following expression for the ratio of 
squared temperatures: 

We introduce p = V / c .  We then have 

( T,,, /T,,,,,I 1' =2[1- (I-F'J ''1 p-'. 

At small values p< 1, this ratio tends toward unity, as it 
should. At high velocities, p - 1, on the other hand, we have 

( Trel /Tnonre~ 
These relations show that the results calculated on the 

temperature in the jet in the nonrelativistic and relativistic 
approaches differ only negligibly. 

7. TEMPERATURE DISTRIBUTION IN THE JET RESULTING 
FROM THERMAL CONDUCTIVITY; NUMERICAL ESTIMATES 

To find numerical estimates of the temperature distri- 
bution, we need to consider the processes which cause the jet 
to spread out. In general, this is a rather involved problem. 
Galitskii et al.' have shown that incorporating viscosity re- 
sults in finite transverse dimensions of the jet only for the 
expression for the velocity of the liquid. To estimate the 
spreading of the jet in terms of temperature, we need to con- 
sider first the thermal conductivity of the medium. For this 
purpose we must add to the dissipative tensor terms which 
reflect the presence of heat fluxes, i.e., Q k ~ ,  + Q,uk. The 4- 
vector Qi here is6 

In general, the thermal conductivity of the medium, K, 
is a function of the temperature and the density. For the case 
of interest here, in which the process takes place at a fairly 
low temperature, one can assume that K depends only weak- 
ly on the d e n ~ i t y . ~  For an infinite Fermi liquid, the thermal 
conductivity is inversely proportional to the temperature, 
i.e., K- T - I, and the mean free path has a temperature 

dependence L - T - 2.  For a finite Fermi system (at T<E,), 
the estimates of Ref. 10 lead to mean free paths considerably 
larger than the dimensions of the system. For this reason, the 
spatial boundedness of the region is taken into account, by 
assuming that the mean free path is equal in order of magni- 
tude to the dimension of the system, d. A viscosity coeffi- 
cient which agrees satisfactorily with semiphenomenologi- 
cal calculations for a nucleus was derived in this formulation 
of the problem in Ref. 10. In this case the thermal conductiv- 
ity can be estimated from9 

where C-  T is the specific heat (per particle), and F is the 
mean velocity of the particles of the medium, which is on the 
order of v,, the velocity at the Fermi surface. We can then 
write K = x T  for the thermal conductivity, where the coeffi- 
cient x does not depend on temperature. Substituting this 
expression into (26), we find 

We can now find the expressions which we need to add 
to Eqs. ( 17)-( 19) in order to incorporate the thermal con- 
ductivity. The dissipative tensor r f  appears in the combina- 
tion uirk in the equation for the entropy. To first order we 
then find 

To extend the Euler equation, we need to evaluate the 
expression p7d, T: . Here we have P<d, (T:) =: (dQi/dl). 
Substituting the resulting expressions into Eqs. ( 18) and 
( 19), we find a system of linearized equations with the ther- 
mal conductivity: 

-~W0s2(uOV)p1+B ( ~ ~ V ) p , = R n ~ 6 ( ~ )  (x) (yo-4 ) 

+ (x/2c) (A+ (uoV ) ') Ti2, 
p c 2 W o ( u , v ) ~ , + [ v + ~ o ( ~ o v ) l  pi 

-RnoG(S' (x) youo+ ( d 2 c )  (uoV) [ V 
+uO (uOV) J 7'1'. 

There is no change in the continuity equation as a result. 
Solving this system of equations, we find an equation for 

the square of the temperature: 

PE (uoV) T,'- ( ~ 1 2 ~ )  (A+ (ucV) ') Ti2= (yo-1)RnoG(3)(~) .  
(27) 

The Fourier component of the square of the temperature is 
then 

(TZ) = (Rno(yo-I) ) / [( i1/2c) (k2+ ( ~ ~ k ) ~ )  +iPE (uOk) I .  

Inverting the Fourier transforms, we find an expression for 
the distribution of the square of the temperature: 

T2(x) = [Rnoc(yO-1)/2nx] ( ~ ' + y , ~ 1 - ~ ) - - ' ~  

Appearing as a parameter in this expression is the quan- 
tity k,, which is determined by the values of x and pl: 

Let us calculate these quantities. 
The thermal conductivity K can be calculated from1' 
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K= (4n2fi3p2/3m.'T) [js (': ') (1-oos 8) I-'. 
4n cos ( /,8) 

Here m. is the effective mass of the quasiparticle, and the 
function w ( 0 , ~ )  determines the probability for the scatter- 
ing of quasiparticles through polar and azimuthal angles. 
The integration is over the solid angle fl. 

Evaluating the integral in brackets as in Ref. 10, we find 

K=pF5(fOnSA3m,T) -'. 

We define the mean free path by L = 1.33fip; '(e,/T)',  as 
in Ref. 12. Making use of the assumptions discussed above 
concerning the spatial boundedness of the system, and com- 
paring K and L, we find a relationship between x and L: 

If we set L equal to 7 fm (the nuclear size), for example, we 
findx=:2.10'4 ev- ' . fm- ' .a- ' .  

For the coefficient /36 we have, be definition, 

Using the expression for the entropy of a Fermi liquids (in 
the limit T+O) , 

we can write 

As a result we find 

Finally, Eq. (27) contains the parameter R, which is as 
yet undetermined. Comparing the definition of R in ( 1 1 ) 
with the result of Ref. 13, we find R = cmn; I T -  I, where 
r = 4X 10 -24  s. We show the final result in graphical form. 
Figure 3 shows the dependence of the temperature of the 
medium on the distance along the jet axis r for various values 
of 2. 

8. CONCLUSION 

We have derived a theory for the excitation of collective 
motions in nuclear matter in the acoustic approximation, 

T, MeV 

FIG. 3. Spatial distribution of the temperature in the medium for an ener- 
gy E- 1 GeV of the impinging particle. 

generalized to the relativistic case. In the model used here, it 
is assumed that the velocity at which excitations propagate 
through the medium can reach values comparable to the ve- 
locity of light. 

We have derived expressions which describe the exis- 
tence of Mach shock waves and a jet flow associated with the 
uniform supersonic motion of a relativistic particle. 

For V-c and s-c, the phase-matching condition leads 
to the result that the angle at which the waves are radiated is 
determined not only by the ratio s/V (the known relativistic 
limit) but also by the ratios V/c and s/c. Jet motion also 
arises behind a particle in the subsonic regime of the motion 
of the particle. 

We have shown that in the jet formation process the 
temperature distribution within the jet is governed primarily 
by the thermal conductivity. We have calculated the values 
of parameters characterizing the effect. It has thus become 
possible to determine the temperature in the medium. This 
temperature reaches a level high enough that a phase transi- 
tion occurs in the medium behind the particle'4 (Fig. 4), the 
nucleus "boils up," and an "explosion" of the nucleus is ob- 
served. 

A few explanatory words are in order regarding the va- 
lidity of the approximations which we have used. One might 
question whether the specific estimates of the kinetic coeffi- 
cients of nuclear matter borrowed from the theory of a de- 
generate Fermi liquid can legitimately be applied to the phe- 
nomena which occur at temperatures on the order of 10-100 
MeV. Using the Chapman-Enskog method for the relativis- 
tic Boltzmann equation, GalitskiT et a1. l 2  calculated the ki- 
netic coefficients of nuclear matter for temperatures T- 30- 
150 MeV. They examined both neutron matter and nuclear 
matter, with various isotopic compositions. They also stud- 
ied the effects of an admixture of a mesons on the kinetic 
coefficients of neutron matter. A comparison of the corre- 
sponding quantities found in the present study with the re- 
sults of Ref. 12 shows that (for example) the values of the 
thermal conductivity found by the quite different ap- 
proaches differ by no more than a factor of 3 for tempera- 
tures on the order of 5&100 MeV. In view of the qualitative 
nature of our model, this agreement is completely satisfac- 
tory. 

One might also question whether a purely hydrody- 
namic approach, which ignores the production of pions, A 
particles, etc., is valid. Previous analyses in several places 

T, MeV 

7.00 1 

FIG. 4. Phase diagram of the nuclear matter.14 I-Liquid phase; 2-gas 
of nucleons; 3--condensed state; 4--quark-gluon plasma. The "boiling 
up" of the nucleus corresponds to a transition from region 1 to region 2. 
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(e.g., Refs. 15-17) have shown that the maximum concen- 
tration of pions and A particles resulting from collisions of 
heavy nuclei with energies on the order of 1 GeV per nucleon 
in the laboratory frame of reference is at most 15-30%. It is 
thus fairly safe to ignore these processes. The same factors 
lead to slight overestimates of the temperature of the medi- 
um in our estimates. 

The arguments presented above thus lead to the conclu- 
sion that the model proposed in this paper is fairly successful 
in describing the process and that it yields satisfactory values 
of calculated quantities. 
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