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The interaction between tunnel states in a metal and an external field is considered using linear 
response theory. Analytic expressions for the linear response function are obtained for a number 
of cases covering in practice the whole range of parameters of a two-level system, including the 
quantity b representing the scale of the interaction of the tunneling particles with conduction 
electrons. Forb 1, a single solution can be obtained, valid throughout the full range of 
temperatures and external field frequencies. The results obtained are used to account for the 
anomalous temperature dependences of the velocity~of sound and of the internal friction in 
amorphous metals and in metal-hydrogen systems. A specialanalysis is made of the change in the 
elastic properties when a metal undergoes the transition to the superconducting state. Moreover, 
experiments on the resonant interaction of sound with a two-well system and on inelastic neutron 
absorption are considered. An analysis shows that all the features of the tunnel dynamics in a 
metal, including the electron polaron effect and the dynamic destruction of coherent tunnel 
states, can be revealed directly using such experiments. 

1. INTRODUCTION 
The low-temperature behavior of amorphous sub- 

stances belongs to a class of phenomena in which one domi- 
nant feature is below-barrier tunneling of "particles" inter- 
acting with excitations of the substance. The problem of 
coherent and incoherent below-barrier motion of a particle 
in a two-well potential with weak tunnel coupling super- 
posed on the strong dynamic and static fluctuations of the 
medium is fundamental in all such phenomena including 
quantum diffusion of atomic particles in crystals. (The am- 
plitude of a coherent transition between neighboring wells in 
a regular crystal governs the width of the resultant energy 
band.) It is particularly interesting to consider the tunnel 
motion of heavy (compared with electrons) particles in a 
metal when the dominant interaction is with the electron 
fluid. A recently developed theory has made it clear that, in 
spite of the existence of a small adiabatic parameter m/ 
M <  1, below-barrier transitions are generally accompanied 
by the appearance of a strong electron polaron effect and a 
simultaneous total dynamic destruction of coherent tunnel 
states with increasing temperature. In this sense the inter- 
action with electrons is practically always strong. A strong 
electron polaron effect in a metal is due to the fact that an 
important component of a perturbed electron wave function 
is in the form of virtual states with low-energy electron-hole 
excitations, known to lead to an "orthogonality catastro- 
phe" in the static case3 or to an infrared divergence when 
transitions o ~ c u r . " ~  Kondo6 was the first to consider the role 
of the orthogonality catastrophe in the diffusion of a heavy 
particle in a metal; his later results are summarized in review 
papers7 (see also the work of Yamada et a l . ' ~ ~ ) .  

When this theory is applied to the two-well problem in a 
metal, it yields the following decisive features: firstly, a 
strong renormalization of the amplitude of a tunnel transi- 
tion a, takes place, whose scale depends on the bare (unre- 
normalized) value of the amplitude A,, on the supercon- 
ducting gap A,, on the well asymmetry 6, and on the absolute 
temperature secondly, &, vanishes exponentially at tem- 
peratures T> a,( T )  and only incoherent transitions accom- 

panied by the excitation of the electron system even in the 
5 = 0 case remain; thirdly, an intrinsic width T ;  '- Tap- 
pears, which is practically independent of &, and (. In many 
cases this width is much greater than the splitting of levels in 
a two-well system. 

All these features imply that the task of developing a 
theory of propagation and absorption of sound or of a low- 
frequency electromagnetic field in a metal matrix containing 
a set of two-well systems is not trivial. In the present paper 
we consider only the linear response case, because it reveals 
all the characteristic features of the tunnel kinetics in a metal 
and thus makes it possible to identify the experimental mani- 
festations of these features. 

The most interesting system is undoubtedly an amor- 
phous metal in its normal and superconducting states. Re- 
cent e ~ ~ e r i m e n t s ' ~ - ' b n  the absorption and renormalization 
of the velocity of sound in such systems simultaneously at 
low and high frequencies have revealed a pattern, which-as 
demonstrated by the analysis of the authors themselves-in 
many aspects qualitatively conflicts with the model of tunnel 
two-well states adopted for glasses. The usual model differs 
from that applied to the insulating glasses'4-16 only in having 
a different relaxation time T, reflecting the interaction with 
conduction electrons (see, for example, Refs. 16 and 17). In 
practice this corresponds to an allowance for the interaction 
with excitations in accordance with perturbation theory, 
which is always justified in the case of the low-temperature 
interaction with phonons. 

Below we demonstrate that if we go beyond the frame- 
work of perturbation theory for metallic glasses and allow 
for the unavoidable drop in the tail of the distribution func- 
tion of two-level systems in terms of the parameter In A,, we 
can then explain the observed anomalous temperature de- 
pendence of the acoustic properties of metallic and super- 
conducting glasses and still retain the concept of two-well 
systems. The results obtained for the two-well problem are of 
general validity and can be used to describe the tunneling 
along an arbitrary collective coordinate with a heavy effec- 
tive mass irrespective of the microscopic nature of two-level 
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systems. These results were published briefly earlier.2s18 The 
present result provides an analysis also of the possibility of 
using different experiments to reveal the characteristic fea- 
tures of the tunnel motion pattern in a metal. 

2. EFFECTIVE SPIN HAMILTONIAN; COHERENT AND 
INCOHERENT TUNNELING 

We discuss a two-level system and assume that the low- 
er levels in the wells are separated relative to one another by 
f .  We assume that the amplitude of a tunnel transition 
between the wells A, (or more exactly, the amplitude E ,  
renormalized because of the interaction with electrons), as 
well as the quantities f and Tare small compared with the 
separation w, between the levels of a particle in a well: 

Under these conditions we can consider only the tunnel tran- 
sitions involving the lower level. 

However, as shown in Ref. 1, in an analysis of the inter- 
action of a heavy particle with an electron liquid the funda- 
mental point is the treatment of virtually excited states of a 
particle in a well. Only then can we obtain the solution of the 
adiabatic problem which allows for the existence of a small 
parameter m / M .  The results obtained in Ref. 1 demonstrate 
that in the structure of an electron wave function perturbed 
by the interaction with a particle we must distinguish the 
"fast" virtual excitations with the energy of the electron- 
hole pairs within an interval w, < 6~ < E, and "slow" excita- 
tions within a band SE < wo (here, E, is the order of the Fermi 
energy E, or of the width of the band gap), as demonstrated 
in Fig. 1. 

The fast excitations become adiabatically matched to a 
particle both during its motion in a well and in the course of 
below-barrier motion (the reciprocal of characteristic resi- 
dence time of a particle under the barrier is usually of the 
same order as w, and, for the sake of simplicity, we shall not 
distinguish these characteristics). Since w, <E,, this match- 
ing is equivalent to screening and leads to a corresponding 
renormalization of the potential relief and, to a slight extent, 
to renormalization of the particle mass. In a sense the parti- 
cle plus the matched adiabatic excitations form a physical 
object which tunnels as a whole. 

On the other hand, the slow excitations do not follow 
the particle and the corresponding part of the electron wave 
function is oriented toward the center of the potential well. 
It is this nonadiabatic part of the perturbed wave function, 
remaining in the well during the tunneling of the particle, 
which is responsible for the electron polaron effect. In the 
course of formation of the function the band of the slow 
excitations becomes cut off not only at the top ( w ,  ), but also 
at the bottom (v).  This is associated with the finite lifetime 7 
of the particle in the well, so that an admixture of states 
characterized by SE < 7-' does not form in the available 
time. 

If we ignore the tunneling, we find that the nonadiaba- 
tic wave function can be found as the eigenfunction Yj;" of a 
one-well Hamiltonian 

Here, H F )  is the Hamiltonian of a particle in the renormal- 
ized ith potential well; 

kk'a 

represents the interaction of the particle with electron-hole 
pairs in the energy interval given above. 

In the Yj," function representation the effective Hamil- 
tonian of two-level systems can be written in the form 

Here, A is the polaron operator whose matrix elements 
A,, = (Yy) / Y i ' )  determine the overlap integral; 

where 6') is the interaction described by Eq. (2 .3) ,  limited 
to the energy interval IE, - E,  , I < v. The excitations in this 
interval do not participate in the formation of the function 
Yy), but it is these excitations that are responsible for scat- 
tering at low temperatures T- A,,, (see below). 

It should be pointed out that Eq. (2.4) does not include 
the term associated with the influence of fluctuations of the 
potential barrier due to the interaction with electrons on the 
amplitude of a transition between the wells ("fluctuation 
conditioning of the barrier," a concept which first arose in an 
analysisI9 of the influence of the interaction with phonons on 
the tunnel motion). Although this effect is greatly enhanced 
in a metal, as demonstrated by Kondo2' and by Zawadowski 
et al. (see, for example, Ref. 2 1 ), its role in the inelastic 
transitions remains-as in the case of phonons-small com- 
pared with the role of the last term in Eq. (2.4). This prob- 
lem is discussed specifically in Ref. 22. 

The explicit form of the polaron operator A was found 
in Ref. 22 for an arbitrary interaction of electrons with a 
particle. In the absence of the scattering of electrons by a 
particle the operator A assumes a particularly simple form1.* 
which will be used later: 

where 
( 9 )  ( 2 )  vkk.=vkk. - v , , ,  . 

Equation (2.6) is derived subject to an implicit assumption 
that the lifetime of a particle in a single well satisfies 7- oo if 
we have v = 0 (the symbol for the product has a prime be- 

FIG. I. Adiabatic and nonadiabatic excitations of electron-hole pairs in a Fermi liquid. 
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cause of the upper limit of the energy of electron-hole pairs AeOh=do ( T )  exp ( -aT/2Ac0h)  (2.13) - - 
is set by the frequency w, ). The finite nature of the lifetime is 
allowed for most simply if in determination of the overlap 
integral weassume that the interaction acts only for a limited 
time and make the substitution V- V ( t )  = Ve- "'. In this 
case the amplitude of the excitation of an electron-hole pair 
in Eq. (2.6) is replaced with 

- v  

Using Eq. (2.6) subject to the substitution of Eq. (2.7), 
we can calculate A,,, directly: 

Here, n, are the electron occupancy numbers; 

The bar in Eq. (2.9) represents averaging over the Fermi 
surface. 

In the limit T-0 the integral in Eq. (2.8) can be calcu- 
lated by a trivial procedure and we have 

In the case of a symmetric system (g = 0) the time is T = 1/ 
A, (here and below we have f i  = 1 ) and it follows from Eq. 
(2.10) that the polaron narrowing is due to a factor b In w,/ 
A,. In future, bearing in mind Eq. (2. I ) ,  we shall assume 
that this factor can have an arbitrary value and in this sense 
the interaction with the electron subsystem is strong. How- 
ever, Eq. (2.6) was derived ignoring the scattering terms, 
which corresponds to the condition b ( 1. Throughout this 
paper we assume that this condition is satisfied. It should be 
noted that in a metal if one orbital channel of the scattering 
of an electron by a particle predominates, then in the most 
general case we have b< 1/2 (Refs. 8,9, 22). 

The self-consistent solution which follows from Eq. 
(2.10) is 

This strong nonlinear reduction in the coherent amplitude is 
known from the theory of tunneling with "dissipation" (see, 
for example, the review in Ref. 23) which appears in the 
"viscous" or "ohmic" regimes. In particular, when the inter- 
action takes place with phonons in a crystal this effect occurs 
only in the one-dimensional case, provided moreover there is 
no "transport" effect (for details see Ref. 24). 

The value of A,,, falls with increasing temperature. 
Even at a relatively low temperature T>  A, the fall becomes 
exponential. It follows from Eq. (2.8) that 

2nT * 
A.,nA ( T )  e-I"", A ( )  = A ( -  , P=2fibT, 

700  

where y is the Euler constant. If, as before, we assume in Eq. 
(2.12) that T = l/A,,, holds, the resultant equation 

in the range a, > 2A( T)/e, has only one solution A,,, = 0. 
However, in addition to coherent tunneling there may 

be also noncoherent and below-barrier motion involving a 
change in the electron state governed by the fourth term in 
the Hamiltonian of Eq. (2.4). This mechanism always en- 
sures delocalization of a particle at a finite tem~erature T 
and it therefore ensures a finite value of T. A calculation of 
the probability of such a transition carried out applying per- 
turbation theory to the transition amplitude yields 

Using the results of Ref. 1 for g = 0, we obtain 

A comparison of Eqs. (2.12), (2.15), and (2.13) shows di- 
rectly that for 0,  )A( T), the following inequalities are 
obeyed: 

A ( T )  > T W A ~ ~ ~ .  (2.16) 

An increase in the temperature of the system thus sup- 
presses the coherent tunneling process so that the incoherent 
processes begin to play the dominant role. The second term 
then disappears from the Hamiltonian of Eq. (2.4) and so 
the spectrum of the two-level system no longer has a charac- 
teristic coherent gap and the difference between the energy 
levels is simply g. This result is related to the specific nature 
of the electron interaction in a metal, where the constancy of 
the density of states p near E ,  gives rise to a linear depen- 
dence R, a Tand the dimensionless parameter b need not be 
small. In the interaction with phonons, at least in the three- 
and two-dimensional cases, the coherent amplitude does not 
vanish and, moreover, it hardly changes at temperatures 
T 3  A, provided only that T 9 0 ,  (for details see Ref. 24). 

In general, for # 0 the reciprocal of the transition time 
given by Eq. (2.14) is described by the following expression 
in the incoherent tunneling case: 

This relationship, obtained using only perturbation theory 
with respect to A,, is valid for any ratio of the parameters 
subject to the condition 

The same inequality corresponds to the dominant role of the 
incoherent processes. In fact, for fl, > g, this follows direct- 
ly from the preceding analysis; in the opposite case the law of 
energy conservation results unavoidably in the excitation of 
the electron system. 

The reciprocal of the time needed to establish equilibri- 
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um in a two-level system under these conditions is related to 
Eq. (2.17) by the simple expression 

y=(l+e-uT)z-'(g, T). 

Considering the problem of a linear response of a two- 
level system in a metallic matrix we assume, as pointed out 
already, that b < 1 and that the polaron parameter b In (a,/ 
A, ) can have any value. If b< 1, we can introduce a purely 
formal approach shifting upward, relative to A,, the lower 
cutoff limit Y of the nonadiabatic excitation. This results in a 
partial redistribution of the interaction with electron-hole 
pairs between the third and fourth terms in the Hamiltonian 
of Eq. (2.4) and alters the coherent amplitude of the transi- 
tion (2.10): 

If Y obeys the condition 

b ln(v/A,)gl 
or 

~<v,=A.e"*, 

then in practice A, is equal to A,. 
The solution of the equation for the density matrix 

makes it possible to distinguish clearly two ranges. The first 
is characterized by the inequality 

It corresponds to coherent motion with respect to E governed 
by the first two terms of the Hamiltonian (2.4) with A,,, of 
Eq. (2.10) or (2.20) in the weak scattering case governed by 
the third term in Eq. (2.4). Ifwe select the value v$A,/nb, 
which may be compatible with the condition (2.21 ) forb 4 1, 
the interaction with excitations of energy SE> Y described 
by the fourth term of Eq. (2.4) is practically absent in the 
case of such motion and the strong polaron interaction is 
manifested only by the renormalization A,,, . 

The second range corresponds to the inequality which is 
the opposite to that given by Eq. (2.22) or, in the more gen- 
eral case, the inequality (2.18). In this case the coherence of 
the system is lost [see Eq. (2.13) 1 and the interaction with 
an electron fluid cannot be regarded as weak. However, we 
can now use the weakness of the coherent coupling between 
the wells against the background of strong intrawell inelastic 
processes; we can then introduce the site representation and 
find the solution of the transport equation by means of per- 
turbation theory in A, or, in fact, in terms of the parameter 
(2.18). In the range under discussion the value of the cutoff 
limit Y is completely unimportant, because the problem can 
be solved for an arbitrary value of b. 

Finally, we can introduce the third range 

which for b < 1 overlaps considerably both region I and re- 
gion I1 (Fig. 2). In this region we can find the solution of the 
transport equation in the site representation for arbitrary 
values of A, and a,. The overlap of the regions makes it 
possible to obtain just one solution valid throughout the full 
range of variation of the parameters. We must stress that the 
final answer is naturally independent of Y.  

FIG. 2. Structure of various regions: 1 )  coherent motion; 2 )  incoherent 
tunneling; 3 )  high temperatures. 

Figure 2 is plotted for 6 = 0, where the concept applies 
also when 6 #O. In fact, for 5% A,, the relationships (2.18 1, 
(2.22), and (2.23) setting out the boundaries of the region 
and retaining the overall picture with the replacement of A, 
and E result in an additional overlap of regions 1 and 2. 

The proposed approach to the problem is applied be- 
low. An artificial assumption Y < Y* is essential to the use of 
perturbation theory in determination of the polaron renor- 
malization of the spectrum [in the sense of Eq. (2.2 1 ) ] when 
the parameter b ln(w,/A, ) is unrestricted. 

3. INTERACTION OF AN EXTERNAL FIELD WITH A TWO- 
LEVEL SYSTEM IN A METAL 

We assume that a particle in a two-level system experi- 
ences a weak external field. This field gives rise to an addi- 
tional term in the Hamiltonian of Eq. (2.4): 

where is the characteristic energy scale and E, + O  is the 
dimensionless field amplitude. The term proportional to a, 
is small compared with Eq. (3.1 ) and the reduction is in the 
ratio A,/w,, so that it can be ignored. When the interaction is 
due to an acoustic wave, then 7 represents the deformation 
potential and E, is one of the components of the strain tensor. 
In this case the expression for the elastic moduli considered 
in linear response theory obviously gives 

a 
M,=2q - (~r{p  ( t )  o,ei"') ) t ,  

aeo 

wherep(t1 is the density matrix of the system. We use f(t) to 
denote the density matrix of a particle and f(w) for its Four- 
ier component: 

f (o)  =(Tr.rp(t) ei"t) t .  (3.3) 

It follows from Eq. (3.2) that it suffices to know only the 
diagonal (in the site representation) component of the den- 
sity of a particle f, , = 4 Tr o, f(w) and, bearing in mind the 
linearity of the problem, it suffices to calculate f, , in the first 
nonvanishing (in E,  ) order 

[In Eq. (3.4) we used f, ,(w) +f,,(w) = 01. 
The intensity matrix of the whole system in the approxi- 

mation linear in E, can be found from the standard equation 
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wherep, is the equilibrium density matrix (we are interest- 
ed in the solution which is linear in E ,  ). Substituting pT  in 
Eq. (3.5) in the form ( 1/2)cO?7e ' " ' p  yields 

W- [Ho, PI = [H, ,  p] + [o,, pT] . (3.6) 

Depending on the range of the parameters A,, 6, and T, 
the separation of the Hamiltonian of Eq. (2.4) into the ze- 
roth Hamiltonian Ho and the interaction H ,  is best carried 
out in different ways using a satisfactory basis representation 
each time. Therefore, we shall not initially make the separa- 
tion specific. Substituting the formal solution of Eq. (3.6) 
into the right-hand side of the same equation and going over 
to the density matrix of a particle in accordance with Eq. 
(3.3), we now obtain 

where the collision integral J is given by 

Here, for the sake of simplicity, we have adopted a notation 
(see Ref. 25) the meaning of which becomes clear if we de- 
fine matrix elements in the representation of the eigenfunc- 
tions of the Hamiltonian Ho : 

where Ei =E represents the eigenvalues of Ho ( a  assumes 
two values and n is the index of the electron subsystem). 

Perturbing with respect to H I ,  we can ignore in Eq. 
(3.8) a correlation between the states of the particle and 
those of electrons, which is equivalent to the approximation 

where p, is the equilibrium electron density matrix. Conse- 
quently, Eq. (3.7) becomes closed relative toJ To the same 
accuracy we can find the equilibrium values of f, and p,. 
from the steady-state solution of Eqs. (3.5) and (3.7) for 
HI", = 0:. 

where the index 0 refers to the equilibrium state for H ,  = 0. 
The matrix elements of the collision integral can be rep- 

resented in the form 

It follows from Eq. (3.8) that after direct transformation the 
matrix elements of the suboperator R are given by 

Therefore, the problem reduces to the solution of the linear 
system of equations 

wj.d-[~~,f~.d - C~;dj~~=u.d, 
ob (3.14) 

Note that the adiabatic activation of the interaction corre- 
sponds to the substitution w - w + id in Eqs. (3.13) and 
(3.14). 

We begin with low temperatures and assume that we 
simultaneously have 

In this case the important excitations are those which do not 
participate in the electron polaron effect and, therefore, the 
interaction is governed by the third term in Eq. (2.4). How- 
ever, the electron-hole pairs of energy 6~ > v participating in 
the electron polaron effect are not excited and do not interact 
with a tunneling particle. Therefore, the penultimate term in 
the Hamiltonian of Eq. (2.4) can be omitted. In accordance 
with the ideas put forward at the end of the preceding sec- 
tion, we have A,,, = A, in the range under consideration. 
Our Hamiltonians H, and HI  are selected to be 

The relationship between the representation of the eigen- 
functions of the Hamiltonian H, and the site representation 
has the standard form (6 > 0)  : 

In the Ho Hamiltonian representation of Eq. (3.16), we have 

We substitute Eq. (3.18) into the definition of the su- 
peroperator R ofEq. (3.13). All the terms in (3.13) contain 
the same sum of the electron variables of the type 

=zz 1 V,,12nk(l-n,.) 
= -iQ (z) -2zRv(z) .  

~ k ' ~  (Z+E~-E.,) ( z + E ~ , - E ~ )  
(3.19) 

We have here 

Noting thatf,, = - h a ,  we select fa,, fa,, and f,, as 
the independent elements of the density matrix. The coeffi- 
cient in front of fa, in Eq. (3.12) is then - fl$, = 6::. 
Using Eqs. (3.18) and (3.19), we obtain from Eq. (3.13) 
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The Hermitian nature of the density matrix leads to the rela- 
tionship f,, ( w )  = f Zc ( - a ) ,  which in turn gives the result 

The relationships in Eq. (3.22) allow us to find the remain- 
ing matrix elements of the superoperator a. 

We now consider the first range of temperatures where 
the inequality of Eq. (2.22) is obeyed. Assuming b< 1 ,  we 
can readily show that 

In the same limit we have the usual situation in perturbation 
theory when the widths of the transitions and the renormal- 
ization of the spectrum are small. Therefore, the linear re- 
sponse can be found in the first nonvanishing approximation 
in terms of b. 

Under these conditions the determinant of the system 
(3.14) is governed simply by the product of the diagonal 
elements 

The zeros of the determinant of Eq. (3.24) determine the 
eigenfrequencies of the system. Using Eq. (2.33),  they can 
be represented in the form (see Ref. 25)  

In this case the energy renormalization is related to the re- 
normalization of the tunneling amplitude. The expression 
(3.27) represents an expansion, linear in b ( R , ,  a b ) ,  of the 
general expression for the renormalized separation between 
the levels: - 

i? = [g2  + A2 (E)]*f*,,, A  (E) = Av ( I  - R v  (E)) = A ~ ~ ' - ~ v ( ~ ) .  

(3.28) 

The expression for R ,  (S) of Eq. (3.20) in the case T ,  
2. g v  contains a dependence on the upper limit of integration 
only via a term of the type lnv. Bearing in mind this result 
and the explicit form of the expression for A,, given by Eq. 
(2.201, we obtain 

where the index w, corresponds to the replacement of the 
upper limit in the integral (3.20) with w,. It should be noted 
that the dependence on the nonphysical parameter v in Eq. 
(3.29) disappears. In the limit T - 0  in the symmetric case 
(f = 0 ) ,  we find from Eq. (3.20) that (R,,, = b In(w,/ 
A, ), and therefore, A(2.) = A, [see Eq. (2.1 1 11. To the 
accuracy considered here, the quantities E and A ,  in Eqs. 

(3.25)-(3.27) can be replaced with S and A(.i?), respective- 
ly. Unless specially mentioned, we shall assume that such a 
substitution is made. 

In the eigenfunction representation of the Hamiltonian 
H, of Eq. (3.16) the diagonal element of the density matrix 
of a particle considered in the site representation f,, , occur- 
ring in the definition of the elastic modulus of Eq. (3 .4 ) ,  is 
given by the following expression obtained subject to the 
transformation (3.17) : 

We can find the matrix element fcd by solving the system of 
equations (3.14),  first finding the matrix u,,. This proce- 
dure is fairly tedious, but it can be carried out directly with- 
out any fundamental difficulties. It is convenient to use the 
relationship (3.22) and the exact relation u,, = 0 ,  which 
follows directly from the definition of (3.14) and which 
transforms to 

Direct calculations carried out using the expressions in 
Eq. (3.11) yield 

The final expression for the elastic modulus of Eq. (3 .4 )  or 
for the linear response function can be represented in the 
form 

[ D  has the value given by Eq. (3.24) 1. This cumbersome 
expression simplifies greatly in all the most interesting cases. 
For example, for T%Z [if we have b < 1 ,  this inequality must 
apply together with Eq. ( 2 . 2 2 ) ] ,  Eq. (3.3 1 )  becomes 

Here, A ( T )  is the value of A ( t )  of Eq. (3.28) when T%&, 
which is independent of 2.. To the same first-order in b, this 
expression can be simplified to 

Usually in studies of the acoustic properties of metallic 
glasses the greatest interest lies in the second limiting case 
w < T.  In this limit for an arbitrary relationship between .i? 
and T, Eq. ( 3  1 ) becomes 
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Here, using Eq. (3.29), we obtain 

The first term in the numerator of Eq. (3.29) represents 
the relaxation contribution and the second is the resonance 
contribution. The main differences between this expression 
and that generally accepted (see, for example, Ref. 17) are 
an explicit allowance for the renormalization of the spec- 
trum of a two-level system [Eqs. (3.27)-(3.29)] and the 
appearance of the factors x and ,B (the change in the struc- 
ture y, away from the resonance is not so important). The 
quantity x originates from the dependence of the polaron 
effect on the level splitting. It can be studied by direct calcu- 
lation of the resonance contribution of two-level systems to 
Re M in the limit w -0. In fact, in this case Re M I,, is gov- 
erned by the second derivative of the adiabatic spectrum of 
the system in the field of a deformation wave at fixed occupa- 
tion numbers 

A comparison of the system (3.37) with Eqs. (3.34) and 
(3.35 ) demonstrates the equivalence of these expressions. In 
the absence of the polaron effect or when A is independent of 
the energy, the factor in question is x = 1. In particular, this 
limit is realized for T>Z or in the presence of a gap in the 
electron spectrum E,,, > E (which applies, for example, to 
superconductors). An allowance for the deviation of the fac- 
tor ,B from unity from Eqs. (3.34) and (3.36) is strictly 
speaking invalid, because it corresponds to inclusion of 
terms of order b2. However, if we find the relaxation contri- 
bution to the elastic modulus in the limit w-0, which is 
governed by a redistribution of the populations of the levels 
in a two-level system again in an adiabatic field of an acoustic 
wave [see Eq. (3.37)] 

we readily obtain an expression equivalent to the first term in 
Eq. (3.34) with the coefficient ,B defined by Eq. (3.36). It 
should be noted that in the range E ,  w 4 T the expressions 
(3.34) and (3.33) are naturally identical. 

4. SITE REPRESENTATION 

We shall now consider the region labeled 3 in Fig. 2 
characterized by the inequality of Eq. (2.23). In this region 

1 

we can in fact ignore the quantity Z in all the denominators in 
Eqs. (3.13) and (3.14). Retaining the Hamiltonian in the 
form of Eq. (3.16), we can then apply the site representa- 
tion, bearing in mind the possibility of extending the defini- 
tion of Eq. (3.9) to this representation: 

The calculation of the matrix elements of the superoperator 
R and the supervector u simplifies greatly in the site repre- 
sentation because the interaction operator H, of Eq. (3.16) 
is diagonal in this representation. For example, in the matrix 
R t lere are only two nonzero elements: 

The nonzero components of the supervector are 

A a 
u12+u2,=- 7 (- 2 (0) +2&(0) ) . 

0 2  do 
(4.3) 

A(T) aA(T) u , ~ - u ~ ~  = ---- (X (o) -Z (0) -a). 
oT aA, 

In this case the system of equations (3.14) has the sim- 
ple form 

Substituting the solution of the system into Eq. (3.4) we 
obtain 

The above expressions are identical with Eq. (3.33). This is 
very remarkable because the region 3 includes the range of 
temperatures where Q( T) or the dynamic width of the levels 
are known to exceed E. 

We now consider region 2, which corresponds to the 
inequality (2.18) valid at high temperatures or for strongly 
asymmetric wells (Zz<%A, ), when the tunneling can be 
considered using perturbation theory. As pointed out in Sec. 
2, in the initial Hamiltonian of (2.4) we then have A,,, -0 
[see Eq. (2.12) ] and the interaction is governed by the pen- 
ultimate term in Eq. (2.4). Once again the site representa- 
tion provides a satisfactory distribution. Substituting 

H,='/zA,(A-(A)) U, 

in Eq. (3.13), we obtain 

The remaining matrix elements of the superoperator b l  van- 
ish. 
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In calculating the function A,  it is convenient to use the 
transformation 

Bearing in mind the explicit form of the operator A of Eq. 
(2.6), we have 

po (n) I Anm I2 eiEnmt = (A+ ( t )  A )  = e l ( t ) .  (4.9) 
nm 

where 

In the expressions (4.7)-(4.10) the characteristic energy of 
electron-hole pairs is known to be greater than l/r and there 
is no need to adopt the representation of Eq. (2.7). 

We now represent ~ ( t )  in the form 
rn 

du 
x ( t )  =2b ;[ (I-cos (ut)  ) Cth(ul2T) -i sin(ut) 1. 

0 

Simple transformations yield 

Going back to Eq. (4.7) and noting that the remaining time 
interval can be reduced to a tabulated value. we obtain 

8.' (2nT/yo0)' I r (b+iz/2nT) 1' sh (z12T-inb). 
A,  = 

8nT I'(2b) sin nb 

In this representation the equation off,, , subject to Eq. 
(4.6), becomes decoupled to give 

Using the general definition of Eq. (3.14) and the relation- 
ship between p, and the interaction H, of Eq. (3.11 ), we 
find 

Here we have writtenpl- (ptJb) ::" = p o ( n )  f o i .  Using the de- 
finition (4.7), we obtain after simple transformations the 
expression 

[ (AE-AE+o) Sh (g/2T+inb) + (A.-,-A+) Sh (%/2T-inb) ] 
ui1 = 

o cos ( n  b )  Ch (I l2T)  

Recalling that compared with Eq. (4.13), the true density matrix contains an additional, factor ~~77/2, we find that the 
modulus of Eq. (3.4) is 

The expression (4.15) subject to (4.12) represents the solu- trary b )  : 
tion of the linear response in the range defined by the in- A 
equality of Eq. (2.18). We note an important point that this A,  =-(6)" 22 o I ' ( i - - 2 b ) ~ ~ s ( n b ) e - ~ ~ ~ .  (4.19) 
expression is derived without postulating the parameter b to 
be small. We now calculate the quantity of Eq. (4.15) in the higk- 

A comparison with the preceding result can be made by temperature limit TSZ, w, using the expression given by Eq. 
considering the limit z < T (0, ~ z )  . It then follows from Eq. (4.16). We then obtain 
(4.12) that 

AZ=' / zA2(T) / ( z+ ia~) ;  

2nT 2b tg (nb)  r 2 ( b )  
2nr(2b)  ; QT=2T tg (nb) . 

(We are retaining the same notation as before.) For b< 1, 
Eq. (4.17) is identical with Eq. (2.12). 

If we assume b< 1 right from the beginning, then for 
any relationship between z and T, we obtain 

We also give the value of A,  in the limit T+ 0 (for an arbi- 

The above is valid for an arbitrary value of b; A ( T )  and R , 
have in general the values given by Eq. (4.17). We note that 
the denominator of Eq. (4.19) contains .F2 = + A2 ( T) , 
i.e., it is identical with Eqs. (3.28) and (3.29) for b g  1 and 
TSZ. If right from the beginning we assume b < 1 and use 
Eq. (4.18), the result given by Eq. (4.20) is retained for an 
arbitrary value of w (when we still have TSZ). 

Comparing Eqs. (3.33), (4.5), and (4.20) we can show 
that for TSZ and b< 1 there is a unique solution for the 
linear response in all three regions shown in Fig. 2, which 
covers both incoherent and purely coherent motion. It is 
important to note that this happens for an arbitrary scale of 
the electron polaron effect. The polaron effect occurs as a 
result of the self-consistent renormalization of the transition 
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amplitude of Eq. ( 3 . 2 9 ) ,  which in the T $ t  case has a value We shall compare it with Eq. ( 3 . 3 4 )  derived for the region 1 
that depends only on temperature. The results are far from subject to just the condition w 4 T  (apart from b  g 1). For 
trivial if we bear in mind that it applies also to the case of the T ) t ,  the two expressions are identical. However, Eq. ( 3 . 3 4 )  
dynamic destruction of the energy structure when the width is valid in the region 1 also for t > T ,  and it covers a wide 
is R T  3E. range of values of 6 %  A(.?), where the solution obtained for 

We now rewrite Eq. ( 4 . 2 0 )  identically, but in a some- the noncoherent region 2  is valid independently. 1f we substi- 
what different form: tute Eq. ( 4 . 1 8 )  into Eq. ( 4 . 1 5 ) ,  then for f 3 A  ( 5 )  we obtain 

A 2 ( T )  a complete analog of Eq. ( 3 . 3 4 ) .  The overlap of the solutions 
i(E2+QT2) n Q ~ + h 2 ( ~ )  [ o + i =  

q 2  s  +QT A 2 ( T )  el obtained independently for the three regions allows us to 
Me- , 

T o [ ( o + i Q T )  2-s2]- iA2 ( T )  QT 
- obtain a single solution valid for w & T and b &  1 when the 

parameters have arbitrary values and the scale of the elec- 
(4 .21 ) tron polaron effect is arbitrary: 

i (EYQ," )B A2 ( E )  CI ( a )  A2 ( E )  + - x t h ( e / 2 ~ ) [  o + i  
2T C h Z ( e / 2 T )  r: 

M w 2112 
a [  (o+iCI ( e )  ) 2 - a 2 ]  -iA2 ( s )  Q ( r )  -ti (QT-Q ( E )  ) 0 2 A 2  ( a ) l / a 2  

5. DISCUSSION OF RESULTS o(')=- iQT; a'2, 3)='/2 [ - i Q T f  ( 4 A Z ( T )  -QT2) '1 . ( 5 . 2 )  
The results obtained in the preceding section represent 

the solution of the general problem of the linear response of a 
two-level system interacting with conduction electrons. This 
solution applies to a wide class of the parameters of the sys- 
tem. At temperatures T  greater than the true separation 
between the levels t the expression given by Eq. ( 4 . 2 0 )  is 
valid generally for any parameters, including the parameter 
b  of Eq. ( 4 . 2 0 ) ,  representing the scale of theinteraction of a 
particle with electrons. On the other hand, for w T,  we have 
a more general expression ( 4 . 2 2 )  which is valid for arbitrary 
values of the parameters provided that b &  1 .  It should also 
be mentioned that the description of the coherent region can 
naturally be made for the arbitrary value of b .  Since in the 
incoherent regime it is sufficient to satisfy the condition 
R  > A, or & A, ,  we can easily see that it is necessary to 
satisfy the condition b  < 1 only in a very narrow range of the 
parameters. 

The dynamics of such a dissipative system can largely 
be established by analyzing the poles of the linear response 
function. At low temperatures when the condition R & t  is 
obeyed and the coherent regime applies, the poles are given 
by Eqs. ( 3 . 2 5 ) - ( 3 . 2 7 ) .  The first purely imaginary root de- 
scribes relaxation of the occupation numbers ( T ,  I ) ;  the sec- 
ond and third roots form a clear spectrum of the system and 
represent relaxation of the phase correlations in the nondia- 
gonal elements of the density matrix ( T ;  '). It is important 
to note that in the asymmetric case g > A ( t )  we have the 
inequality y,$ y , .  We can see that in this case an isolated 
two-level system has its own value of T, which can be arbi- 
trarily small compared with T I .  The phase relaxation pro- 
cess is then related to dynamic fluctuations of the positions 
of the energy levels of a particle in neighboring wells at zero 
frequency, and these fluctuations are independent of the 
overlap integral. 

We now consider the case when T> t .  The poles M, can 
be found by solving the cubic equation 

In the simple case of a symmetric two-level system the solu- 
tion of (5.1 ) becomes 

For S1, < A ( T ) ,  which may hold in the investigated range of 
temperatures only for b & 1, the poles of Eq. ( 5 . 2 )  are identi- 
cal with the results given by Eq. ( 3 . 2 5 ) .  The situation 
changes greatly for R ,  > 2 A  ( T ) .  In fact, in this case all the 
roots become purely imaginary. In the limit R ,  > A  ( T )  the 
solution ( 5 . 2 )  becomes 

We have altered here the nomenclature of the roots, leaving 
the index 1 for the slowest root, which-as in the preceding 
case-is responsible for relaxation of the occupation 
numbers. Therefore, the transition from the coherent to the 
incoherent regime is accompanied by disappearance of the 
real spectrum. This result is internally related to disappear- 
ance of the coherent amplitude of the transition [see Eq. 
( 2 . 1 3 )  ] which occurs in a similar range of the parameters. 

We now assume 6 #O. We use the fact that for 
n T S A ( T )  or f $ A ( T )  and also R , & A ( T ) ,  one of the 
roots w"' in Eq. ( 5 . 2 )  is always small compared with the 
others and is given approximately byZ5 

The remaining two roots are of the form 

The result of Eq. ( 5 . 6 ) ,  where the real part is generally inde- 
pendent of A, again reflects the disappearance of coherent 
transitions in the system. When the general condition of Eq. 
( 2 . 1 8 )  is obeyed, the incoherent processes predominate and 
we find T ;  I )  T ; which applies now also in the purely 
symmetric case. 

Retaining the condition T > S ,  we now consider the be- 
havior of the linear response function of Eq. ( 4 . 2 0 ) .  This 
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equation can be transformed identically to which is derived for the symmetric case and coherent pro- 
cesses at low temperatures when y, = ( 1/2)R ( E )  holds and 

11, o (m+i52T)2-E21 M=-{ - 1). (5.7) is continued purely formally to high temperatures. We can 
T (0-o")) ( o - ~ ' ~ ) )  ( o - o ( ~ ) )  see that a satisfactory description of the linear response pre- 

In the limit R, <a, when the roots w ' ~ . ~ )  are given by Eq. 
(5.5), the zeros in the numerator and denominator are dif- 
ferent, and M, has a clear resonant structure. In the oppo- 
site case, R,)E, the roots obey Eq. (5.6). The poles w'~." 
are cancelled by zeros of the function in the numerator of 
(5.7), and so the function M ,  has a relaxation structure 

This expression demonstrates the relationship between M,, 
and the purely incoherent diffusion of particles. The recipro- 
cal longitudinal relaxation time y ,  in Eq. (5.8) is governed 
by the value of the root o'". 

In the incoherent approximation there are no restric- 
tions on the value of b. This applies in particular to the 
expression (5.4) obtained in the case T)E, provided A(5) 
and R, are understood to be given by the expressions in Eq. 
(4.17). On the other hand, for {> A ( E )  in the incoherent 
region, we can find a slow pole using the initial expression 
(4.15), from which it follows directly that 

Using Eq. (4.12) for A 6 ,  we obtain y, which is identical 
with that given by Eqs. (2.17) and (2.19). Again applying 
the concept of overlap of the regions where Eqs. (2.19), 
(2.17), (5.4), and (3.26) are valid, we can write down the 
general expression covering the full range of the parameters 
(see Ref. 2):  

A2 ( T )  QT 1 I'(l+b+ie/2nT) 1 
I*=  I'(1+2b) - Ch(e /2T) .  (5.10) 

It should be noted that for 5 > T, we should use the general 
expression (4.22) so that y, of Eq. (5.10) determines the 
central part of the spectrum associated with longitudinal re- 
laxation in the limit w - 0. 

By way of illustration, Fig. 3a shows the absorption of 
radiation by a two-level system, related to M ,  by 

We consider the symmetric case 6 = 0 and select b = 0.05. 
For comparison, Fig. 3b gives the function I,, described by 

I ,  = Im I +  1 
[ o+b ( T )  + iy, o - A  ( T )  +iy, ] (1+rm/~)  - 1 ,  

(5.12) 

dicts that an increase in Tshould result in a continuous evo- 
lution from the pattern corresponding to a discrete spectrum 
to a strong central peak whose width falls on increase in T. 
On the other hand, the simplest description of the resonance 
structure shows that an increase in T simply broadens the 
spectral dependence and the width increases with tempera- 
ture. 

We now consider how the results change when the met- 
al goes over to the superconducting state. It is clear from the 
preceding discussion that the whole kinetics of a dissipative 
system is governed by components of the superoperator 62, 
the values of which depend on two characteristics R (z)  and 
R,, (z) of Eq. (3.19). We can determine these quantities for 
the superconducting state using the standard u-u technique 
and representing the interaction with electrons [Eq. (2.3) ] 
in the form 

V = V,, [ (ukuk,-vkvk,) bka+bkra 
kk's 

whereuk (Y,)  = (1/2 f T ~ / ~ E ; ,  )I1', q k  = vF(k - k F ) ,  Ek 
= (7: + A: ) ' I 2 ,  and A, ( T) is the gap in the energy spec- 

trum of the superconductor. In this representation the 
expression for the function R (z) of Eq. (3.19)  become^'^ 

f2. (z>O) = 2nb Cth (z /2T)  

Here, g ,  = ( E  - Af ) - ' I 2  is a function representing the 
density of one-electron states in the superconductor. For 
z)2A, or T >  A,, the function R,  (2) retains a value typical 
of a normal metal. If z<T, Eq. (5.14) can be calculated 
trivially for any value of T (Refs. 16 and 17):  

4nbT 
52. (z=O) = = 52.. 

1 + exp ( A , / T )  

In the interval T<z<2AS, we find that Eq. (5.14) leads to 
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It should be noted that the function R, ( z )  has a discontin- 
uity at a point z = 2A, : 

The function R ( z )  naturally retains its form in the 
range z%2A,  or T >  A , .  If we have T,  z g A , ,  the quantity 
R  ( z )  reaches a constant value: 

This result is obtained by integrating Eq. ( 3 . 20 )  with a natu- 
ral cutoff at the lower limit u = 2A, .  

If the renormalized value of the difference between the 
levels in a two-level system of a normal metal satisfies the 
condition 2 > 2A, ( 0 ) ,  then the spectrum of the system and 
the process of longitudinal relaxation of y ,  below the super- 
conducting transition point T ,  are in fact unchanged. The 
situation is different in the case of relaxation of the phase y,. 
In the case under discussion we in fact always have 2% R, 
and we can use the relationship ( 3 . 2 6 ) :  

In the superconducting states the quantity R ,  ( 0 )  of Eq. 
( 5 . 15 )  decays exponentially as T  decreases and the classical 
relationship y, = ( 1 / 2 )  y ,  is rapidly attained. The decrease 
of y, combined with constant y ,  is particularly strong in the 
case of a system with a significant static shift. The linear 
response function of Eq. ( 4 . 22 )  retains its form after just one 
substitution 0. - R, . 

We now assume 2 ( T  = 0 )  <;A, ( 0 ) .  According to Eq. 
( 5 . 18 )  the cutoff of an infrared divergence then occurs on a 
scale of 2A, ,  and determination of A ( t )  does not require the 
self-consistent solution 

It should be noted that the coherent amplitude in a super- 
conductor is greater than the value for a normal metal at 
T = 0 .  The ratio of the two values is ( e A ,  / 2 t )  

The exponential fall of R, with decreasing T given by 
Eq.(5.15)  and ( 5 . 16 )  is associated with a reduction in the 
number of normal excitations and is effectively equivalent to 
a weakening of the interaction. We then have 

b e f h b  exp ( -ASIT)  ( 5 . 21 )  

We thus arrive at the case of a small value of be" for a con- 
stant temperature-independent spectrum, described by Eq. 
( 5 . 20 ) .  Therefore, perturbation theory operates satisfactori- 
ly and we can use Eqs. ( 3 . 26 )  and ( 5 . 4 )  to demonstrate that 
y ,  and y, decrease exponentially in accordance with the law 
exp ( - A , / T ) .  

It therefore follows that two-level systems character- 
ized by Z. < 2A, ( 0 )  exhibit a transition from a normal metal 
to the superconducting state which is equivalent to the tran- 
sition from the case of a strong interaction between the parti- 
cle and the medium to the case of a weak interaction. The 
strong polaron effect is then retained, but it is now nonlinear 
(in A. ). 

6. ACOUSTIC PROPERTIES OF METALLIC AND 
SUPERCONDUCTING GLASSES 

In the preceding sections it was shown that all the dy- 
namic characteristics of two-level systems in a metal can be 
revealed by an analysis of the linear response function M,, 
In this section we use examples of specific systems to study 
the experimental manifestations of such characteristics. 

We consider the behavior of the acoustic properties of 
an amorphous metal in the normal and superconducting 
states. A typical experiment involving determination of the 
velocity of sound u and absorption coefficient a is carried out 
at frequencies w <  T (Refs. 10-13, 26, 2 7 ) ,  and the realisti- 
cally attainable values of the frequency are w< 10 - K ;  we 
shall analyze the situation using the general relationships of 
Eqs. ( 3 . 34 )  and ( 4 . 2 2 ) .  The renormalization of the sound 
speed is related to the real part of the elastic modulus by 

where p is the density of a metallic glass. Since a metallic 
glass contains a set of different two-level systems with a wide 
spectrum of the parameters A, and {, it is necessary to aver- 
age Eq. ( 4 . 2 2 )  using a certain distribution function P(ln A,,, 
{ ) d  In hod{.  It is generally accepted in the theory of amor- 
phous systems that P = P = const holds. Since Pis  obvious- 
ly independent of { at low {, it is physically clear that when 
lnA, deviates from a certain value typical of a metallic glass, 
the function P(ln A,) should decrease. 

We consider first the resonant contribution to Au/u as- 
sociated with modulation of the energy splitting of two-level 
systems at fixed values of the occupation numbers and gov- 
erned by the second term of the numerator of Eq. ( 4 . 2 2 ) .  
This mechanism is effective only in the case of two-level sys- 
tems with unequal populations of the levels when T < P .  In 
this case we have w <B and the denominator of Eq. ( 4 . 22 )  
simplifies greatly. The result is 

hYX ~ m a x  

Av/u I r e s  = - C 
P (ln A,) 6% 5 0 2 5 d E  dE2 th(e/2T); 

In this expression the important feature is the behavior of the 
distribution function in the range A  ( 2 )  > T, where we ignore 
the difference between P and 7. The integral of Eq. ( 6 . 2 )  in 
the case Em"", ( A .  ),,, 3 T  [in fact lmaX % ( A .  ),,, ] is loga- 
rithmic and, apart from an unimportant constant, can be 
written in the form 

Note the use of the limiting tunneling amplitude of Eq. 
(2 .11  ), which corresponds to the limit T <  A, ( A , , ) .  We sub- 
stitute the variables in accordance with A,,- A, in Eq. ( 6 . 3 ) .  
It follows from Eq. (2.11 ) that 

so that the resonant contribution to the renormalization of 
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the velocity of sound is 

AUYV ..,= (1- b ) ~  ln (hYW/~) .  

The relaxation contribution to the change in the velocity of 
sound is governed by the first term of Eq. (4.22) and is en- 
tirely due to the thermal two-level systems (S< T). The main 
contribution to Av/vl,.,, is given, to within logarithmic pre- 
cision, by two-level systems with low tunnel amplitudes 
A(T) < Tand a strong asymmetry A(T) <l [ see Eq. (6.7) 
below]. Using only these inequalities we can transform the 
relaxation part of Eq. (4.22) to 

iy, a th (g/2T) 
= - zq2 --- 

o+iyi 8E ' 

where y, is given by Eq. (3.26). In fact, the expression (6.6) 
is valid for an arbitrary value of b if y ,  is understood to be 
given by Eq. (5.10). This result can be obtained directly 
from Eq. (4.15) in the limit w-O(A<l).  Averaging Eq. 
(6.6) over d l  when Au/ul,,, , we obtain 

( A , M T )  

dAo P(ln Ao) 
A V V  = c J - 

A,,' 
A P 

The logarithmic divergence is cut off below for two reasons. 
Firstly, if we use the standard condition y ,  z w ,  we obtain a 
value A; which is given (apart from an unimportant coeffi- 
cient) by 

In the case of a normal metal for w < T  we find A; < T, and 
the relaxation contribution is always important. On the oth- 
er hand, the fall of the distribution function P(ln A,) at low 
tunnel amplitudes introduces an effective cutoff scale of A:'" 
of the distribution (AT1"). If we integrate with respect to 
dA, given by Eq. (6.4) in Eq. (6.7), the result is 

Since A; falls when the frequency is reduced [see Eq. 
(6.8) 1, the first case described by Eqs. (6.9) is typical of 
high frequencies of sound, whereas the second is typical of 
low frequencies. 

The overall renormalization of sound is then described 
by 

Au/v=-C (I/,- h )  ln (To/T) , A.'>AYin . (6.10) 

In the opposite limit (A; > A:'") the renormalization of the 
velocity of sound ceases to depend completely on tempera- 
ture: Av/v = const. 

It is important to note that both these results are exact; 
in other words, they are valid for any strength of the interac- 
tion with the electron system. This is easily demonstrated if 
we consider the limit w - 0 when we can regard the interac- 
tion of a two-level system with sound as adiabatic and a com- 

plete local equilibrium in the deformation field is established 
in the system in the available time. Since the amplitude of 
sound occurs in the Hamiltonian in the combination 
6 + 2 1 7 ~ ~  cos(wt), we can use the initial expression for M of 
Eq. (3.4) to go over from differentiation with respect to E, to 
differentiation with respect to 6. Then, averaging over the 
distribution of the parameters of the two-level system, we 
find (when the lower limit of integration removes the adia- 
batic two-level systems) that 

mas  

This follows from the obvious relationships f ',:'({- ) = 1 
and f i:'(c = 0 )  = 1/2. The result in question is derived 
without assuming weakness of the interaction (smallness of 
b) and reproduces rigorously the above relationships. 

It should be pointed out that the result given by Eq. 
(6.1 1 ) demonstrates that separation of the renormalization 
of the velocity of sound into resonant and relaxation parts is 
in all cases arbitrary, as is true, for example, in strong inter- 
actions when the very concept of the spectrum of a two-level 
system is difficult to introduce. 

We now consider the renormalization of the velocity of 
sound in a superconducting metallic glass. In the case of 
two-level systems with energies t > 2A, there is naturally no 
change. If Z. < 2A,, in view of the linear dependence A, a A, 
[see Eq. (5.20) 1, the factor b disappears from Eq. (6.4). At 
the same time fl, changes to the superconducting value fl, 
of Eq. (5.15). This has a significant influence on the defini- 
tion of the value of A;, which now becomes 

The exponentially fast fall of a, as a result of lowering of T 
implies that at some temperature the value of A;, unavoida- 
bly becomes of order T and the relaxation contribution dis- 
appears. Above this temperature both mechanisms of the 
renormalization of the velocity of sound are active and the 
total value Au/u is 

For A;, <At in ,  the quantity A;, changes to A,"'" in this 
expression and, as in the case of a normal metal, Au/u ceases 
to depend on temperature. 

After the relaxation contribution disappears at low 
temperatures the value of Au/u is determined only by the 
resonant contribution, which in the superconducting state is 

The continuous curve in Fig. 4 represents Au/u plotted 
separately for the case of high frequencies (Fig. 4a) and low 
frequencies (Fig. 4b). The dashed curves in the same figures 
show how Au/u behaves in the superconducting state. At 
high frequencies in the normal state the resonant contribu- 
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fested the role of the limit of the distribution P(ln A,) at low 
values of A,. It should be stressed that this is a universal 
result and is independent of the mechanism of the interac- 
tion of a two-level system with a medium, which follows 
directly from the general relationship (6.11 ) . 

The coefficient a representing the absorption of sound 
in a normal metallic glass at frequencies w 9 T is governed 
primarily by the relaxation processes. The relevant expres- 
sion for a is given by the imaginary part of Eq. .(6.6): 

Inthe relaxation regime the result is determined by thermal 
two-level systems (8 - T) satisfying the condition wy, - 1, 
which corresponds to small amplitudes of the tunneling 
A,-A; [see Eq. (6.8)]:  

FIG. 4. Values of Au/u plotted as a function of T for the normal (contin- At low frequencies (w - lo3 Hz) it follows from Eq. (6.8) 
uous curve) and superconducting (dashed curve) phases at high ( a )  and that the amplitude is A; - 10 - (3-4) .  is natural to assume 
low ( b )  frequencies of sound. The resonant contribution (represented by 
dotted curves) is included for illustration. that this value lies in the left-hand tail of the distribution of 

P. For a normal metal A; decreases proportionally to 
as a result of cooling (see Refs. 2 and 181, which leads to a 

tion predominates (b  < 1/2) and Av/u rises logarithmically 
on increase in T. The coefficient in front of 1nT depends on 
the interaction with electrons in accordance with (4 - b) 
and the slope decreases with the strength of the interaction. 
At temperatures T < T, the exponential fall of fl, results in a 
steep reduction in I Av/vlr,, and, consequently, rapidly in- 
creases the total value of Av/v. This has been established in 
earlier investigations (see, for example, Refs. 12 and 26). 
However, after passing through a maximum the velocity of 
sound decreases because T decreases much faster than does 
Au/vIr,, in the normal phase due to a change in the coeffi- 
cient in front of ln Tin Eqs. (6.5) and (6.14), and the curve 
for the superconducting state may even intersect the curve 
AU/V for the normal metal, which is a contradiction that 
cannot be resolved'using perturbation theory to describe the 
interaction of two-level systems with conduction electrons. 
This is precisely the pattern manifested clearly in the experi- 
ments on alloys such as Pd,,Zr, (see also Ref. 12) and Cu,, 
Zr,, (Refs. 27 and 26) (this is less clear in the latter case 
because of the absence of direct measurements in the normal 
phase at T <  T, ). It is interesting to note that the ratio of the 
slopes Au/v demonstrates a considerable difference in the 
values of b for these materials, which is correlated with the 
results plotted in Ref. 26. 

At low frequencies in the normal phase when we have 
A; > A:'", there is practically no dependence of the velocity 
of sound on T, as demonstrated above. In the transition to 
the superconducting state at low frequencies (w - 1 0 % ~ )  a 
"latent" interval of temperatures occurs in the vicinity of T, 
as long as A;, of Eq. (6.12) remains less than A,"'" when Tis 
lowered. Consequently, the velocity of sound in a supercon- 
ductor initially does not differ from bu/v  for a normal metal. 

The strong reduction in the temperature dependence of 
Av/u at low frequencies was first detected experimentally for 
Cu,, Zr,, (Refs. 12 and 13). These investigations revealed 
clearly the existence of a latent temperature interval, fol- 
lowed by a rapid rise of the total value of Av/v. The fact that 
Au/u was independent of Tat  low frequencies clearly mani- 

weak fall of P. In the superconducting phase the exponential 
fall of fl, has the opposite effect of rapid rise of this quantity 
described by A; a T ''2exp( - A, /2T) [Eq. (6.12) 1. Con- 
sequently, the fall of a changes to a rise, as demonstrated in 
Fig. 5a. When the condition w/y,,,, zw/fl, - 1 is reached 
the rise of absorption as T decreases changes to a steep fall 
described by a a y ,  ,,, or a a ylP,ha, if the phonon relaxation 
mechanism begins to predominate. 

At high sound frequencies (usually at 10'-lo9 Hz) a 
typical value of Ah lies in the range where the distribution 
function of Pchanges slowly. Bearing in mind that the condi- 
tion w/y, ,,, - 1 is attained relatively rapidly below T,, it 
becomes clear that the rise of the absorption can only be 

FIG. 5. Absorption ofsound in metallic glasses in the normal (continuous 
curves) and superconducting (dashed curves) phases at low ( a )  and high 
( b )  frequencies of sound. 

969 Sov. Phys. JETP 70 (5), May 1990 Yu. Kagan and N. V. Prokof'ev 969 



weak and that it changes to a steep fall. This accounts for the 
anomalous nature of the behavior of a1 ,,, first reported-in 
Refs. 10-13. 

The resonant absorption of high-frequency sound, 
which is usually absent in the case of a normal metal, be- 
comes important when a metal undergoes the transition to 
the superconducting state because then the condition w/ 
y ,  ,,, - 1 is readily satisfied.26. 28 The most interesting as- 
pect of the resonant interaction of sound with two-level sys- 
tems is the feasibility of checking experimentally the theo- 
retical predictions regarding the spectrum and damping of 
the states. 

"Hole burning" 

We shall use the examples of "hole burning" (see, e.g., 
Refs. 28 and 29) and the acoustic e ~ h o ~ ~ , ~ ~  to show that it 
should be possible to observe directly the intrinsic width 
y2$ y, of a two-level system with a strong asymmetry unre- 
lated to the interaction of two-level systems with one another 
(it is usually assumed that the intrinsic width is y2 = ( I /  
2)y, ) .  

If we bear in mind the spectral analysis of the absorp- 
tion near narrow resonances w - Egw of Eqs. (3.25)- 
(3.27) (typical of the superconducting state), we can great- 
ly simplify the initial kinetic equation for the density matrix 
(3.14) and retain the diagonal terms in the matrix of the 
superoperator R of Eq. (3.12). This is always valid for 
be' (< 1. In the representation of the eigenstates of a two-level 
problem the equation for the density matrix is in the form of 
the Bloch equations: 

(we make the notation more compact by writing A = A% ). It 
is well known that broadening in the case of two-level sys- 
tems in glasses is not only due to the interaction with elec- 
trons or phonons, but also due to the interaction of two-level 
systems with one another. A characteristic value of y, de- 
duced for such interaction of the systems with one another 
usually lies within the range - lop5 K. In the case of insula- 
tors this value is usually the dominant one. However, in the 
case of metals if b is not too small and temperatures Tare not 
too low compared with T,, we can always ensure that the 
condition R, % yTLS-TLS is . satisfied (here, TLS-TLS denotes 
the interaction of two-level systems with one another) and 
we can then regard the two-level systems as isolated. We 
assume this in the discussion below. 

We assume that a saturation pulse of frequency w , acts 
for a long time ts y; ' and a weak signal w' acts for a time T 

after saturation. The standard solution of the simple system 
of equations (6.17) and (6.18) then gives the following 
expression for the function a,: applicable to an isolated two- 
level system (see, for example, Refs. 29 and 30) : 

whereas I, is the critical power of the pulse causing equaliza- 
tion of the populations of two-level systems given by26,29.30 

We have to average our results over the parameters A, 
and 6. Since the time is given by y,  - (A/E)', the contribu- 
tion of the symmetric two-level systems is suppressed par- 
ticularly at high values of T in Eq. (6.19). However, in the 
case of systems characterized by A < E T (but subject to the 
condition T < T, ) the quantities y, -- R, and y,  (E/A) ' are in 
fact independent of the ratio A/E [see Eq. (3.26) 1 .  For this 
reason the critical power of Eq. (6.21 ) is also independent of 
the asymmetry of the wells. Moreover, the last factor in Eq. 
(6.19) is independent of the ratio A/E. If we integrate Eq. 
(6.19) with respect to d In A,dl, we find 

Therefore, the amplitude of a hole burnt in such a distribu- 
tion should fall as l / r  without a change in its profile. If 
y2 = ( 1/2) y, held, then I,  and the last factor in Eq. (6.19) 
would depend strongly on the degree of the well asymmetry: 

This should alter greatly the dependence of the profile of the 
burnt hole on time T and on the intensity of the pump signal 
(the hole would become narrower with increasing T) .  

Acoustic echo 

We now consider the phenomenon of the acoustic echo 
in the classical experimental situation. We assume that an 
external signal of intensity I >  I ,  acts on a resonant two-level 
system for a time t .  If the condition E = w is satisfied and if 
there is no relaxation, such a signal "rotates" the diagonal 
and nondiagonal elements of the density matrix by an angle 
8: 

Usually the angle 8, is selected near the value ', - 1 so that 
the main contribution to the echo signal comes from the 
weakly asymmetric two-level systems. However, in the case 
of such systems the values of y, and y, are of the same order 
of magnitude [see Eq. (3.26) ] and it is difficult to carry out 
a self-consistent analysis of the real relationship between 
these quantities. The situation changes at high rotation an- - - 

y:I/zc 
gles when 8, > 1. Then comparable contributions to the echo 

(0' ~a.,=a?' -ao'=am ,?-T,%, signal come from both symmetric two-level systems and 
y 2 2 ( 1 + Z / Z , ) + ( o , - e ) 2  from systems with a strong asymmetry characterized by A/ 

(6.19) w a 8; I .  We can demonstrate this by calculating, by way of 
example, the average value of operator a, at a time t (i.e., 

where a::' is the resonant absorption in the absence of the immediately after a pulse). A trivial solution of the system of 
saturation signal Eqs. (6.17) and (6.18) subject to the condition y, = y, = 0 
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and the initial conditions f,, (0)  = 0 and f::) 
= [ 1 - tanh (w/2 T) ] /2 gives 

A sin kt 
<cs,>= 2  Im f,, = th ( o / 2 T )  qe ,  - - - 

o k '  

Averaging this expression over the parameters 6 and A,, we 
readily find 

If 6, %0, the relationship given by Eq. (6.26) becomes 

Two terms in the parentheses of Eq. (6.27) represent the 
contributions made to (a, ) by two-level systems with a 
strong asymmetry A/w - 6 ; ' (first term) and of almost 
symmetric two-level systems A/w - 1 - 19; '. The latter 
contribution oscillates rapidly with time t. Since it is (a,)  
that determines the subsequent amplitude of the echo signal 
in the two-pulse or three-pulse experiments, it is convenient 
to investigate simultaneously the dynamics of symmetric 
and asymmetric two-level systems. It is sufficient to separate 
the monotonic and rapidly oscillating parts of the echo sig- 
nal. We note that the period of the oscillations of the echo 
amplitude can be used to find the value of the parameter 
r ]  = ~ ? T / E ~ S ~  (naturally subject to the condition that the 
scatter of the values of q representing different two-level 
systems is not too large). 

The expression for the amplitude of the echo signal 
which appears at a time to = t + T + t + T (7% t is the free 
precession time of a two-level system in the intervals 
between the pulses) can be found from the simple solution of 
the system of Eqs. (6.17) and (6.18). In view of the obvious 
nature of the treatment [see the derivation of Eq. (6.26) ] we 
shall give the expression for the amplitude of a two-pulse 
echo A, in the case of a single two-level system 

A,='/, t h  ( o / 2 T )  (Blkt) sin ( k t )  (4-cos ( k t )  ) e-Z'~z (6.28) 

and the expression for the total value of A, averaged over 
resonant two-level systems in the limit 6, > 1: 

n A , = P t h ( w / 2 T ) - l % e - ~ *  2t 

z$)z + (sir1 8, - l / ,sin 28,) e- 1. (6.29) 

Here, y?' and y:"' are the phase relaxation rates of the sym- 
metric and asymmetric two-level systems. If we determine 
A, for different values of t, we must first be sure that the 
nonoscillatory part of A, t does not change. This by itself 
would demonstrate that a change in the asymmetry leaves y, 
unaffected, whereas yias' is negligible if 6, S 1. When the 
conditions w 4 T and A/w 1 are satisfied, the width y:"' 
occurring in the oscillatory part of A, is related to yiaS' by 
the simple expression y:"' = ( 1/2) y?' [see Eq. (3.26) 1 
which represents an independent check of the theory. It 

should be noted however that the oscillatory part of real 
systems may be smeared out because of the scatter of the 
values of r] representing different two-level systems. Hence, 
it should be possible to identify and estimate the relevant 
distribution. 

A completely analogous discussion of the amplitude of 
the stimulated echo A, which appears at the time 
to = t + T + t + T ~ ,  + t + T yields 

W E - O  = 
A8 = t h  - 2T [s in2 kt + (%I (cos kt - l)'] 

For y2r0% 1, the contribution of symmetric two-level sys- 
tems to this expression can be ignored. Substituting the rela- 
tionship y;"" = ( A / ~ ) ~ y ~ " " a n d  averaging over different 
two-level systems we find that in the case 6, ) 1, we obtain 

- 
P ( z )  = S d ~ r - ~ ~ ' ~ i n ~  x  [ I ,  (1x2) - I ,  ( z x ~ ) ]  

0 

sin x  (cos x  - 1) +--- 
4 

The integral of Eq. (6.3 1 ) can be expressed in terms of the 
generalized hypergeometric functions ,F,. The argument of 
the F function in Eq. (6.30) is simply the characteristic val- 
ue of y;""'r0 for two-level systems, which makes the domi- 
nant contribution to the echo signal. Therefore, in the three- 
pulse experiments we can determine directly the value of 
yias' and its relationship to y?'. 

7. ACOUSTIC PROPERTIES OF A METAL-HYDROGEN 
SYSTEM 

An interesting example of two-level systems is a metal 
containing hydrogen. On one hand, the amplitude A, of a 
transition of a proton to a neighboring well is fairly high (see 
Refs. 34-44), whereas on the other hand there is practically 
no scatter of the values of A,. This is very important because 
it makes it possible to avoid one of the averaging procedures 
characteristic of amorphous systems and thus provides an 
opportunity for a fuller comparison of the theory and experi- 
ment. Most detailed investigations have been carried out so 
far of Nb-O(N)-H(D) (Refs. 34-38 and 41-44) and Ta- 
O(N)-H(D) (Refs. 34,39,40) systems in which hydrogen 
exhibits tunnel transitions between energetically equivalent 
states near 0 (or N)  defects. It should be mentioned that in 
the case of the purest metal matrices at low concentrations of 
gaseous defects the scatter of the levels in the neighboring 
wells 6 is small, which in principle limits also the second 
average with respect to 6. 

At realistic sound frequencies the condition w 4 2 ,  T is 
usually satisfied by such systems. The linear response func- 
tion of Eq. (4.22) then simplifies significantly to 
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where 

This expression differs from that generally accepted primar- 
ily because of the considerable dissipative broadening of the 
levels. At T = 0 the change in the velocity of sound, related 
solely to the resonance mechanism, is described by the sim- 
ple expression: 

+- 

In the case of a wide distribution over <, it follows from 

that the polaron effect and the interaction with electrons in 
general do not affect the values of Av/v. We then have 

Conversely, in the case of a narrow distribution, when in fact 
we are interested in the value a ' t /ag ' at g =: 0, the important 
feature is the intrinsic renormalization of the spectrum de- 
fined by Eq. (3.28): 

This gives the following result for a normal metal: 

which depends directly on the length scale of the interaction 
with electrons (here, x is the density of the tunnel states of 
hydrogen). In the superconducting state the spectrum is 
E2 = (hS, ) 2  + 6 ', where A: is given Eq. (5.20). We then 
have 

The ratio 

depends now only on the tunnel parameters and in this sense 
it is a very convenient quantity for the analysis of the 
strength of the polaron effect. The role of the polaron effect 
in a system of this kind was first considered in Ref. 45. The 
result given by Eq. (7.7) differs from that obtained in Ref. 45 
by the numerical factor given in the parentheses in Eq. (7.7) 
and by the presence of an additional factor ( 1 - 6).  This is 
because the polaron effect is considered in Ref. 45 using per- 
turbation theory and the self-consistency condition of Eq. 
(7.4), important also at low values of b, is not applied. 

At high temperatures T)E (when 6 exhibits a scatter, 
this applies throughout the full interval) Eq. (7.1 ) gives the 

universal response which is independent of the distribution 
of the levels: 

In general, we can describe the function P(6) by the Lorent- 
zian profile 

which is typical of a random potential created by dipole 
centers, with the strength of the interaction decreasing as 
l/r3. We can find the dependence of Au/u on Tin  a wide 
range of temperatures if we know in fact three parameters: 
A,, b, lo .  A universal combination T ~ x / ~ ~ ~  is then estab- 
lished readily from the limiting relationship (7.8). In the 
case of a narrow distribution it is sufficient to determine 
experimentally the limiting values Au/u( T = 0)  for the nor- 
mal and superconducting states of a metal, which makes it 
possible to reconstruct all the parameters using Eqs. (7.5)- 
(7.7). For an arbitrary distribution we need to carry out one 
further measurement at an intermediate temperature in or- 
der to determine &, and then the curves for Av/u and a con- 
sidered as a function of T for a normal metal and a supercon- 
ductor can be constructed unambiguously. If the values of 
A, and P, are found independently, for example from in- 
elastic neutron scattering,41s44 then in the most general case 
the only unknown parameter is go. In a numerical compari- 
son of the theory and experiment we have to be cautious 
because in reality we may have not one but two or more types 
of two-level systems with similar energy parameters (this is 
discussed, for example, in Ref. 34). For example, the experi- 
ments on the absorption of sound in the Nb-O(N)-H(D) 
system(Refs. 34-36) demonstrate the existence of two types 
of two-level systems. In fact our experience shows the ex- 
periments on determining the sound speed in the same mate- 
rials3' demonstrate that assuming only one type of two-level 
system exists fails to provide a satisfactory description of the 
results for any values of the parameters. 

8. INVESTIGATION OF SPECTRAL PROPERTIES OF TWO- 
WELLSYSTEMS USING ELASTIC NEUTRON SCATTERING 

As pointed out already in Sec. 5, the change from coher- 
ent to noncoherent motion on increase in T results in a very 
characteristic evolution of the spectral density of two-level 
systems. If A, is sufficiently large (of the order of 1 K on the 
temperature scale), then a satisfactory experimental method 
is inelastic neutron scattering with a sufficiently high energy 
resolution. This has been demonstrated strikingly in Refs. 
41-44 using the example of the same Nb(OH), as discussed 
above. These investigations revealed sharp resonances at 
w -- + Eat low temperatures and a central peak described by 
Eqs. (5.8) and (5.11) at high temperatures T. Unfortunate- 
ly, the evolution of the spectral density at intermediate tem- 
peratures was not studied. However, Refs. 42 and 43 provide 
a qualitative description of the situation at such tempera- 
tures: the amplitude of the peaks decreases and they become 
broader at w -- + E as T rises. This is accompanied by a si- 
multaneous increase in the central peak which becomes nar- 
rower in the limit of high temperatures T, which is exactly 
the situation predicted in Sec. 5 (see Fig. 3). At low values of 
b [the system Nb(OH, ) corresponds to b = 0.051 the 
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whole evolution at temperatures T >  Z. can be studied using 
the simple relationship 

This expression is valid for any w ,  E, and flT. Equation (8.1 ) 
describes a continuous transition from the coherent to the 
noncoherent regime. A relationship similar to Eq. (8.1 ) was 
obtained in Ref. 46 using the technique of functional integra- 
tion in the case b < l and T ,  w,t .  In fact, as shown in Sec. 4, 
the range of validity of this approach is considerably wider. 
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