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The current-voltage characteristic (IVC) of a system of two small series-connected tunnel 
junctions is calculated under conditions when the energy spectrum of the central electrode of the 
system is discrete. The form of the IVC depends substantially on the rate of energy relaxation on 
this electrode. I t  is shown that at  typical real values of the system parameters the global IVC 
singularities due to correlated single-electron tunneling should be preserved down to very small 
dimensions of the central electrode. At the same time, the system IVC should have a fine structure 
that reflects directly the structure of the energy spectrum of the central electrode. 

1. INTRODUCTION magnitudes of these effects for experimentally feasible pa- 

I t  is well known (see, e.g., the reviews, Refs. l and 2)  rametervalues. 

that when tunnel-junction dimensions are decreased the 
Coulomb interaction between the tunneling electrons be- 
comes substantial and makes the tunneling of individual 
electrons correlated. These correlations lead to singularities 
on the current-voltage characteristics (IVC) of individual 
junctions as well as of junction systems. In  particular, in a 
system of two series-connected junctions substantial corre- 
lation is possible between tunneling acts through different 
junctions, as a result of which the IVC become oscillatory. 
Such oscillations were recently observed in many experi- 
m e n t ~ . " ~  

The present theory of this correlated one-electron tun- 
ne l ing '~~  is valid for junctions with electrodes that are not 
too small, particularly those having a continuous electron 
energy spectrum. A timely question is how the properties of 
the tunnel junctions are altered when their sizes are further 
decreased to a level in which spatial quantization of the ener- 
gy spectrum becomes substantial. This question is vital, in 
particular, also in connection with current  discussion^^.^.^ of 
the possibility of using correlated single-electron tunneling 
to produce molecular-electronics devices. 

We consider this question in the present paper for a 
system of two series-connected tunnel junctions. This is the 
most important case from the experimental standpoint, 
since the use of scanning tunnel microscopy permits the pro- 
duction of such  system^^-^ with very small (practically 
down to atomic) dimensions of the central electrode. 

2. FUNDAMENTAL RELATIONS 

Consider a system of two tunnel junctions made up of 
two solid electrodes and a small metallic granule placed 
between them. We assume that this granule, which serves as 
the central electrode of the junction system, contains a rela- 
tively large number Nof  atoms, and hence of electrons in the 
conduction band. The average separation A between the lev- 
els of the quasiparticle energy spectrum of the granule 
A - [v(O)d 3 ]  - ' , ( ~ ( 0 )  is the density of states on the Fermi 
level of the granule material and d is its characteristic dimen- 
sion) is then much lower than the typical Coulomb energy 
Ec -e?&,,d of the granule. Indeed, these two energies be- 
come equal in a "granule" with N- 1, in which case A de- 
creases as a function of N much more rapidly ( a N '  ) than 
the Coulomb energy ( a N -  I/" ) . Thus, for N> 1 the number 
of states in the granule in the energy interval of order E, of 
interest to us is still large enough, and the granule can be 
regarded as a "massive" metallic sample, ' ' notwithstanding 
the discrete energy spectrum. In particular, in this case the 
screening length A of the electric field is small, 
A - [ e ' v ( O ) / ~ ~ ]  <d,  and the Coulomb energy U of the 
considered system can be calculated from the usual equa- 
tions of macroscopic  electrostatic^:'.^^^ 

The plan of the paper is the following. In Sec. 2 we Q=en+Qo, n=n,--n,, 
obtain a Boltzmann equation for the description of the tun- 
neling dynamics in a system of two junctions, with allowance 
for the discrete character of the energy spectrum of the cen- 
tral electrode. This equation is used in Sec. 3 to examine the 
IVC of a system of junctions in a large range of voltages and 
currents, in which the IVC is determined by the Coulomb 
correlations between the tunneling electrons. It is shown 
that in the case of rapid energy relaxation on the central 
electrode the form of the IVC coincides with the one that 
follows from the existing theory.ls2 Some useful analytic ex- 
pressions for the IVC of the system in this case are derived in 
Appendix 1. In Sec. 4 we consider the IVC microstructure 
which is directly connected with discrete character of the 
energy spectrum. The Conclusion contains estimates of the 

where C, is the capacitance of the j th junctions, n, is the 
number of electrons tunneling through it, C, -C, + C,,Q,, 
is the fractional (in units of e )  effective charge on the gran- 
ule, which can be induced for example by an external mag- 
netic field. The total Hamiltonian of the system is the sum of 
the Coulomb energy U, of the internal energies H, of the 
electrodes and of the granule H,,, and the terms HV describ- 
ing the tunneling: 
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Here {E, } is the electron energy spectrum of the granule, H ' 
are the terms describing the electron energy relaxation, and 
c +  and c are the electron creation and annihilation opera- 
tors on the granule (m ) and in the external electrodes (k, ). 

It is known that Coulomb correlations can take place in 
tunneling only in junctions with small conductivities G,, 
G, < R  a ', where R, =&/2e2 (this condition can be writ- 
ten in the form fir, (E, ) < A, where 

is the probability of tunneling from the level E, to the jth 
electrode). Confining ourselves to this case, we can describe 
tunneling at not too low temperatures T)iir, (E, ) by using 
a simple Boltzmann equation for the probability density 
p, (E, ), obtained from the Hamiltonian ( 2 )  by perturba- 
tion theory in H,,. . If the rate T; ' of electron relaxation on 
the granule is also low, WT, < A, this relaxation can also be 
described with the aid of a Boltzmann equation. (In the op- 
posite case the discrete energy levels are smeared out and the 
picture of the correlated tunneling is the same as the one that 
follows from the existing theory1.' ). Writing the Boltzmann 
equation in accordance with the usual rules, we obtain 

where E, (n)  is the change of the electrostatic energy ( 1 ) due 
to tunneling of an electron from the granule to the jth elec- 
trode, g ( ~ )  is the Fermi distribution function, a, is the prob- 
ability of the presence of n excess electrons on the granule, 
f, (E, ) is the electron distribution function in energy at the 
given n,and the term F, describes the energy relaxation. 

The matrix elements T,,, can be represented in the usu- 
al manner' 

T,, = const (u-em) exp {-ah ( l+x2/2h2)  

x J dr ( r )  exp{ixp-r (h2+x2) '), 
V 

where the z axis is perpendicular to the barrier, a and U are 
its thickness and height, Vis the granule volume, and $, ( r )  
is the wave function of the state E, . In a typical case, a mac- 

roscopic ( N )  1 ) granule has random shape irregularities of 
at least atomic size, and the motion of the electrons in it can 
be regarded as ergodic. The energy spectrum {E,) is then 
random (see, e.g., Ref. 12), and the amplitude I $, ( r )  1 of 
the wave functions of the stationary states, averaged over 
distances of order k ,  ', is constant over the granule vol- 
ume." For A <k, the matrix elements T,,,, and hence the 
tunneling probabilities T, for states with em 4 U can there- 
fore be regarded as independent of m. We shall assume in 
what follows that these conditions are met, although the re- 
sults are qualitatively valid also in the general case. 

Equation (3)  allows us to find the IVC of this system of 
two junctions. This IVC has singularities of two types: some 
connected with the Coulomb correlations between the tun- 
neling electrons, and some connected with the discrete char- 
acter of the granule energy spectrum. In the present case of a 
macroscopic granule these two singularity types have sub- 
stantially different voltage scales, Ec /e and A/e respectively 
(Ec =e2/2C, - e2/e,d ) A), so that they can be discussed 
separately. 

3. FORM OF IVC IN A LARGE RANGE OF VOLTAGES AND 
CURRENTS 

We consider in this section the IVC oscillations due to 
Coulomb correlations between the tunneling electrons. To 
this end it is convenient to subdivide Eq. (3)  into two equa- 
tions-for the probabilities a, and for the distribution func- 
tion f(e, ) = Z, an fn (E, ) averaged over n: 

j n 

- [ I - g ( e m - E j ( n )  ) l f n  (6,)  1+F.. ( 6 )  

The condition that the granule be macroscopic, A<Ec, 
makes it possible to simplify these equations considerably. 
In this case a small number of electron tunneling acts, which 
alters substantially the charge en on the granule, cannot alter 

fn (E, ) in the substantial energy interval -E,. This makes 
it possible, first, to neglect the dependence of fn (E, ) on n. 
Second, the rate of change of a, is in this case considerably 
higher than the rate of change of f(a, ), so that in (6)  we can 
use a stationary distribution a, corresponding to the instan- 
taneous value off(&, ). In addition, neglecting the IVC mi- 
crostructure, we can replace the summation in (3b) by inte- 
gration, and obtain ultimately the system of equations 
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where Gj = ce2r, /A and the coefficient c is equal to 2 in the 
absence of a magnetic field (owing to the double degeneracy 
of all the states E, ) and to unity in the presence of a magnet- 
ic field H k v/p, where p is the Bohr magneton and v is the 
characteristic level width. 

The relaxation term FE can have a complicated energy 
dependence; we confine ourselves to a qualitative discussion 
of the energy relaxation, assuming F, = [ g ( ~ )  - f ( ~ )  ]/T, 
and 7; = const. If the rate of energy relaxation is not small, 
7 rJ ( i e ,  ' T 'A/E,,T, ' - Gj/C, ) the system of 
electrons on the granule is in equilibrium and Eq. (7a) coin- 
cides with the corresponding equation of the "orthodox" 
theory.',' At a low relaxation rate the electrons can "over- 
heat" and affect the IVC of the junction system. The results 
of a numerical calculation of the IVC with the aid of Eqs. ( 7 )  
for the case 7; I = 0 and T = 0 are shown in Fig. 1. 

It is seen from Fig. l a  that if the junction conductivities 
do not differ too much, the electron overheating in the gran- 
ule weakens the Coulomb correlations between the tunnel- 
ing acts and smoothes out the associated IVC oscillations. If 
the conductivities differ greatly (Fig. l b )  the tunneling 
through a well-conducting junction plays the role of a relax- 
ation mechanism and the overheating effects are weakened. 

The IVC of the junctions differ also in their asymptotic 
values at 7, = 0 and 7, = CC.  At voltages V 2  (E, /e)  
x (Gl/G,) (we have assumed GI  > G,) both curves become 
asymptotically linear. 

but have different values of Vof: Vof = e/C, for T, = 0 and 
Vd = e/2C, for (Fig. 1 ). This result can be obtained ana- 
lytically from Eqs. (7)  (see Appendix 2) but its simple 
qualitative interpretation is more illustrative. Namely, in the 
case of low relaxation the energy lost by the electron to over- 
come the Coulomb barrier in tunneling through the first 
junction is not scattered. Therefore energy is lost in the tun- 
neling only when the Coulomb barrier is overcome in the 
second junction, corresponding to half as large a shift of the 
IVC asymptote. 

When the relaxation rate is finite, the IVC of the junc- 
tions lie between the IVC corresponding to the limiting cases 

= 0 and 7, = cc . In particular (see Appendix 2 ) ,  

It must be noted, however, that the result (8 )  is the conse- 
quence of the assumed relaxation model, with an energy- 

independent 7,. In a more realistic case the relaxation rate 
increases with increase of energy, so that at sufficiently high 
voltages the shift VN/ of the linear asymptote of the IVC 
tends to e/C,. 

4. MICROSTRUCTURE OF IVC 

We consider now the IVC microstructure which re- 
flects directly the structure of the quasiparticle energy spec- 
trum of the granule. Since the energy spectrum is discre- 
te,the current flowing through the system increases with the 
voltage discretely (in steps of the order of eT, ) if the Fermi 
level coincides in one of the outer electrodes with the next 
level E,, in the granule. The dependence of the differential 
conductivity of the system on the voltage should therefore 
contain resonant peaks whose voltage positions correspond 
to discrete energy levels of the granule. The IVC microstruc- 
ture should be most strongly pronounced when the rate of 
energy relaxation is high 7; 2 I?, (but the spectrum is still 
discrete, fi/r, 4 A so that at low temperatures T< A the elec- 
tron distribution in energy, in both the outer electrodes and 
in the granule, has an abrupt (on the A scale) boundary. 

At V = V,, where 

with j, j' = 1, 2, j#j1,  the Fermi level of the jth electrode 
coincides with the level E,, in the granule (with allowance 
for the shift of its Fermi level upon tunneling of the elec- 
tron),  when the granule containsp "excess" electrons, i.e., 
E,, = Ej (p) . This equality leads to the presence, at V z  V,, of 
a system conductivity peak whose form is determined by Eq. 
( 6 ) :  

G ( V )  = bcr j  ( E , )  e2 (CI, /Cx) g' (e ( V -  V , )  Cj, ICE) 

g'(z) = ( l l 4 T )  ch-2 ( z / 2 T ) ,  b-- (6'I/dI,,,) I ,=,,, (9 )  

where the constant b can be obtained from Eq. (7a) in which 
f ( ~ )  = g ( ~ ) ;  is the current flowing through the jth junc- 
tion at n = p. 

I t  is seen from (9 )  that the width v of the conductivity 
peak is determined by the temperature, v- T, i.e., by the 
"broadening" of the Fermi levels of the outer electrodes. At 
low temperatures T 4 f i ( r j , ~ ;  I ) ,  at which the Boltzmann 
equation (3 )  and expression ( 9 )  are not valid, the conduc- 
tivity-peak width is determined by the natural width of the 
energy levels of the granules, Y-fi(r,- ' + I?, + I?,) (Refs. 
14 and 15 ) . As v increases to A/n, ,  where no is the character- 
istic width of the a,, distribution, the conductivity peaks be- 

FIG. 1. IVC of a system of two series connected junctions 
( C ,  = C2,Q,, = 0 )  for not toostrongly (a,G, = IOG,) and 
strongly ( b , G ,  = 100G2) differing conductivities of the 
junctions in the two limitlng cases: in theabsence of ener- 
gy relaxation on the central electrode of the system 
(7, = CC, curve 1)  and for fast (compared with 
r, = G, A/ce2) relaxation (r ,  = 0, curve 2) .  The asymp- 
totes of these curves are respectively 3- 
I =  ( V -  e/2C, )/R, and 4-I= (V-e/C,)/R,. 
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gin to overlap and the amplitudes of the corresponding IVC 
singularities decrease. 

The constant b in  (9 )  can be obtained explicitly in cer- 
tain cases.For GI  , G2 we have b = 1 for j = 2, p  = Int [C2 V 
- Qo + e/2 )/el (Int is the integer part) and b = 0 for other 

values of p  and j. If, to be specific, the barrier is removed 
initially in the first junction, i.e., (e/2 - Q,,)/C, 
> (e/2 + Qo)/C,,  then in the voltage region directly above 
the Coulomb-blockade interval, 

only two probabilities, uO and a,,  differ from zero: 

Here b = a02-bl and b = a,'-b, respectively for the con- 
ductivity peaks connected with the resonance in the first 
junctions (E,, = El ) and the second junction (E,,  = E?) .  

In the most interesting case of substantially different 
junction conductivities, GI  $ G2, when the conductivity 
peaks are due to resonances in only one junction (j) and at 
one value of p, their aggregate corresponds exactly to the 
energy spectrum of the granule. 

For granules of irregular shape, the energy spectrum is 
described by the theory of random matrices. In  particular, 
the statistics (over different granules or over different levels 
in one granule) of the intervals between the nearest levels, 
and consequently, in our case-the statistics of the voltage 
intervals S V between the nearest conductivity peaks is de- 
scribed with good accuracy by distributions of the type (see, 
e.g., Ref. 12): 

Here 

respectively for the following cases: 
-weak spin-orbit interaction H,, in the granule and 

weak magnetic field H: I (H,, ) I, pH < A (orthogonal ensem- 
ble of random matrices); 

-strong spin-orbit interaction and strong magnetic 
field (unitary ensemble); 

-strong spin-orbit interaction and weak magnetic field 
(symplectic ensemble). 

A characteristic feature of the distribution ( 1 1 ) is the 
repulsion of the energy levels: fp ( x )  - 0 as x - 0. In the case 
of a strong magnetic field and weak spin-orbit interaction 
the energy levels of the granule break up (along the spin 
direction) into two uncorrelated subsystems, so that there is 
no level repulsion, and the statistics of the intervals between 
the levels can be described by the distributionf2(x)-see Eq. 
( 16b) below. 

If the conductivity peaks are narrow enough, v <  A, and 
rJ (E,, ) = ( r J  ) = const, the correlation function of the sys- 
tem conductivity 

is expressed in the present case ( G I  & G2) for V> v/e directly 
in terms of the correlation function R ( x )  of the levels in the 
granule: 

The level repulsion is manifested in the characteristic oscil- 
lations of R ( x )  (see, e.g., Ref. 16) : 

4-R (x) = { s2 (x), m B=2. (13) 

I ds (22) 
s ( 2  - - j s (2t) dt, 8-4. 

dx 0 

s (x) =sin(nx) 131.x. 

The correlation function (Z'Z'( V))  for small V, 
V- v/e < A/e, is determined by the form of an individual 
conductivity peak. At T,fi(TJ,r; I )  and T<A we have 

+m 

A eVC, 
<GG(V)  )= t G>'c - dx ch-2 (x) ch-'( x + -) 

lgT - _ 2TCr ' 

and in particular 

At T = 0 and 7; '= 0 the conductivity peak has a Lorentz 
shape of width f i (T,  + T 2 ) .  This result, obtained for an iso- 
lated level, '"an be used also in the present case of tunneling 
through a granule, inasmuch as in this case the tunneling 
takes place simultaneously though a large number of levels, 
and in spite of the presence of Coulomb correlations on the 
whole, the tunneling through each individual level can be 
regarded as uncorrelated with the tunneling through other 
levels. We obtain then for (GG( V)) 

Equations ( 12)-( 15) and the analogous equations ( 17) and 
( 18) below describe mesoscopic fluctuations of the conduc- 
tivity (see, e.g., Ref. 15 and the citations there) in this sys- 
tem of two tunnel junctions. 

If the conductivity peaks are connected with resonances 
at several ( j q )  values, their aggregate corresponds to several 
superimposed sections of the granule energy spectrum. Since 
these spectrum sections are separated in energy by a value of 
order E,  (,A), they are statistically independent and the 
level repulsion vanishes in this case. For example, for 
G I  - G, and voltages close to the Coulomb-blockade thresh- 
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old, two u , p )  pairs are significant. I t  can then be approxi- 
mately assumed that the conductivity peaks connected with 
the resonances in the first junction randomly divide a part 
(C,/C,) of the intervals between the nearest conductivity 
peaks connected with the resonance in the second junction 
(we assume, to be definite, that C ,  < C2). In this approxima- 
tion we obtain the following distribution of the voltage inter- 
vals between neighboring peaks: 

- ( x / 2 )  erfc (Vnx/2) ,  B = l l  
B=2, 

% (B, /2)  exp (-B,x2) (1+B,x2), 8=4. 

The average interval is equal to cA/2e. 
Superposition of two uncorrelated systems of conduc- 

tivity peaks also weakens the characteristic oscillations of 
the correlation function (@(V)),  which for V$v/e and 
v<A in this case takes the form 

For V- T/e  and A$ T$fi(T,,r; I) we have 

In particular, 

In the absence of a magnetic field all the states of the 
energy spectrum of the granule are at least doubly degener- 
ate owing to the presence of symmetry with respect to time 
reversal. The magnetic field, by breaking this symmetry, lifts 
the degeneracy: 

For weak spin-orbit interaction, the parameter p that de- 
pends in general on the level number m is on the order of" 

/ (H,, ) I'/A2, and in the limit I (H, ,  ) / $A we havep- 1 (the 
level splitting in this limit can be roughly estimated at 
(,uH)'/l (H,, ) / ) . The magnetic field should thus split each 
conductivity peak into two, separated in voltage by 

with the centers of these two peaks shifted by a value on the 
order of (C, /C, ) . (2p - p') ( ,uH)'/eA. This behavior in a 

magnetic field can serve as the distinguishing feature of sys- 
tem of conductivity peaks connected with the discrete char- 
acter of the energy spectrum of the granule. 

5. ESTIMATES AND CONCLUSIONS 

We now estimate the magnitude of the effects consid- 
ered above for realistic values of the parameters. The dis- 
creteness interval A of the energy spectrum is approximately 
l o p 4  eV (1K)  for metallic particles with diameter 100 A, 
and increases to 0.1 eV when the diameter is decreased to 10 
A (Ref. 12). The characteristic Coulomb energy E, in this 
diameter interval (assuming for the tunnel layers a dielectric 
constant E-  5 )  charges from 0.05 to 0.5 eV. The energy re- 
laxation time 7, in a metallic granule should not differ sub- 
stantially at high energies E$ A from the time of energy re- 
laxation in a bulky sample, which in turn can be estimated 
(with allowance for electron-electron scattering only) at 
3.cF/~2, where E, is the Fermi energy of the metal. 

I t  follows from these estimates that for E -  E,. the ener- 
gy levels in the granule are broadened, fi/r, k A, and the 
corresponding microstructure of the IVC is smoothed out. 
In  addition, since G, $Re  the condition fi/.r, k A means 
that 7, $ (A/Ec )T,, and overheating of the electrons in the 
granule is even less likely to occur. Thus, at characteristic 
voltages V-E,/e the IVC of the system of two junctions 
should be well described by the "orthodox" theory," in 
which no account is taken of the discrete nature of the elec- 
tron spectrum. A similar conclusion will in all probability be 
valid also for more complicated systems. This means that the 
orthodox theory should remain valid for tunnel junctions 
measuring all the way to 1-2 nm. 

In  the present case of a two-junction system, the only 
deviation from this theory is the presence of microstructure 
of the IVC (peaks of differential conductivities) at voltages 
close to the threshold V, of the Coulomb barrier, 
V- V, -A/e. In this voltage region the tunneling in the 
granule takes place in states close to the Fermi surface, 
whose broadening is quite small. Indeed, the discrete charac- 
ter of the electron and phonon spectra of the granule can on 
the average only increase the relaxation time of these levels 
compared with the time of inelastic relaxation in bulky sam- 
ples at the same energies, namely 1 0  ' - 1  "sa t  E -  10 K, 
and increases approximately like E - ~  as E decreases (Ref. 
17). I t  follows from this estimate that for states near the 
Fermi surface we have fi/r, 5 A and the conductivity peaks 
associated with them should be observable. Such an observa- 
tion would permit, to our knowledge for the first time ever, a 
direct verification of the applicability of the random-matrix 
theory to the description of the spectrum of minute metallic 
particles. 

One more important parameter that determines the sta- 
tistics of the conductivity peaks and of their behavior in a 
magnetic field is the magnitude of the spin-orbit interaction 
(H,, ). I t  can be estimated from the change Sg of the g-factor 
of the metal conduction electrons compared with the g-fac- 
tor of the free electron. Since the matrix elements of the spin- 
orbit interaction operator (H,,') in bulky samples differ 
from zero only for states belonging to different bands of the 
energy spectrum, and since'' (H :, ) -GgE, where E is the 
characteristic interband energy interval, we have 
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It can be concluded from this estimate that, for example at 
A = 10 K, for granules of aluminum and gold 
(Sg = - 5.10- b n d  6g = 0.1,Ref. 19), the respective con- 
ditions of weak ( I (H,, ) 1 ( A ) and strong ( I (H,, ) I % A) 
spin-orbit interaction should be met. This means that a mag- 
netic field influences the conductivity peaks in the cases of 
tunneling through granules of these two metals differently. 
In particular, for aluminum granules the splitting of the con- 
ductivity peaks in a magnetic field H -  10 T should be 
SV- 100 pV, while for gold granules the splitting in such 
fields it should be practically unobservable, SV5  1 pV. 

The authors thank K. K. Likharev and Yu. V. Nazarov 
for helpful discussion in the course of this work. 
APPENDIX 1 

In this Appendix we write down some useful equations 
for the IVC of a system of two tunnel junctions at zero tem- 
perature in the case of rapid energy relaxation of the elec- 
trons. The equations used to calculate the IVC of this system 
(see Refs. 1 and 2) simplify greatly in the case of low tem- 
perature ( TgeVC, ). There is then no need for numerical 
methods to find the IVC. 

The expressions for the probability of tunneling 
through the left- and right-side junctions in the presence of n 
additional electrons in the middle electrode assume at T = 0 
the form 

I'+(n)=G,e-ZEl(n+l), r-(n)=-G,e-'E2(n). ( ~ 1 . 1 )  
Here 

eVC,C, 
El (n) = (- l)j+l- 

cjcx 

The probability distribution of the charge states a ,  has 
a lower limit 

and an upper limit 

(where [ . . . ] is the integer part); in these limits the follow- 
ing relation is valid 

The average current in the stationary state can be calculated 
from the equation 

where 

The equation given is suitable for VC, /e 5 10 so long as 
the number of terms in the numerator and denominator is 
not too large. It is convenient to investigate with the aid of 
(A1.3) the shapes of the steps on the IVC and the depen- 
dence of the differential conductivity on the voltage. 

For high voltage ( VC, / e  R 10) it is convenient to use 
another equation obtained by summing expressions (A 1.1 ) 
with weights a, and taking into account the equality of the 
currents through both junctions in the stationary case: 

where 1. . .) is the fractional part. Expression (A1.4) can 
also be obtained from (A2.2) if f ( ~ )  = g ( ~ )  = 
- O ( E  - E~ ). It is easy to trace with the aid of (A1.4) the 

suppression of the oscillations on the IVC with increase of 
voltage, by estimating a, and u - , . In particular, if G, G,, 
we have for 1 4 VC, /e 4 G,/G, 

(A1.5) 

For VC,/e>G,/G, the oscillations of the IVC are deter- 
mined, apart from a constant coefficient, by the expression 

The oscillations are thus suppressed at V-eG,/C, C,. 
In the case of equal junction conductivities (GI = G,), only 
a few first oscillations are observed, since they likewise damp 
exponentially at VR e/C, : 

APPENDIX 2 

In this Appendix we calculate the shift of the linear 
asymptote of the IVC for a system of two tunnel junctions. 

In the stationary state, the currents through the left- 
and right-hand junctions are equal: 

where E, ( n  ) is given by Eq. (A1.2), and j = 1 or 2. From 
(A2.1) it follows that 
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For higher voltages ( V% e( GI + G212/ 
GlG2C,, V% T/e),  when the characteristic width n,, of the 
probability distribution a,, is large enough, we can obtain 
from (A2.2) a simple equation for shift of the linear asymp- 
tote of the IVC Vof: 

v , = e C , - i z  un[f ( ~ , ( n ) )  -f ( E * ( n ) )  1. (A2.3) 
n 

If the relaxation in the granule is fast, then f ( ~ )  is the 
Fermi function. In this case, for those n for which a,, differs 
substantially from zero (i.e., 
n-,(n) = V(C,Gl - C l G 2 ) e 1 ( G l  +G2)  - I -  Q,,/e) the 
expression in the square brackets in (A2.3) is practically 
equal to unity at high voltages. We thus obtain for yg the 
usual result Vof = e/C, . 

To calculate Vof in the case of a finite relaxation rate we 
must find the explicit forms off(&) and u, from (7b) we 
have for high voltages (and accordingly strong "smearing" 
of a, ) the following equation for the stationary value of 
f(z): 

We describe the energy relaxation in the r-approxima- 
tion, i.e., 

To calculate Vof we must solve the system of equations 
(A2.4) and (7a) for high voltages.We can confine ourselves 
here to the case T = 0; obviously, the shift of Vf does not 
depend on the temperature. Changing to a continuous vari- 
able n, we obtain for a, an expression having the same form 
as in the case of rapid relaxation: 

In this case the function f (a )  takes the form shown in Fig. 2. 
At E = aF the function f ( ~ )  jumps from the value 

to the value 

f ( + o )  =G,(G,+G,)-* [ ~ + e ~ c R r / A ~ ~ l - ' .  

There are two other regions where f(a)  varies, located near 
and E?, where 

FIG. 2. Electron energy distribution function in a granule at T = 0 and 
high voltages. 

Near E ,  and E? (namely for I E  - E, / <S2e'/C, ), the 
function f ( ~ )  is given by the expression 

Substituting (A2.5) and (A2.6) in (A2.3) we obtain 
the final expression (8)  for the shift of the linear asymptote 
of the IVC. 

"The condition that the granule be "microscopic" should be satisfied at 
N- 100-1000. Other effects become important for granules with fewer 
atoms. In particular, they are unstable to mechanical decay when their 
electric charge is increased (for lead, e.g., N z  80 is the stability limit at a 
charge 4e)-see Ref. 10 and the citations therein. 
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