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Transition radiation produced when a stream of charged plasma crosses the interface between 
two media is considered. The induced emission is described by the Fresnel equations, i.e., wave 
reflection and refraction coefficients in substances consisting of dielectric media and a moving 
plasma. It is shown that the electromagnetic energy flux away from the interface is not equal to 
the incident flux. The energy excess is due to collective transition radiation and is drawn from the 
energy of plasma motion. The transition-radiation energy of one charged particle can be obtained 
from the Fresnel equations by using the Einstein relation that connects the probabilities of the 
induced and spontaneous emission processes. 

Transition radiation of a charged particle is produced 
when the particle crosses the interface between two media 
having different dielectric properties. This radiation was 
predicted theoretically in 1944 by Ginzburg and Frank. ' Let 
us consider a simple example in which a particle having a 
charge q and a mass M large enough so we can neglect the 
change of its velocity is normally incident on a boundary 
separating two isotropic dielectrics with dielectric constants 
E ,  and E,. The electromagnetic waves propagate from the 
interface of the media both in the same direction as the parti- 
cle and in the opposite direction. The energy radiated back- 
wards W - (w, 0"' ) in a frequency interval dw and in a unit 
solid angle can be represented in the form given by Frank:' 

+ + 

r .  sin 9"" i, sin 9"' I - 
I-nC1)P l-a(z)P (1)  

in Eq. ( 1 ) , f i  = v/c is the dimensionless velocity of the parti- 
cle and n = kc/w is the dimensionless wave vector. We shall 
find it convenient to work here and below in a gauge in which 
p =  1. 

Equation ( 1 ) for the transition-radiation energy has a 
simple physical interpretation: it is seen from ( 1 ) that the 
radiation consists of three parts: 1 ) a backward wave emit- 
ted by the particle prior to crossing the boundary, whose 
wave vector is n"' and makes an angle 6"' with the normal 
direction; 2) a wave with a vector n"' directed towards the 
boundary and then reflected from it, 6 ( I '  = .rr - 8 'O'; 3 )  a 
backward wave emitted by the particle after crossing the 
boundary; its wave vector is equal to n'*' and makes an angle 
I9 '2) with the normal (see the figure). The coefficients r ,  and 
t ,  are the Fresnel coefficients that relate the amplitudes of 
the reflected and refracted waves with the amplitude of the 
wave incident on the boundary from the media E ,  and E,, 

respectively :4 

~ 2 "  COS ~ ' O ' - E ~ ' ~ '  COS 0"' 
Ti = &,% sin g'O"E2'" sin 9'2' 

e2" COS 8'0'+~1"' COS 9") ' 
2el" cos 

ti = : 
e,"'cos O'o'+e," cos 0'2' . 

Expressions (2)  correspond to Fresnel equations for waves 
so polarized that the electric-field vector lies in the plane of 
incidence. These are precisely the waves emitted by the par- 
ticle as it crosses the interface. In this case the electric field of 

the wave performs work on the electric current carried by 
the charged particle. 

We see thus that the picture for the onset of transition 
radiation is similar to the usual picture arising when an elec- 
tromagnetic wave is incident on the interface of two media, 
i.e., to the problem of wave refraction and reflection. We 
shall show now that the Fresnel equations not only have a 
direct bearing on transition radiation, as seen from Eq. 1, but 
fully account for it. To this end we consider not the sponta- 
neous emission of one particle, but the onset of transition 
radiation from a continuous wide beam of identically 
charged particles that cross the interface between two dielec- 
trics. Clearly, if the particle density is high enough the inter- 
ference between individual waves emitted by different 
charged particles will lead to total vanishing ofthe spontane- 
ous emission (the only exceptions are waves propagating 
strictly perpendicularly to the interface, but from (1)  it is 
seen that no such waves are excited, since in that case we 
have sin 19 = 0).  Now let an electromagnetic wave be inci- 
dent from the left on an interface through which a beam of 
charged particles passes. This will produce also a reflected 
wave and refracted waves propagating from the boundary. 
Their amplitudes will be proportional to the amplitude of the 
incident wave. The connection between the wave amplitudes 
will be given by the Fresnel equations for media containing 
not only dielectrics but also a plasma stream. If it turns out 
that the energy flux of the waves leaving the boundary ex- 
ceeds the incident flux, then the additional radiation, which 
is proportional to the incident radiation, can be interpreted 
as transition radiation induced by the incident electromag- 
netic waves. In other words, it can be stated that the induced 
transition radiation is described by the Fresnel equations. 

FIG. 1 
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The flux of charged particles constitutes a stationary 
plasma moving in the direction of the interface and filling 
uniformly both the left and right half-spaces. To describe 
only the transition radiation it is necessary to assume that 
the plasma particles do not interact with one another and 
with the material of the dielectric. In addition, the particle 
velocity does not change with time. The electromagnetic 
properties of the plasma are described by its dielectric tensor 
SEP 

Here f(p) is the distribution function of the charged parti- 
cles with respect to the momenta p. 

Thus, two different media are located on the left and the 
right of the interface, and their dielectric constants are 
E") = E,  + and d2' = E~ + SEP, respectively. We exam- 
ine first which normal electromagnetic waves exist in a me- 
dium with a dielectric constant E, = &SaS + S E , ~ ~ .  The so- 
lution of the dispersion equation for a monoenergetic 
momentum distribution of the plasma particles 

yields dispersion equations for the electromagnetic waves. 
The oscillations so polarized that the electric vector of the 
wave is perpendicular to the direction of motion (E.P) = 0 
are actually not affected by the motion of the particles, and 
their refractive index is 

In expression (4)  wp = 4rnbq2/M is the square of the plas- 
ma frequency, and y = ( 1 + p,, ' / M  2 ~ 2 )  is the Lorentz 
factor. Such waves are not excited by a moving flux and are 
therefore not considered here. 

The dispersion equation for the waves whose electric 
vector has a component along the velocity of motion is 

(&--l) E2-Q$-2Qp2 - - 1-Qp2- (E-Q$) p2 
(I-nP) 

Q P "  
(1-S)' 

In the general case Eq. (5)  is of fourth order in n and has four 
roots. In the two cases Rp ' < E  and p< 1 the solutions of (5)  
can be expressed compactly: 

Equation (6)  describes an ordinary electromagnetic wave 
whose refractive index as n, -0 is equal to E " ~ .  [In the case 
pg 1 it is necessary to substitute n = (E - LRp2)  in the 
right-hand side of ( 6 ) . ]  Relation (7) describes two "drift" 
waves propagating together with the plasma-a "fast" one 
moving forward relative to the plasma, and a "slow" one 
moving backward and having a negative energy. In the limit 
8- 0 expression (7 ) describes electrostatic oscillations. 

Let an electromagnetic wave with refractive index given 
by Eq. (6)  be incident from the left on the interface of two 

media E ( ' )  and d 2 ' .  Part of the wave is reflected from the 
boundary, and part is refracted and transformed into drift 
oscillations. The amplitudes of the reflected and refracted 
waves are obtained from the boundary conditions-they are 
the same Fresnel coefficients, but with a dielectric constant 
for anisotropic dielectrics given by the expression 

In what manner is the transition radiation contained in the 
Fresnel coefficients? If it turns out that the electromagnetic- 
energy flux departing from the boundary is not equal to the 
electromagnetic energy in the incident wave, then the differ- 
ence is in fact the induced transition radiation. Indeed, the 
energy-flux conservation condition does not follow from the 
boundary conditions. If we have on the left of the boundary 
two waves, incident E'O'exp( - iwt + ik'O'r) and reflected 
E"'exp( - iwt + ik'l'r), and on the right we have a refract- 
ed wave E'2'exp( - iwt + ik'2'r) and two drift waves 
E'exp( - iwt -+ ik* r ) ,  then the conditions on the ampli- 
tudes E'O', E"', E'2', E *  and on the wave vectors k"', k"', 
k"', k t  (here k'", k"', and k"' have directions opposite to 
those shown in the figure) are the following: 

a )  k, = const = k, '''-the transverse wave vectors for 
all five waves are equal. This condition follows from the ho- 
mogeneity of all the quantities in the direction along the in- 
terface; 

b)  El"' + EL'" = + E, + + EL-the tangential 
component of the electric field is continuous. This follows 
from the Maxwell equation rot E = - ( l /c)a B/dt; 

C )  the third condition 

is analogous to the continuity condition of the normal com- 
ponent of the induction vector D (thez axis is directed along 
the normal to the interface) when account is taken of the 
spatial dispersion. It follows from the equation div D = 0; 
( " )  denotes an operator acting on the coordinate depen- 
dence (along the z axis) of the wave vector E ( r ) .  In particu- 
lar, 

For media without spatial dispersion ( d d d  k = 0)  the sec- 
ond term in the square brackets makes no contribution, since 

For a plasma medium with a dielectric constant given by 
(8),  the boundary condition (c)  is also equivalent to the 
condition of continuity of the normal component of the in- 
duction vector D,"' + D,'" = Dz'2' + D, + + D, , since 
expression (8)  can be recast in a form in which n, is con- 
tained only in the denominators of l / ( 1  - n,p) and 
1/( 1 - n,fl)2. The boundary condition (c )  for our problem 
is thus equivalent to the condition 
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Two more conditions follow from the continuity of the elec- 
tric charge and the normal component of the current carried 
by the moving particles: 

d )  p(0)+p(fi)=p(2)+ P + + P-, p = - - ~ , ( J , , ~ E ~ ;  1 
W 

The boundary conditions a)-e) suffice to determine the 
amplitudes and wave vectors of the reflected and refracted 
waves. We are interested now, however, in the electromag- 
netic energy flux away from the boundary and normalized to 
the incident-flux density: 

Calculations for the case a, <E,,, yield 

For B< 1 we have 

In Eq. (9)  t, is the transmission coefficient of the wave from 
medium E, to E ~ ,  and is similar to t, with the substitutions 
E ,  -g2, E,-E,, 6 (O) ) -*O (", 0 " '+O ("'. The quantities 7, 
and t, in (10) are the same Fresnel coefficients, but for the 
media E" .~ '  = - mp2/m2. We see, first, that the differ- 
ence K - 1 is proportional to the density n of the moving 
flux. Second, for a quiescent plasma (B = 0)  the waves are 
not amplified by incidence on the interface. Finally, if the 
media on the right and left are identical ( E ,  = E,), the elec- 
tromagnetic-energy flux is conserved ( r ,  = 7, = 0; - - 
t, = t2 = t, = t, = 1). The energy-flux nonconservation is 
in fact the manifestation of induced transition radiatioa3 It 
differs from the spontaneous radiation in that near the Cher- 
enkov resonance (at 1 -- n,B=O) the amplification effect is 
larger, proportional to ( 1 - n,B) - ' . 

The cause of the energy-flux nonconservation after re- 
flection and refraction of the electromagnetic wave is that 
the moving plasma is an anisotropic medium with spatial 

dispersion. The energy flux density S is given for such a me- 
dium by the expression4 

The first term in ( 1 1 ) conserves the normal flux component, 
since [EB], = [E,B, 1. From the conservation conditions 
on the tangential components of the electric field [condition 
(b)  ] and of the magnetic induction [condition (c)  ] follows 
a conservation condition on the energy flux in ordinary me- 
dia without spatial dispersion. For plasma-like media, how- 
ever, the dielectric tensor (8)  depends on the wave vector, so 
that the contribution of the second term in ( 11 ) is not equal 
to zero. For a moving plasma this leads to nonconservation 
of the electromagnetic-energy flux. Clearly, the additional 
energy is drawn from (or delivered to) the energy of transla- 
tional motion of the charged particles. 

As seen from (9) and ( lo) ,  wave amplification on re- 
flection from the boundary is a maximum for the frequencies 
w -wp/y'/2. At higher frequencies the gain decreases like 
w -,, and at lower ones the expression for the square of the 
refractive index (6)  becomes negative and electromagnetic 
waves no longer propagate. 

At what plasma densities n, does the induced transition 
radiation begin to prevail over the spontaneous radiation? 
Since transition radiation is formed in a region near the in- 
terface between the media, at a distance from the interface 
on the order of the radiation-formation length5 

l ,=c/  (o-kv) myzc/o 

(nz 1) it is necessary that the average distance n;"' 
between the plasma particles be less than I f ,  i.e., 

For optical frequencies A - 5000 A the plasma density 
n, > 1013 y - cm is not so high. For plasma frequencies, 
when the amplification is a maximum, the collective mecha- 
nism almost always works, since inequality ( 12) yields for 
w , - c ~ , / y ~ / ~  

which means n, <6.1037y'X ~ m - ~  far electrons and 
n, < 4. 1048y18 ~ m - ~  for protons. 

We know that the induced and spontaneous emission 
processes are related. The connection between the probabili- 
ties of the induced and spontaneous emissions is given by the 
Einstein formula. We show now that this connection is valid 
also for transition radiation. To this end it is necessary to go 
to the limit of low plasma density n, -0 and use the Fresnel 
equations that describe the induced process. It is necessary 
here to reformulate the problem. Consider not the usual trip- 
let of waves, incident n'", reflected n"', and refracted n"' 
(and also the two drift waves), but a triplet reversed in time: 
two incident waves n'l' and n'2' and one refracted n"' (see 
the figure) since we are interested in a wave that moves away 
backwards from the interface, for comparison with expres- 
sion ( 1 ) . The wave amplitudes E ' " and E "' must be related 
in such a way that no wave moving away from the interface 
be produced in the medium E,. It is necessary also to smear 
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out somewhat the flux-particle distribution function f ( p ) ,  
Ap 4 p , ,  . In this case the expression for the gain K takes the 
form 

2aTqzc 
K=I + J dpd' n ( o ) a s  

O ~ E ~ " '  cos W O )  8 p  

sin W" r, sin 0'") + ( 1 3 )  

We introduce the optical thickness T corresponding to K: 

Here we have 171 4 1 ,  since T a n,  . 
The Einstein relations for a homogeneous medium con- 

nect the reabsorption coefficient, which describes the wave 
enhancement by the induced process, with the spontaneous- 
emission power 9' (a,€') of one parti~le:~.' 

In the case of transition radiation the amplification of the 
electromagnetic waves takes place in a narrow region near 
the interface. The width of the amplification region is of the 
order of the length of radiation formation. We therefore inte- 
grate ( 14) in the vicinity of the boundary 

r = J  & d l = -  (2n)sc2 J W ( U ,  0)n- a f  p dp .  
E 0 2  COS 6 a p  ( 1 5 )  

In the derivation of ( 1 5 )  we have recognized that 
dl cos 8 = v,dt, and $9 (w,B)dt = W(w,B) is the radiation 
energy. The transition radiation is produced in two media, E ,  

and E*, it is therefore necessary to introduce in ( 15) the sum 
over the three waves: 

(2aT)=cz J W"' 
T=- - dp .  

0' i - 0 , , , 2  81  Cos O ( i ' - p n d p  
Since W ( w , 8 )  is the spectral energy of the radiation per unit 

solid angle, the backward radiation energy W -  is equal to 

where a"' is the solid angle for different waves. From the 
refraction and reflection law it follows that 

Expressions ( 16) and ( 17) are thus a generalization of the 
Einstein relation ( 14) for transition radiation. Comparing 
( 16) and ( 17) with ( 13) we obtain a value of W -  that 
coincides exactly with expression ( 1 ) known from the theo- 
ry of transition radiation. 

We have shown that collective induced transition radi- 
ation is described by Fresnel formulas for media containing a 
moving plasma. An expression for the spontaneous-emission 
energy can be obtained from the Fresnel equations with 
allowance for the Einstein relation between spontaneous and 
induced emission. We have here an analogy between Cher- 
enkov and transition radiation. Induced Cherenkov radi- 
ation is described by inverse Landau damping, and induced 
transition radiation by the Fresnel coefficients. 
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