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The transport equation is used to calculate the eigenvalues (transport coefficients) and the 
eigenfunctions in two characteristic dispersion frequency ranges. It is shown that changes in the 
eigenfunctions in dispersion regions modify the spectrum of the triplet of the Rayleigh scattering 
of polarized light when the gas pressure is varied. 

1. INTRODUCTION 

The Boltzmann transport equation method is conven- 
ient for calculation of the transport coefficients of a gas. I-" 

The problem reduces to determination of the eigenvalues of 
the linearized Boltzmann collision integral. This method 
was used in Ref. 4 to study dispersion of the velocity and 
absorption of sound in a gas with rotational degrees of free- 
dom. 

We shall allow for the modification of the eigenvalues 
(transport coefficients such as the thermal conductivity, 
thermal diffusivity, and bulk viscosity) and for the hitherto 
ignored modification of the eigenfunctions of the transport 
equation in the region of characteristic dispersion frequen- 
cies. It is the change in the eigenfunctions that alters the 
spectrum of the triplet of the Rayleigh scattering of polar- 
ized light. In the case of a gas it is convenient to describe the 
dispersion as the dependence of the transport coefficients on 
the gas density N, which is equivalent to the usually em- 
ployed parameter w ~ ,  where w  is the frequency and the relax- 
ation time r depends on the density: r cc N '. Our main re- 
sult is a demonstration of a new component in the spectrum 
of the Rayleigh-scattered light in a dispersion region and of 
the fact that the width of this component proportional to T -  ' 
is governed by slow relaxation of the internal degrees of free- 
dom to translational motion. 

2. TRANSPORT COEFFICIENTS OF A GAS WITH INTERNAL 
DEGREES OF FREEDOM 

We consider the egenvalue problem using the Boltz- 
mann collision integral I, linearized about the equilibrium 
distribution function f, ( r ) . The one-particle function f then 
becomes 

where ,LL is the chemical potential of the gas, E is the total 
energy of a molecule, T is the gas temperature, R is the spa- 
tial coordinate, and r is the set of all the remaining variables 
which determine the distribution function$ In the case of a 
diatomic molecule the set r includes not only the velocity 
vector v, but also the angular momentum vector M (repre- 
senting the rotational degrees of freedom) and the energy E 
(rotational quantum numbers) of the vibrations. In the spa- 
tial Fourier representation the eigenvalue problem of the 
Boltzman transport equation becomes 

(@v+fo) xn(q, r) =anxn(q, r),  
(1) 

x(q, r)- j e - i q ~ ~ ( ~ ,  r ) a .  

h 

Here, I, is the positive definite linearized Boltzmann colli- 
sion integral.5 

We can see from Eqs. ( 1 ) that the transport equation 
includes two terms which are in the ratio 

where v, = ( T / m  ) ' I 2  is the average thermal v?locity and v is 
the characteristic frequency of the operator I,,. The condi- 
tion qu,/v g 1 corresponds to the hydrodynamic limit of the 
transport equation ( 1 ). We seek the solution of Eq. ( 1 ) by 
perturbing in the small parameter qu,/v. Then, in the first 
order of perturbation theory, out of five functions with zero 
eigenvalues q, = 1, mv, and E we can construct linear combi- 
nations for which the free-motion operator ig.v is diagonal. 
If we direct thex axis of the adopted coordinate system along 
q, then the corresponding eigenfunctions xi obtained in tke 
first order and the eigenvalues A i  of the operator iqv + I, 
obtained in the second order of perturbation theory can be 
written as  follow^:^ 

where E = c, T and AE = c;"T are the average energy and 
dispersion of the energy of a molecule, and c, and c, are the 
specific heats of a molecule at constant volume and pressure, 
respectively, deduced allowing for the internal and transla- 
tion degrees of freedom. The operator I ;  ' is the inverse of 
h 

I, and is defined in the usual way.'-3 
We shall now use the one-to-one relationship between 

the hydrodynamic models of the transport equation ob- 
tained above and the equations of hydrodynamics, which 
makes it possible to obtain microscopic expressions for the 
transport coefficients (thermal conductivity, shear and bulk 
viscosities) allowing for the internal degrees of freedom: 
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wherep is the density and m is the mass of a molecule. 
The advantage of this form of the transport coefficients 

is that it allows us to separate explicitly the contributions of 
the various degrees of freedom. It should be pointed out that 
the vibrational degrees of freedom are described by a scalar 
parameter E, and the rotational degrees of freedom by a 
vector parameter M. We shall consider specifically the rota- 
tional degrees of freedom and discuss separately the contri- 
bution of the vibrational degrees of freedom. 

With this in mind it is convenient to write down the 
collision integral in the form 

A 

where the operator I describes collisions in which the trans- 
lational and rotational degrees of freedom are independent, 
i.e., 

The operator AI is responsible for collisions in which the 
changes in the rotational and trtnslational degrees of free- 
dom are related. In the integral I the probability w ,  is gov- 
erned only by the isotropic component of the interaction 
potential, which corresponds to the approximation in which 
the paths of the particles are independent of M. The proba- 
bility w, describes collisions involving a change in the angu- 
lar momentum M, averaged over all the paths of the collid- 
ing particles. We are essentially dealing here with two types 
of collisions: resonant exchange of the rotational energy and 
collisions accompanied by reorientation of the momentum. 

Formally, the value of w, is obtained from the general 
expression for w by integration with respect to the variables 
v , ,  v,, v; , and v;. The justification for such a separation of 
the collision integral is provided by recent experimental data 
on depolarized Rayleigh scattering of light, on the viscomag- 
netic effect, and on t2e birefringence in gases: which show 
that a,, (operator AI) &u,, , uMM (operator I). Here, uare 
the cross sections of the various collisions. This form of per- 
turbation theory differs from that used in Ref. 4 because the 
potential characterized by the parameters 
a,, & u,, ,uMu 4 u,,, is nonspherical. 

We first consider the microscopic expression for the 
bulk viscosity f. It is clear from Eq. (3 )  that the expression 
for f represents in fact a sum of matrix elements 

where y, are the scalar nonhydrodynamic modes of the op- 
erator I,. Naturally, the main contribution to this sum 
comes from one term characterized by 

where E and c, are the energy and the specific heat of a 
molecule derived allowing for the rotational degrees of free- 
dom. The appearance of the mode X ,  is related to activation 
of the rotational d e g ~ e s  of freedom of a molecule. If we 
ignore the operator AI, we obtain an additional law of con- 
servation of the rotational energy of a molecule, which gives 
rise to the sixth modex, with zero eigenvalue. The condition 
that x6 be orthogonal to the modes X ,  (i = 1, ..., 5) and its 
normalization dgermine the explicit form of this function. 
The operator AI ensures exchange of the rotational and 
translational energies in collisions, i.e., it gives rise to a non- 
zero eigenvalue Av, which for the mode X, is 

The angular brackets in the above equation denote averaging 
of vu,, over Maxwellian velocity distribution. In view of the 
smallness of the quantity Av, 4 v ( Y  is the gaskinetic colli- 
sion frequency), the expression for 6 becomes 

which is identical with that obtained in Ref. 6, because the 
coefficient f does not include the contribution of the colli- 
sions characterized by a resonant exchange of the internal 
(rotational or vibrational) energy represented by the cross 
sections a,, . 

To first order in the ratio AI / I  (of order Av/v) the 
shear viscosity can be described by 

Here, xa (v) ,  xcl (M) ,  X ,  (M,v) are the eigenfunctions of 
A 

the operator I ,  whereas vz,C,v? are the corresponding 
eigenvalues. The order of magnitude of v, is given by the 
following expressions: 

We recall that AY" uMo (<(T,,~,U,~. 
In the same order of perturbation theory the thermal 

conductivity is given by 
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An allowance is made above for the fact that c y '  = 5/2. In 
Eq. (5) the first term xu is related entirely to translational 
degrees of freedom, whereas the second (Ax, ) and the third 
(Ax, ) represent the rotational degrees ofIreedom, where 
Ax, does not contain the small operator AI, in contrast to 
Ax, which contains this operator. The orders of magnitude 
of the terms Ax, and Ax, are given by 

A x ,  2 V" Ax2 - CC -- 
x .  5 vYO l X ,  

It should be noted that Ax, includes only the contributions 
of the functions which are scalar in M (dependent on M 2 ) ,  
whereas Ax, includes harmonics which are anisotropic in 
M. We shall show later that Ax, determines the dispersion 
of the thermal conductivity and can be deduced from the 
spectrum of the unshifted polarized light scattering, whereas 
Ax, is responsible for the change in the thermal conductivity 
on application of a magnetic field7.' (Sentfleben 
effect). 

A similar separation of the transport coefficients [Eqs. 
(4)-(6)] is possible also in the case of the vibrational de- 
grees of freedom. However, these degrees of freedom do not 
contribute to the quantities AT and Ax, and, therefore, they 
are not manifested when a magnetic field is applied. 

3. DISPERSION OFTHE TRANSPORTCOEFFICIENTS 

The transport coefficients have been considered so far 
subject to the condition qvo(Av, where v and Av are the 
collision frequencies representing relaxation involving the 
translational degrees of freedom and the exchange of energy 
between the translational and internal (rotational) degrees 
of freedom. This condition implies the absence of the disper- 
sion of sound, since the frequency of sound in a medium 
flzqu, is much less than the relaxation frequencies v and 
Av. All the other relaxation frequencies Av, which a medi- 
um may exhibit (for example, those associated with the con- 
version of the vibrational electronic energy to the transla- 
tional degrees of freedom) are assumed to be very small 
compared with the frequency of sound: Av, (R. Therefore, 
only the translational and rotational degrees of freedom can 
participate in the generation of hydrodynamic modes in the 
medium and, in particular, in the generation of sound. 

It should be stressed that, within the framework of this 
transport (kinetic) method, the dispersion of the transport 
coefficients of a Boltzmann gas can be expressed as a func- 
tion of the density of the gas, which is not true of the hydro- 
dynamic limit quo (v, Av, . 

If one of the relaxation frequencies Av, approaches the 
frequency of sound, i.e., for Av, -quo = R, the situation 
changes qualitatively. We now can expect "activation" of a 
new degree of freedom characterized by a frequency Av, , as 

well as the formation of acoustic modes X, and x,. The dis- 
persion of sound associated with the rotational degrees of 
freedom was discussed in Ref. 4 using the transport equation 
language, as pointed out already. 

In this language a region of dispersion of sound is de- 
fined by the condition 1/2, l/Avk =: 1, which is equivalent to 
the usual parameter WT- 1 employed in the theory of disper- 
sion, where w = lil, 1 = R, T = l/Avk. However, there is one 
other possible dispers'ion region characterized by 
A5/Avk =: 1 or Avk -4- ( q ~ ~ ) ~ / v ( f l ,  and related to "acti- 
vation" of the internal degrees of freedom, which contribute 
to the thermal conductivity modex,. In this region the ther- 
mal conductivity x or, more exactly, the ratio x/c, exhibits 
dispersion. 

We can describe dispersion on the basis of the transport 
(kinetic) method if we introduce parameters which repre- 
sent the operative degrees of freedom and which are aver- 
aged over the relevant period of motion. As pointed out al- 
ready, in the case of the rotational degrees of freedom, 
averaging over the angle of rotation g, of a molecule leaves 
only the angular momentum vector M. The corresponding 
parameter for the vibrational degrees of freedom is the vibra- 
tional energy Ek averaged over the vibration period. 

The scalar parameter E, can be considered both classi- 
cally and quantum-mechanically. In the latter case the pro- 
cess of integration with respect to r implies summation over 
the energy levels E, . The same method is used to allow for 
the rotational or vibrational degrees of freedom. We consid- 
er specifically the dispersion of the transport coefficients due 
to activation of the vibrational degrees of freedom of a di- 
atomic molecule. In t i e  eigenvalue problem of Eq. (2 )  we 
separate the operator I, into two terms: 

the first of which represents independent relaxation involv- 
ing the translational and vibrational degrees of freedom, 
whereas the second describes the exchange bgween ihem. 
The characteristic frequencies of the operators Iand AI, are 
respectively v (and v, and Av, and they satisfy the inequal- 
ity v% Ax,. The eigenfrequencies v and v, (v- v, ) of the 
operator I represent the times required to establish equilibri- 
um in two subspaces: the subspace of the purely translational 
degrees of freedom, where v is the gaskinetic collision fre- 
quency, and the subspace of purely vibrational degrees of 
freedom, where v, is the frequency of collisions involving 
resonant transfer of the vibrational energy. In view of the 
smallness of Avk , representing the exchange of energy be- 
tween the vibrational and translational degrees of freedom, 
we can assume that after a time 

there are two subsystems with independent translational T, 
and vibrational T, temperatures. At follows from the in- 
equality Av, (v that the operator AI, together wi? the op- 
erator iq.v can be regarded as a small correction to I, and we 
can use perturbation theory employing the parameter 

(iqv+AZ,) / I -  ( iqvo+Avh)  /v<l. 

Then, in the zeroth order of perturbaiion theory the space of 
the eigenfunctions of the operator I with zero eigenvalue 
consists of five hydrodynamic functions without allowance 
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for the vibrations, X; (1, ..., 5)  and of the function 
p, = (E ,  - zk )/AEk which describes relaxation of the vi- 
brational energy of the system to the equilibrium value E,, 
where zk = T is the average vibrational energy and 
AE, = Tis the dispersion of the vibrational energy. 

We can find the correct hydrodynamic modes in the 
first order of perturbation theory in terms of the parameter 
(iqv, + Av, )/v if we solve the secular equation and find the 
appropriate eigenvalues in the zeroth subspace, which in- 
clude six functions. However, among these six functions the 
shear modes X; and X, are unrelated to any other zeroth 
functions for reasons of symmetry. It therefore follows that 
the width of these modes A, = A, is governed by Eq. (2) and 
therefore the shear viscosity 7 does not exhibit dispersion at 
any density of the gas when the condition qv, < v is satisfied. 
The rest of the system of the coupled equations contains the 
functions X; , X; , X; , p k  . Therefore, the complete secular 
equation is of the fourth order, but it is illuminating to con- 
sider this equation in the following two cases. As pointed out 
already, there are two ranges of gas densities characterized 
by 

AvA-qUo, Avh- (quo) ' / v ,  

in which there is a considerable modification of the eigen- 
functions and eignvalues of the eigenvalue problem of the 
operator iqv + AI. 

We shall begin with the range of low gas pressures, 
when 

In this range the acoustic modesx, andx, are not affected by 
a vibrational mode p, (because of the condition qv,)  Avk ) 
so that they remain the eigenfunctions of the investigated 
secular equation with the eigenvalues A ; and A ; [see Eq. 
(2 )  1, which ignore the vibrational (rotational) degrees of 
freedom. The remaining two modes X; and p i  have the 
eigenvalues A, and A,, which are much smaller than qv, and 
are therefore degenerate to first order in 

In this case the secular equation can be derived if we include 
the second orcer of perturbation theory, i.e., the perturba- 
tion operator V becomes 

P=4t+q2v,t-'v,.  

The matrix elements of the functions X; and p calculated 
with the aid of this operator are 

where ?t- and c,- are the thermal conductivity and the spe- 
cific heat derived ignoring the vibrational degrees of free- 
dom, and Ax, [see Eq. ( 6 )  ] is the correction to the thermal 
conductivity associated with the vibrational degrees of free- 
dom. 

It therefore follows that the secular equation for this 

region is 

Av, m x -  m h Y k a  
(by- C P  qa --) ( h - ~ v , - q '  - P A X , )  - - C P -  . (7)  

P c9- 

This secular equation has two positive roots corresponding 
to two nonpropagating modesx, and p, with the widths A ,  
and 2,. 

Here we give explicit expressions for the eigenfunctions 
and eigenvalues of Eq. (7)  in two limiting cases of high and 
low gas densities. At low gas densities, i.e., for 

we find that 

At high gas densities, i.e., when 

we obtain 

The plus and minus signs mean that the quantities in ques- 
tion are obtained allowing for and ignoring the vibrational 
degrees of freedom. 

The first limiting case of Eq. (8a) corresponds to two 
almost independent subsystems with their own tempera- 
tures (or energies) and relaxation times A ; ' and A ,  ', 
where A, - A k .  In the second limiting case the coupling be- 
tween the subsystems is strong, i.e., A,  - Av, )A5, and the 
quantity which is conserved is the total energy of the system. 

The intermediate range of the gas densities where 
Av, -A5-  is described by the secular equation 

which is reduced by the substitution 

to the usual form of the dispersion of a quantity y as a func- 
tion of the parameter w r :  

The dependence of y on w r  is plotted in Fig. 1 for 
k +/c; > x-/cp . When this condition is satisfied, there are 
no intersections of the roots of the secular equation (7).  We 
can see from Fig. 1 that in fact the quantity experiencing the 
dispersion is not the thermal conductivity x itself, but its 
ratio to the specific heat, which reduces to the dispersion of 
the thermal diffusivity %/PC,. The total change in the value 
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FIG. 1 .  Dependence of the quantity y = x/c, on the parameter OJT 

of y in the dispersion region Ay can be estimated from Eq. 
(6): 

When the gas density is increased still further, the con- 
dition quo-Av, is then satisfied and we now have to allow 
for the dispersion of sound. In this range of pressures the 
secular equation is known4v9 to reduce to the following third- 
order equation: 

where u - and u + are the respective values of the velocity of 
sound derived ignoring and accounting for the vibrational 
degrees of freedom. I%this range of the gas densities the 
perturbation operator V is 

and in the first order of perturbation theory the mode X; is 
independent of the modes X; , x;, and p,, which results in 
splitting from the secular equation ( 11). This means that 
subject to the condition quo-AY,, the mode x,+ does not 
change, i.e., it does not exhibit dispersion. 

We shall now give the explicit expressions for the eigen- 
functions and eigenvalues of Eq. ( 11 ) in the first order of 
perturbation theory in the two limiting cases defined by 
AY, <quo and Av, $quo. 

In the former case when AY, &quo, we have 

In the latter case, when Av, $quo, the solution of the 
secular equation ( 11 ) is of the form 

XZ=XZ+, hz-hi*, (12b) 
1 E-E- 

P A = ~ [ ( ~ P - ) ' % - - - ] ,  AE- Ih=Avh 

Here, E - is the energy without allowance for the vibrational 
degrees of freedom, E = c; T, and AE - = (c ;  )",T. 

As pointed out above, the problem of velocity disper- 
sion and sound absorption in a gas with rotational degrees of 

freedom is discussed in Ref. 4. In addition, the system of 
equations ( 12) contains explicit expressions for the mode p, 
and the corresponding eigenvalue A, at various gas pres- 
sures, necessary for describing the modification of the triplet 
of the Rayleigh scattering of light in a gas. 

4. MODIFICATION OF A TRIPLETOFTHE RAYLEIGH 
SCATTERING OF LIGHT IN A GAS WITH INTERNAL DEGREES 
OF FREEDOM 

The transport equation method is very convenient in a 
description of the structure of the spectrum of the Rayleigh 
scattering of light in a gas with internal degrees of f r e e d ~ m . ~  
Fluctuations of the permittivity Scii ( t , R )  can then be re- 
duced to fluctuations of the distribution function 
Gf (t,R,T): 

~ E I ~  ( t .  R) =4n J aij ( r )  6f ( t ,  R, r) dr,  

where aii (r) is the polarizability tensor of a single mole- 
cule. The above expression is a consequence of the well- 
known relationship for an ideal gas: E - 1 = 4aNa, where 
N [ c ~ - ~ ]  is the particle number density, which is defined as 

We can show that the problem of calculation of the light- 
scattering spectrum J(w, q)  reduces to the following trans- 
port equation: 

i(qv-w)x(a, q, r )+f0x(o ,  q, r ) = B ( r ) ,  
(13) 

where 

Here, q = k, = k, and w = w, - w, are the differences be- 
tween the wave vectors and the frequencies of the scattered 
and incident light waves; e l  and e, are unit vectors of the 
polarizations of the incident and scattered waves; a, and a, 
are the scalar and symmetric parts of the polarizability ten- 
sor of a molecule a, (T). The subsequent calculation of the 
spectrum is czrried out in the basis of the eigenfunctions of 
the operator I, [see Eqs. (2),  (8 ) ,  and ( 12) ] using pertur- 
bation theory in terms of the parameter qu/v. We are inter- 
ested only in the scalar part of the polarized scattering of 
light Jo(w, q)  a a t ,  which is described by:3 

Re hi + Re hr .','[ (a-lmh,)'+ (Re A,)' (a-lm h2)'+ (Re Lz)' 

Here, 

~ . = s  j f.(r)xi ( r ) d r  

are the coefficients in the expansion of the scalar part of the 
function B( T )  in terms of the eigenfunctions of the operator 
h 

I,. The expressions for the eigenfunctions xi and the eigen- 
values A, in the hydrodynamic case are given by the system 
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(2)  with B, = 0. In the dispersion region Ai/Avk - 1 there is I 
a change in the eigenfunctions and eigenvalues which are 
then given by Eqs. (8) and ( 12). 

We now consider how these changes are manifested in 
the structure of the spectrum. We begin with the range of low 
gas pressures, i.e., we assume Av, &A5 [expressions in Eq. 
(8a) 1, where the spectrum of Eq. ( 14) is a triplet with the 
following intensities: 

cv- 1 -  =B,Z=aoz- a02 
B - - = - 1,. - B  :=o. 

2cp- ' C P -  

Here, I, is the total intensity of a Brillouin scattering doub- 
let and I, is the total intensity of the unshifted Rayleigh 
scattering line. Hence, we obtain the Landau-Placzek rela- 
tionship: 

for an ideal gas without allowance for the vibrational degrees 
of freedom. When we go over to the range of the gas densities 
characterized by A, < Av < qv,, a new component I, appears 
at the frequency w = 0 and its integrated intensity is I, 
= a;/c; /cpf, whereas the width is A, -- Av, . The total in- 

tensity at the unshifted frequency, I,,+ + I,, does not 
change: 

In this range of gas pressures the Brillouin components I, 
remain unchanged. We recall that fluctuations of the gas 
density, to which the polarized scattering of light is related, 
are represented in the eigenfunctions~, and pk by constant 
terms independent of the velocity and energy of the gas mol- 
ecules. In the first case represented by Eq. (8a) the density 
fluctuations are related solely to the translational tempera- 
ture (x; mode) and appear in the scattering spectrum as a 
narrow line of width A ; at the unshifted frequency. At high 
gas densities [Eq. (8b) ] the vibrational energy fluctuations 
give rise to fluctuations of the density and are manifested in 
the scattering spectrum. In this case the spectrum of Eq. 
( 14) contains both modes, X, and A,, and they have differ- 
ent widths (A, and A,, where A, 4 A k  ), but comparable inte- 
gral intensities. The ratio of the integral intensities of the 
narrow to the wide profile is c,-. This low-frequency vibra- 
tion or rotation is characterized by a fairly low frequency 
such that E, = fiw, - T and we therefore have ck - 1. In the 
intermediate case we have to use a more general expression 
for the specific heat1' 

FIG. 2. Triplet of the polarized light scattering in a gas of diatomic mole- 
cules at different pressures: a )  low gas pressures and densities 
Na  Av, 4 (v,)'/v, when the vibrational degrees of freedom do not par- 
ticipate in the formation of the spectrum, I; /I, = 5/4; b )  intermediate 
case, ( q ~ , ) ~ v ( A v ~  (quo, the spectrum exhibits a new component I, of 
integral intensity satisfying I,+ +Ih = I ; ,  where I,/Z,f = 2/7, the 
width of this new component is Av,; c )  high gas pressures and densities, 
Av,$qu,, when vibrational degrees of freedom are activated, 
I , t / Z , +  = 7/4. In all three cases the widths of the components of the 
triplet are assumed to be less than the width of the instrumental function 
of the spectroscopic instrument; c, = I ,  c,, = 5/2, c,- = 7/2, 
c,: =c,; +c,,c,+ =c, +c, .  

modification of the scattering spectrum as a function of the 
gas density is illustrated in Fig. 2. 

It therefore follows that our method of calculation of 
the transport coefficients of gas makes it possible to describe 
modification of the polarized scattering triplet caused by ac- 
tivation of the internal degrees of freedom of molecules (see 
Fig. 2) .  It is clear from Fig. 2 that a reduction in the gas 
density results in a partial redistribution of the intensity of 
the central component to a new component of the spectrum 
(associated with the mode p,) of width Av,, which on 
further increase in the gas density "leaks away" to the shift- 
ed Brillouin components. In both limiting cases of high and 
low pressures, characterized by Av, %quo and Av, <quo, the 
intensities in the triplet satisfy the Landau-Placzek relation- 
ship, but in the former case the specific heat includes the 
vibrational degrees of freedom, which is not true of the latter 
case. 

An important result is the appearance of dispersion of 
which gives rise to a ratio of the total intensities amounting the quantity x/c,  at low frequencies - ( q ~ , ) ~ / v ,  which in 
to c,- /c, . contrast to the dispersion at acoustic frequencies -quo, 

As the pressure increases further, the new profile I k  makes it possible to obtain information on very slow pro- 
and after passing the cesses of relaxation of the internal degrees of freedom from 

regi0n Av!i -quo, i.e., when the Avk %quo the spectrum of light scattered in a gas. The usual 
is satisfied, it follows from the expressions in Eq. ( 12b) that for the determination of the dispersion of the bulk viscosity 

I,. = 0, ZR+=aO2c,+/2cP+, ZO+=aJ2/cp+. from the scattering of light at acoustic frequencies 0-qu, 
make it possible to study the processes of relaxation with 

Once again the Landau-Placzek relationship is satisfied, but characteristic frequencies hvk /v - quO/v, and at low fre- 
it now includes the vibrational degrees of freedom. This quencies near the line center an investigation can be made 
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even of slower processes: 

When visible light is scattered, we find that quo- lo9 Hz for 
the scattering angle of 90". At gas pressures of several tens of 
atmospheres we have Y- 10" Hz. In this case the dispersion 
of sound can be used to study the relaxation processes char- 
acterized by Av,/v- lo-', whereas the dispersion at the 
line center observed under the same conditions can be used 
in investigations of relaxation processes with Av,/v- 
Such slow relaxation processes are, for example, those in- 
volved in the conversion of the vibrational energy into trans- 
lational motion. 

For example, in the case of the CO, molecule the pro- 
cess of vibrational relaxation of the bending vibrations 
( W  = 667 cm-I) is characterized by a probability Av,/ 
Y = 2 x (Ref. 1 1). At room temperature ( T = 200 
cm-') the contribution of these vibrations to the specific 
heat is c, ~ 0 . 5 ,  which leads to the following ratio of the total 
intensities: 

Therefore, in order to observe such relaxation in the form of 
a new component in the spectrum, we must satisfy the condi- 
tion 

If Y- 10" Hz, then qv ,  - lo8, which corresponds to the ex- 
perimental scattering angle of 6=: 10". The width of the in- 
strumental function of the spectroscopic instrument Sw 
should not exceed SW < Avk =: lo6 Hz. 

The authors are grateful to I. I. Sobel'man and partici- 
pants of his seminar for valuable discussions. 
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