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The effect of fully developed MHD turbulence on the dynamics of a large-scale magnetic field is 
investigated. It is shown that generation of small-scale magnetic pulsations lowers the total 
(hydrodynamic plus magnetic) turbulent pressure. This can lead to reversal ofthe sign of the 
large-scale magnetic force and to instability ofthe magnetic field on account of the energy of the 
turbulent pulsations. The casefl9 1 is investigated, where P i s  the ratio of the plasma pressure to 
that of the large-scale magnetic field. 

1. INTRODUCTION 

Investigation of fully developed MHD turbulence is of 
substantial interest when it comes to explaining the nature of 
the magnetic fields of the sun, stars, galaxies, and planets.'-" 
The analysis of the interaction of a large-scale magnetic field 
with fully developed MHD turbulence is usually confined to 
effects linear in the field. Such an analysis is known to yield 
the turbulence viscosity, the a effect, and the turbulent dia- 
magnetism (see, e.g., Refs. 4-6). This approach seems natu- 
ral at first glance, since the energy of the turbulent pulsations 
exceeds greatly the energy of the large-scale magnetic field. 

On the other hand, calculation of fluctuation fields in a 
plasma with a large-scale magnetic fields B and small mag- 
netic Reynolds numbers Rm shows that the change of the 
large-scale magnetic pressure in the presence of fluctuations 
is of the order of Rm.B2/8a (Ref. 7) .  The change of the 
magnetic force in a highly conducing plasma with fully de- 
veloped MHD turbulence (for Rm) 1) should therefore be 
expected to be substantial. 

We show in the present paper that in a plasma with fully 
developed MHD turbulence the elasticity of the large-scale 
magnetic field is noticeably lowered, and the effective mag- 
netic force can change sign under certain conditions. This 
effect excites an instability that leads to formation of inho- 
mogeneities of the large-scale magnetic field. The instability 
energy source are small-scale turbulent pulsations. The 
modification of the magnetic forces is nonlinear in the field 
B. 

The onset of instabilities that are due to sign reversal of 
force of various types has been studied many times (see Refs. 
8-10 and the citations therein). No studies, however were 
made of the instability of a large-scale magnetic field in plas- 
ma with fully developed MHD turbulence forP& 1 (Pis  the 
ratio of the plasma pressure to that of the large-scale magnet- 
ic field). 

The magnetic fields of the sun, stars, galaxies, and plan- 
ets are highly nonuniform and take the form of magnetic 
braids and tubes, formed by a mechanism that remains unex- 
plained. An attempt can be made at least to relate the initial 
phase of formation of magnetic braids with the development 
of the instability generated by negative magnetic pressure. 

2. EFFECT OF NEGATIVE MAGNETIC PRESSURE 
(QUALITATIVE CONSIDERATION) 

We consider fully developed MHD turbulence in which 
the characteristic scale of hydrodynamic motions is lo and 
the magnetic-pulsation scale is I,, . The minimum scale of the 
problem (thickness of the filaments of the pulsating magnet- 
ic field) is of the order of I,, ~ l ~ , R m " ~  (Refs. 11, 12), 
where Rm = uOlO/v,, is the magnetic Reynolds number, u,, 
is the characteristic turbulent velocity, and v,, is the mag- 
netic-diffusion coefficient. Generation of turbulent magnet- 
ic fields at the expense of the hydrodynamic pulsations low- 
ers the total (hydrodynamic plus magnetic) turbulent 
pressure P,. We explain the essence of the effect qualitative- 
ly using isotropic turbulence as the example. Recall that in 
this case 

( ui (r) uj (r) >=( uz>6rj/3, 

(hi  (r) hi (r) > = ( hZ> 
where u and h are random pulsations of the hydrodynamic 
and magnetic fields, Sv is the Kronecker delta, and the angle 
brackets denote averaging over the ensemble. For isotropic 
turbulence the pressure is given by the relation 
P, = W,, /3 + 2 W, /3, where W,, = ( h  ' )/8ais the energy 
density of the magnetic pulsations, W, = (pu')/2 is the en- 
ergy density of the turbulent hydrodynamic motion, andp  is 
the plasma density (see, e.g., Refs. 13 and 14). Assume that 
the turbulence is maintained by an "inexhaustible" energy 
reservoir. The total energy of the turbulence is then con- 
served (the dissipation is compensated for by a supply of 
energy), i.e., W, + V,,, = const. A proofof this statement is 
given in the Appendix. Allowance for this circumstance per- 
mits the change of turbulent pressure in a statistically homo- 
geneous unbounded medium to be expressed in terms of the 
change A W,, of the magnetic energy: 

where P y' is the initial (without allowance for the newly 
producted field) turbulent pressure. It follows hence that 
the turbulent pressure is lowered when turbulent magnetic 
fields are generated (when A W,, > 0 holds). This fact is gen- 
eral and is manifested, for example, in generation of the fine- 
structure magnetic fields predicted by the dynamo theory." 
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The total turbulent pressure is lowered also by the "tan- 
gling" of the large-scale magnetic field by the turbulent pul- 
sations. In fact, let us apply to the small-scale isotropic 
MHD turbulence a large-scale magnetic field (with charac- 
teristic dimension L, B I,,). Such a field is generated, for ex- 
ample, in a turbulent plasma with nonzero average heli- 

The large-scale magnetic field, "entangled" with the 
hydrodynamic turbulence, generates supplementary small- 
scale  pulsation^.'^.' It can be assumed that in this case the 
energy density W,, of the turbulent magnetic pulsations de- 
pends principally on W, and w,, where W ,  = B '/8nis the 
energy density of the large-scale magnetic field B. For weak 
magnetic fields ( W ,  4 W, ), expanding the function W,, in 
a series in W ,  , we obtain 

where WI:' is the energy density of the magnetic pulsations 
in the absence of a large-scale magnetic field. Combining this 
expression with (2. I ), we express the turbulent pressure P,. 
in the form 

An important role is played for large-scale processes by 
the total pressure P=P, + P,  + P,,  were P, is the usual 
gasdynamic pressure of the plasma and P, = B ' / 8 ~  is the 
magnetic pressure of the large-scale field. With allowance 
for (2.2), the total pressure is 

whereq, = a,./3. The sign ofqp, as seen from theanalysis, is 
determined by the direction of energy transfer, being posi- 
tive when magnetic pulsations are generated and negative 
when they are damped. It follows that in the presenceoffully 
developed MHD turbulence it is possible to reverse the sign 
of the effective magnetic pressure P,,, = ( 1 - q, ) B  ' / 8 ~  for 
q, > 1. We note, to be sure, that application of a large-scale 
field B upsets the isotropy of the turbulence. But Eq. (2.3) 
remains in force, and only the relation between q, and a ,  is 
changed. The corresponding expression for q, will be ob- 
tained in Sec. 4. 

This effect must not be confused with the lowering of 
the magnetic pressure by turbulent diamagneti~m.~." Recall 
that the nature of turbulent diamagnetism also differs signif- 
icantly from diamagnetism in classical electrodynamics. 
The former is a kinematic effect of removing the magnetic 
field from a region with more intense turbulent pulsations. 
The total magnetic energy does not depend here explicitly on 
the magnetic permeability. It follows that. turbulence dia- 
magnetism, in contrast to "classical," does not modify the 
Ampere force. When a magnetic field is taken out of a turbu- 
lent region its strength is lowered, and with it the magnetic 
pressure P,, = B ' / 8 ~  in this region. The sign of the magnet- 
ic pressure, however, remains positive here. In contrast to 
turbulent diamagnetism, reversal of the sign of magnetic 
pressure is a dynamic effect, for in this case the structure of 
the Ampere force is explicitly altered [see expression (4.10) 
below]. Note also that this effect can amplify the magnetic 
field in a turbulent region. 

3. FUNDAMENTAL EQUATIONS 

We consider in Secs. 3 and 4 a quantitative description 
of the effect of reversing the sign of the magnetic force in the 

presence of advanced small-scale M H D  turbulence. 
We represent the velocity v(r,t) and the magnetic field 

H(r,t) in the turbulent medium in the form v = V + u and 
H = B + h, where V = (v) and B = (H). We neglect the 
weak density pulsations. This is valid, in particular for 
p=87rPk /B 2 #  1 and over times substantially longer than 
acoustic. The equation of motion and the induction equation 
for the average fields V and B are' 

aB/at=rot ( [VB] -v, rot B-ce) . (3.2) 

Here c is the speed of light, F and F,., are respectively the 
external force and the force describing the turbulent and 
kinematic viscosities E = ( [uh] ) / c  is the turbulent emf, and 
B is the generalized Maxwell-stress tensor including the 
Reynolds turbulent-stress tensor: 

To obtain a closed system of equations it is important to 
find the dependence of the tensors (h ,  h, ) , ( u ,  u, ), and 
( h ,  u, ) on the large-scale fields V and B. To this end we 
consider the equations for turbulent hydrodynamic and 
magnetic fields. Changing to a locally comoving (relative to 
the large-scale flows) coordinate system, we obtain' 

au VP. 
-=--- 
at P 

(uV)V 

- [h rot B] + [B rot h i  
+ T + .  (Fv+Fr) (3.4) 

4np 
7 

P 

ah/dt=rot( [Vhl + [uB] ) +G+v,Ah, (3.5) 

where P .  is the pulsation ofthe hydrodynamic pressure F,. is 
a force that takes the kinematic viscosity Y into account, T 
and G are terms nonlinear in the pulsations and describe the 
energy transport through the spectrum of the M H D  turbu- 
lence: 

T=((uV)u>-(uV)u(-{[hrot h] -<[hrot h] >)/4np, 

G=rot ( [uh] -( [uh] )), 

and F, is a random external field. 
The system (3.4), (3.5) of M H D  equations for turbu- 

lent fields at R m B 1  was heretofore investigated only in an 
approximation linear in the large-scale field (see, e.g., Refs. 
5 and 6 ) .  This treatment leads to well known effects (the a 
effect, turbulent viscosity, turbulent diamagnetism) which 
vanish in the case of homogeneous and isotropic turbulence 
with a uniform field B. In the present paper we investigate an 
effect which is nonlinear in the large-scale magnetic field 
when the field B and the turbulence are uniform. Turning on 
the inhomogeneity does not eliminate this effect, and merely 
modifies it somewhat. 

The pulsations are concentrated in small scales in 
which the derivatives of the large-scale fields are small. With 
theaid of theMHD equations (3.4) and (3.5), written in the 
Fourier representation we derive equations that describe the 
evolution of the second moments: 
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Here 

f i j ( k ,  t ) = ( u i ( k ,  t ) ~ , ( - k t ) ) ,  

h i j (k .  t ) = ( h i ( k ,  t ) h , ( - k , t ) > ,  

xi j (k,  t )  =<hi(k,  t ) u j ( - k ,  t ) ) ,  

5 6 i j  (k, t )  = ~ i j  (kg t )  - x j i  ( - k ,  t )  7 

Fi j (k,  t )  =<F,' ( k ,  t )  u j ( - k ,  t )  > + < u i ( k ,  t )  F,'(-k, t )  >, 

F*(k ,  t )  = I k [ k F , ( k ,  t )  I l lk2p, 

and k  is the wave vector. Recall that here k s l , , ' ,  so that 
k.B is not equal to zero. We express the third moments in the 
form 

The expressions for the remaining correlators Ro and Mu 
are similar, and T* = k X  [ k ~ T ] / k  2. 

Equations of this type raise, as usual, the question of 
closing the equations for the higher moments. Various ap- 
proximate methods have been proposed for the solution of 
problems of this type (see, e.g., Refs. 6, 18, and 19). The 
simplest closure procedure is the T approximation, which is 
widely used in the theory of kinetic equations. As applied to 
MHD-turbulence problems, this approximation was devel- 
oped in Refs. 6, 20, and 2 1. In the simplest variant, it allows 
us to express the third moments, which determine the energy 
transport over the spectrum, in terms of the second ones: 

and similarly for the other co r re la to r~ .~  The superscript ( 0 )  
corresponds here to the background MHD turbulence 
(without the field B) ,  and r ( k )  is the characteristic relaxa- 
tion time of the statistical moments. 

Assume that vk ' < Y,, k ' < T for the greater part of 
the spectrum (this is typical of astrophysical conditions). It 
is also natural to assume that the characteristic time of vari- 
ation of the large-scale magnetic field B is substantially long- 
er than the correlation time r ( k )  for all turbulence scales. 
The stationary solution of the resulting system of equations 
then takes the form 

where $(k,B) = (r(k)kB)'/?rp. Here we have taken into 
account the relations A, (k,t)  =A, ( - k,t) and h, (k,t)  

= hji ( - k,t) which hold for a quasihomogeneous back- 
ground turbulence. We have also assumed ~ 7 '  (k,O) = 0. In 
this case it follows from (3.11) that the tensor x?' vanishes. 
The latter is not surprising, sincex?' = 0 holds for the back- 
ground turbulence, and the cross-helicity [ h x h ]  is an inte- 
gral of the motion.' 

It is seen from (3.9)-(3.11) that the equipartition state 
in which p(ui  uj ) 'O' /2 = (hi h, )'O' /877 is special. In this 
case there is no shift from the background turbulence level 
for any uniform field B." Getting ahead of ourselves, we 
note that negative magnetic pressure occurs only when a 
deviation from equipartition takes place. 

Thus, changing to coordinate space and specifying the 
background turbulence spectrum [including the r ( k )  de- 
pendence], we can obtain an expression for the generalized 
Maxwellian stress tensor uo and hence also an expression for 
the effective magnetic force. 

4. EFFECTIVE MAGNETIC FORCE IN A MEDIUM WITH FULLY 
DEVELOPED MHDTURBULENCE 

The spectral propagators f 7' ( k )  and h :;"I ( k )  deter- 
mine the state of the background MHD turbulence (in the 
absence of a large-scale field), which is assumed to be iso- 
tropic. The following relations are valid then in the weak- 
compressibility approximation 

fly' ( k )  = n o ( k )  A5j/4nk" hh)=  m, (k)  Aij/4nkz (4.1 ) 

(see, e.g., Ref. 1) .  Here A. = S o  - k,k,/k2, while n,,(k) 
and m,,(k) have the meaning of spectral densities of the cor- 
responding random quantities: 

m m 

u o  = 1 no ( k )  k ,  (h2)(0)  = m, ( k )  dk. 
0 0 

The functions n,,(k) and m,,(k) describe the spectrum of the 
background MHD turbulence. The wave vector k is normal- 
ized to the value k,, = I ,  ' determined by the main turbu- 
lence scale I,,. 

We choose the spectrum of the background M H D  tur- 
bulence in the form 

no ( k )  = ~ , k - ~ a ,  mo ( k )  =O for l< k<Rm'", 

no ( k )  = ~ , k - ' ~ $ ,  ma ( k )  =cp ( k )  for Rm'"Gk<A Rm'", 

no ( k )  = m , ( k )  /4np=a, ( A  Rm'") -'/ek-" for A Rm'"< k<Rm", 

no ( k )  =m, ( k )  =O for k>,Rmva. (4.2) 

Here we have a,, = 2ui/3, u,, = [ (u') "" ] I / * ,  A = 0.1-0.5, 
a n d p ( k )  = kAsin[2?rlnk/ln(Rm)],il = 0.5-1.5 (Refs. 11, 
12). The background MHD turbulence spectrum is chosen 
on the basis of the results, confirmed by analytic estimates, 
of the exact M H D  equations,12 at zero average helicity. Re- 
call that zero average helicity corresponds to the state of 
background MHD turbulence (without the field B ) .  The 
characteristic time ~ ( k )  of energy transport in each of the 
scales is 

where T,, is the energy transport time averaged over the ener- 
gy spectrum. 

The transition to the coordinate space is effected with 
the aid of the relation 
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and similar other correlators, Substituting in (3.9) and 
(3.10) the chosen MHD-turbulence spectrum (4.2), and 
carrying out the integration in (4.4) over k-space with ac- 
count taken of relations (4.1) and (4.3), we obtain an 
expression for the second moments in coordinate space: 

where 

Here 

al=l- (Rm8)-'", a2=l- (Rm*)-Ta, 

as=arctg eo"- (Rm8)-"q arctg (eo Rm' ' h )  ", 

is the Alfven velocity. The dependences of q, on q ,  on E,, for 
various Rm* are given in the Fig. 1. Estimates show that the 
contribution of p ( k )  to the integral (4.4) is quite small, so 
we confine ourselves for simplicity to the case p ( k )  = 0. In 

- .  the derivation of (4.5) and (4.6) we took into account the 
natural connection between the parameters uO, k,, = 1, ' 

and 7(k0) ,  i.e., the relation ~ ( k , , )  =lO/u,, where 
r ( k O )  = 2r0 [see expression (4.3) rewritten in dimensional 
variables]. Expressions (4.7) and (4.8) simplify in two 
limiting cases: 

1 )  For&, ,<l ,  (Rm*) 

4 4 
q, - - ln (Rm') - - (Rrn0"- l )  80, 

15 7 
8 16 

q, - 45 ln (Rm') - - 35 (Rm""-l) go. 

2)  For (Rm*) ' / ' < ~ ~ , < l  

Substituting (4.5) and (4.6) in (3.3) we obtain a final 
expression for the generalized Maxwell stress tensor: 

with Py' = p ; / 3  + h ; / 2 4 ~ ,  h o =  ((h ')"") '" .  
From (4.9) we get an expression for the erective mag- 

netic force: 

F,=-V (1-q,) B2/8n+ ( B V )  (I-q.)B/4n. (4.10) 

We point out that besides the possibility of the magnetic 
pressure being negative (for q, > 1 ), expression (4.10) con- 
tains the possibility that the magnetic tension force can 
change sign (at  q, > 1) .  Relations (4.7) and (4.8) permit an 
estimate of those magnetic Reynolds number (for a specified 
E,)) at which the magnetic forces reverse sign. 

For a sufficiently weak large-scale magnetic field 
[ E ~ &  (Rm*) ''9 the expressions for the second moments 
are 

where q, = 8 ln(Rm*)/45. Expression (4.11) is similar in 
form to the relation obtained in Ref. 7 for the case Rm < 1. 
However, q, in Ref. 7 is of the same order as Rm, i.e., q, < 1. 
Equations (4.11) and (4.12) correspond to the case when 
the reversal of the sign of the large-scale magnetic force is 

FIG. 1. Dependence of q,, ( a )  and q, ( b )  on c,, = 4 u ,  ' /u,,' at differ- 
ent values of Rm*: 1-3.7, 2-3.7. lo', 3-3.7. loh, 4-3.7.10". 
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quadratic in the field B. In strong fields this effect is essen- 
tially nonlinear. 

Thus, in the presence of fully developed small-scale 
MHD turbulence the elasticity of the large-scale magnetic 
field is noticeably lowered. This phenomenon may be the 
cause of excitation of large-scale MHD perturbations. 

5. MHD INSTABILITY GENERATED BY NEGATIVE MAGNETIC 
PRESSURE (QUALITATIVE TREATMENT) 

Let us investigate large-scale effects that evolve on a 
scale L, where lo < L < L, holds we describe the influence of 
small-scale turbulence on these processes by the parameters 
qp,q,, and v,, where v, zl , ,u, , /6  is the turbulent-viscosity 
coefficient. Note that although q,, q,, and v, are deter- 
mined by one and the same turbulence, these parameters are 
indicative of different effects. The negative turbulence con- 
dition to the effective magnetic force which is nonlinear in 
the large-scale magnetic field, is connected with the first 
two. The parameter v,- determines the turbulent diffusion of 
the large-scale magnetic moment (an effect linear in the 
field). 

Let us investigate the properties of the magnetic buoy- 
ancy in the presence of small-scale turbulence. We direct the 
x axis of a Cartesian system of coordinates opposite to the 
free-fall acceleration g, and the z axis along the large-scale 
magnetic field B(x) ,  i.e., we consider for simplicity a hori- 
zontal magnetic field. We separate a magnetic tube located 
at a level 1 relative to thex axis, with densityp, and magnetic 
field B , .  We slowly displace upwards the magnetic tube as a 
whole from position 1 to position 2 (with appropriate pa- 
r amete r s~ ,  and B1 of the medium around the tube). If, after 
equalization of the pressures inside and outside the magnetic 
tube, the density p f  inside the tube (in position 2)  is lower 
than the density p, of the surrounding plasma, the tube will 
continue to float upwards by the action ofthe buoyant force. 
The density excess Ap = p: - p, in the absence of dissipa- 
tive processes and of high thermal conductivity (high ther- 
mal conductivity ensures rapid equilization of the tempera- 
ture inside and outside the rising tube) is obtained, as usual, 
from the laws of conservation of the mass and magnetic flux 
inside the tube. We only note that in the presence of small- 
scale turbulence the condition that the total pressures be 
equal inside and outside the magnetic tube (in position 2 )  
has the following form: 

where KO = 1 - q, , C, is the speed of sound, and B is the 
magnetic field inside the tube at the point xz.  Assuming the 
displacement [ . = x, - x , to be small, we represent the den- 
sity p 2  and the magnetic field B1 in the form 

where A,  = - pdx/dp and A, = - Bdx/dB are the corre- 
sponding height scales of the density and of the magnetic 
field. As a result we obtain 

A p  = 
Biz& ( A B - ~ )  E. 

~ x C ~ ~ , A B  

The tube can float up (i.e., instability can develop) if we 
have 

In the case of weak turbulence and a relatively small magnet- 
ic Reynolds number, with KO-, 1, the small-scale turbulence 
does not influence the large-scale processes. I t  follows then 
from (5.1) the instability criterion imposed by the magnetic 
buoyancy is of the form A, < A,. This means that instability 
develops only when the scale on which the initial magnetic 
field changer is less than the density height scale.' 

In a medium with fully developed small-scale M H D  
turbulence, however, the situation is radically changed. 
Thus, for q, > 1 the effective magnetic pressure of the plas- 
ma becomes negative (KO < 0) and the usual magnetic buoy- 
ancy is missing in a strongly inhomogeneous magnetic field 
[see ( 5.1 ) 1. On the other hand, for A, > A,, and KO < 0, 
instability develops in a large-scale magnetic field. It is seen 
from (5.1) that the instability will develop even in an initial- 
ly quasihomogeneous large-scale magnetic field. 

Let us estimate the instability growth rate. Neglecting 
for simplicity the dissipative processes, we retain in the equa- 
tion of motion of the magnetic tube only the buoyant force 

where u,* = B,/(4.rrpl) 'I2 is the Alfven velocity. We seek 
the solution of (5.2) in the form [ = [Oexp(y,,,,, t ) .  The in- 
stability growth rate is then 

where it is taken into account that A, -- Ct/g.  
The energy for this instability comes from the small- 

scale turbulent pulsations. This circumstance distinguishes 
in principle the instability considered in the present paper 
from the Parker instability.' The latter develops as a result of 
the work done by the force of gravity in a very inhomogen- 
eous magnetic field (A,  < A, ). In this sense the Parker in- 
stability is similar to the families Rayleigh-Taylor instabil- 
ity. 

As to the role of turbulent viscosity, it leads either to 
weakening or to complete elimination of the instability. Note 
that under astrophysical conditions the turbulent viscosity is 
frequently considerably longer than the magnetic and kine- 
matic viscosity. We are interested only in this case. The 
damping rate in this case is ofthe order of v, /L 2.  This means 
that the instability we are studying has a threshold. I t  is seen 
from (5.3) that the instability growth rate is proportional to 
the large-scale magnetic field. It follows that the instability 
occurs only in sufficiently strong magnetic fields 
B > B,, (v,,p,Rm), where B,, is the instability threshold for 
the large-scale magnetic field, and is determined from the 
equation 

We have thus revealed one more channel for energy 
conversion from small-scale turbulence to a large-scale mag- 
netic field. As a result, the instability can lead to formation 
of inhomogeneities of the large scale magnetic field, in the 
form of striations or braids 

6. CONCLUSION 

We have considered the effects, nonlinear in the large- 
scale magnetic field, of modifying the magnetic force of an 
advanced small-scale M H D  instability. For Rm$1, the sign 
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of large-scale magnetic force can reverse. This effect excites 
an instability in the large-scale magnetic field due to energy 
transfer from the turbulent pulsations. In the course of de- 
velopment of the instability, the large-scale magnetic field 
becomes inhomogeneously distributed. The case P 3  1 is in- 
vestigated. 

The instability mechanism consists of the following. An 
isolated tube of magnetic-field lines, moving upwards, turns 
out to be lighter than the surrounding plasma, since the fall 
of the magnetic field in it, due to expansion of the tube, is 
accompanied by an increase of the magnetic pressure inside 
the tube. This increase, due to the fact that the effective mag- 
netic pressure is negative, leads to a decrease of the density 
inside the tube and to the appearance of a buoyant force. 
Thus, the upwards floating of the tube, i.e., the development 
of stability, is at the expense of the energy of small-scale 
turbulent pulsations. 

An example of a medium in which the processes de- 
scribed in this article can develop is the turbulent convective 
zone located under the visible surface of the sun. In this re- 
gion, convective cells (granules) of dimension I,, = ( 5 -  
10).  10' cm are created and annihilated, a large-scale mag- 
netic field (L, >I,,) is generated, and fine-structure magnet- 
ic pulsations are excited. 

At a depth - lo9 cm (from the sun's surface) the plas- 
ma has the following parameters (see, e.g., Ref. 23): 
Rm - 3. lo7, u , ~  lo4 cm/sec, 5 .  l o p 4  g/cm3, and 
B,= lo2 G. We then have KO= - 2 and the effective mag- 
netic pressure is negative. The instability that develops in 
this case apparently determines the formation of the magnet- 
ic braids in the convective zone. They float up from under 
the sun's surface leading to the onset of the observed sun- 
spots. 

APPENDIX: DERIVATION OF THE LAW OF CONSERVATION 
OFTHE TOTAL ENERGY OF HOMOGENEOUS TURBULENCE 
WITH A UNIFORM LARGE-SCALE MAGNETIC FIELD 

Let us multiply Eqs. (3.6) and (3.7) by p/2  and 
(8a) ' , respectively, and add them. The equation for the 
trace of the resultant tensor is 

where I ( k )  =pF,,/2 is the spectral density of the power of 
the external source maintaining the turbulence 

<ue> <hZ> pQir Rii 
~ ( k ) = z ~ ( v p ~ + v . - )  8n ,' , n(k)=-+-. 

2 8n 

Note that the terms containing the magnetic field B are eli- 
minated from Eq. ( A l ) .  This reflects the fact that the uni- 
form large-scale magnetic field performs no work on the tur- 
bulence. 

We change over to coordinate space in Eq. ( A l ) .  By 
calculations similar to those described in Ref. 24 it is easy to 
show that 

where (@) is the flux of magnetomechanical energy of the 
homogeneous turbulence. I t  follows that in coordinate space 
Eq. (A1 ) takes the form 

where W ,  = Wk + W,,, . Calculations show that 
D = WT/r0 for fully developed background turbulence with 
a power-law spectrum. I t  is easy to verify that this fact in- 
deed follows from the condition that the energy spectrum be 
constant over the spectrum. In  this case the solution of Eq. 
(A2)  with t$r0 reaches a stationary value W ,  = const that 
does not depend on the field B. 

I '  A small shift from the background state can appear in the case of strong 
inhomogeneity of the magnetic field B. It is determined by the spatial 
derivatives of the large-scale field. 
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