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We determine the conditions under which the inverse scattering transform method can be used to 
study the propagation of two-frequency surface-wave pulses that can pass through a thin film of 
resonant three-level particles. This method is used to examine, for various combinations of TE 
and TMwaves, the propagation of a nonlinear surface wave in the simulton regime, and also to 
study the signals emitted by the film after a definite (for each carrier frequency) time interval 
following the passage of a refracted Fresnel pulse. The differences in the formation of these signals 
and the interaction of single-frequency pulses with a thin film of two-level particles are discussed. 

1. INTRODUCTION 

Much attention is being paid of late in the theory of 
surface optical waves to nonlinear phenomena. A theory of 
nonlinear surface waves on the interface between a linear 
and nonlinear (Kerr) dielectric, and of nonlinear directed 
waves in planar waveguides, was developed soon thereafter 
(see the review in Ref. 1 ). A theory was developed for self- 
induced transparency (SIT)*-" and for related phenome- 
na.4-7 The first experiments demonstrating the bistable be- 
havior of nonlinear surface waves have been perf~rmed.',~ 

In addition, phenomena accompanying the passage of 
an optical wave through a nonlinear interface have been at- 
tracting interest for a long time.'s23 These investigations 
were performed mainly n~merical ly , '~- '~  until the publica- 
tion of a paper'9 in which it was shown how the use of the 
inverse scattering method (ISM) can yield interesting re- 
sults. The ISM, unfortunately, has a limited range of appli- 
cations. For example, if allowance is made for the Lorentz 
field in the problemZ0 of a thin film of resonant atoms on the 
interface of linear dielectrics, it is impossible to use the ISM 
to study the refraction by such an interface. This problem, 
however, is of great interest. 

The effects investigated, the possibility of optical bista- 
b i l i t ~ , * ' - ~ ~  and coherent transient processes of the photon- 
echo typeZ4 have all stimulated searches for new models 
(physical situations) of a nonlinear interface of two media. 
A simple generalization is a transition from a two-level mod- 
el of atoms in a thin film to a three-level one, assuming an 
optical pulse having two carrier frequencies that are reso- 
nant with the corresponding transitions. 

We generalize in the present paper the SIT theory2.' to 
include the case of double resonance. We derive generalized 
simplified Maxwell- Bloch equations that describe the prop- 
agation of a two-frequency ultrashort pulse along a nonlin- 
ear interface of two media. We obtain the condition under 
which SIT is possible and the corresponding pulses are soli- 
tons. 

The passage of an ultrashort pulse through a nonlinear 
interface is investigated in greater detail. It is shown that by 
suitably choosing the incidence angle a situation can be 
created wherein the ISM method can be used to solve the 
relevant equations that determine the amplitudes of the 
transmitted wave. The solution obtained in this situation re- 

veals the existence of an additional pulse that lags the inci- 
dent pulse in time (a  similar result was obtained in Ref. 19). 
The delay time depends on the problem parameters and on 
the area of the incident pulse. In contrast to Ref. 19, the 
delays of waves with different carrier frequencies are une- 
qual, depending on the initial states of the three-level atoms. 
Using this result, the two-frequency pulse can be resolved in 
time into two single-frequency ones. 

2. DESCRIPTION OF MODELS AND A NONLINEAR 
INTERFACE OF MEDIA 

Let a thin film of atoms resonantly interacting with a 
two-frequency electromagnetic field be located on the inter- 
face of two dielectric media in the x = 0 plane. The dielectric 
media adjoining the film have dielectric constants E, for 
x < 0 and E~ for x > 0. The z axis is chosen to be in the inter- 
face plane. The resonant atoms are described in the frame- 
work of the three-level-atom model corresponding to double 
resonance in the A or V configuration of the energy lev- 
e l ~ . ~ ~ - ~ ~  The electromagnetic-field pulses are assumed to be 
short compared with the polarization-relaxation times and 
the population difference, but much longer than the optical 
period, so that the method of slowly varying complex enve- 
lopes of the pulse can be used. These will hereafter be called 
ultrashort pulses (USP) . 

The thin-film thickness is assumed much smaller than 
the incident-radiation wavelengths. In such a film, the mi- 
croscopic electromagnetic field acting on the atom differs, 
generally speaking, from the macroscopic field and depends 
on the location of the impurity atom. This dependence can 
be correctly obtained by taking into account the dipole-di- 
pole interaction between the atoms, as was demonstrated, 
for example, in Ref. 21. It is also possible to neglect this 
dependence and assume the difference between the micro- 
scopic and macroscopic fields to be equal to the Lorentz 
field.20 In a number of cases, however, the difference 
between the microscopic and macroscopic fields is immater- 
ial. This applies to the analysis of surface waves propagating 
at sufficiently large distances, and also to reflection and re- 
fraction of waves in the case of a thin transition-metal film in 
a transverse dc quantizing magnetic field, when the film 
spectrum is discrete. We confine ourselves here to this model 
situation. 
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3. PROPAGATION OF ULTRASHORT PULSE ALONG AN 
INTERFACE 

This case corresponds to a generalization of the results 
of Ref. 2  to double resonance in a three-level medium. Fol- 
lowing Ref. 2, equations must be derived for the evolution of 
a two-frequency USP and of atoms of a thin film. Since the 
interface is planar, the system of Maxwell equation breaks 
up into two independent systems describes TE waves: 

E= (0 ,  E,, 0 )  , H= (HI, 0 ,  Hz) 

and TM waves: 

It is convenient to express the strengths E and H of the fields 
and the polarization P of the three-level system in the form 

The fields e and h are determined by the Maxwell equa- 
tions outside the film (x#O)  and by the continuity condi- 
tions at x = 0. For TE waves we have 

lirn e(x ,  B ,  o )  = lirn h,,,(x, B, o )  = O ;  
IrI-t- l~I- -rm 

and for TM waves 

h p h ,  a,2h+(k'~~-B" h=O, 

e,= (p /kej )  h, e,= ( i / ke j )  &h, 
e ,  (x=O+) =e,(x=O-) =e ( j 3 ,  a ) ,  

lim h (x,  B ,  a )  = lirn ex,, (x,  B ,  o )  =O. 
I = l + -  IXI--t== 

In these equations the subscript takes the values j = i or b 
and we set k  = w/c .  We assume in addition that the normal 
component of the polarization vector of the thin-film atoms 
is zero. 

Consider the case of TM waves. Outside the interface 
we have 

where q 2 = p 2 -  k 2 ~ b , p Z = P 2 -  k 2 ~ a  andp>O, q>O. It 
follows also from ( 2 )  that 

- - A  exp (-qz) , x>0, 

ez(x, B 1 0 )  = 

B exp ( p x )  , x<O. 

The coefficients A(/?,w) and B(P,w)  are determined from 

the condition for the continuity of e, (x ,P,w):  

Using ( 3 )  and (4)  and the boundary condition for h (x ,P ,o )  
at x  = 0 ,  we can obtain from ( 2 )  and equation for e(P,w)  
and p, (P,w : 

where 

,yS ( 0 , ~ )  is the nonresonant susceptibility of the thin film. 
Up to now we have not considered the approximation of 

slowly varying USP envelopes or any information on the 
frequency makeup of the carrier wave, so that equating ( 5 )  
to the analogous result of Ref. 2  is legitimate. 

The case of TE waves can be considered similarly. The 
expression of type ( 5 )  will take here the form 

where 

Outside the interface we have 

and 

M x ,  B ,  a )= - (B lk )e (x ,  B ,  a ) .  

If the electromagnetic wave is represented in the form 

- 
the Fourier components for E and for the envelope g are 
related by 

and we have P&fl0, w  & w o ,  this being a consequence of the 
slowly-varying-envelope approximation. Using this remark, 
we can obtain from ( 5 )  and ( 5 ' )  similar relations for the 
Fourier components of the USP envelope. For a two-fre- 
quency USP we obtain 

+$, (x ,  Z ,  t )  exp[ i (B2z-o~t)  1 +c.c. 

Waves with carrier frequencies w ,  and w,  can be 20th of TfM 
or TE type, but can also differ with, for example g, and 8, 
corresponding to TE3nd TM waves, respectively. For the 
Fourier components 8, ( x  = O,D,w), a = 1,2, Eq. ( 5 )  or 
( 5 ' )  are transformed into 
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Here for A = B = TE we have 

and for A = TE, B = TM, we have 

a, (p, O )  =zI, v ( ~ = ~ ,  p, w ) ,  z2(p ,  O) =Z2, z(x=O, B, a ) ,  

9'1(p1 0 ) = 9 ' 4 ,  u(pl 01, yz(P1 @)=par z ( B 7  0). 

From ( 6 )  we can transform in the usual fashion (see, 
e.g., Ref. 29) to the evolution equations for the slowly vary- 
ing envelopes %, (x = O,z,t) and 9, (z,t) 

(a,+v,,-la,) 8,=4ni (af A/ap) (7) 

where u,, = (dw/dp) ,, is the group velocity of a wave of 
type A,  with carrier w, and propagation constant pa (where 
A = TE or TM). The values of pa are determined from the 
dispersion relations for each type of wave: 

In (7) we have used the notation 

The envelopes of the polarization wave of a thin film are 
determined in terms of the corresponding density-matrix 
elements of the three-level medium. Equations (7)  must be 
supplemented by equations for this density matrix. 

Let us consider, to be specific, a Vconfiguration of ener- 
gy levels. The wave with carrier frequency w, is resonant for 
the (1) -+ (2), transition, and the one with carrier a, for the 
11) - 13) transition. Assume that the detuning Sw from ex- 
act resonance is the same for both transitions. The equations 
for the slowly varying element of the density matrix are of 
the form26,30 

where q = - d 2  q,= -d,,%,/fi, u = u , , ,  
u = 0 3 , , w =  - 0 3 ~ , n ,  =a, ,  -o,,,n, =a, ,  --u3,,d,,is 
the matrix element of the dipole moment of the la) - ( b ) 
transition, and a,, is a slowly varying density-matrix ele- 
ment (a,b = 1,2,3). (For a A configuration of the energy 
levels q, ,q, ,u,u,w,n, and n, from (9)  are connected with o,, 
by another rule.)30 

The envelopes of the polarizations 9,,, are expressed 
in terms of u and u from (9)  as follows: 

where the angle brackets denote summation over all possible 
detunings Sw, and n,, is the surface density of the resonant 
atoms. 

It is convenient to introduce new independent variables 

T = t - z/u, , X = z/LA and rewrite (7)  in dimensionless 
form 

Here 

The system (7' ) and (9)  describes fully the propagation 
of a two-frequency USP along the interface between two me- 
dia. It is k n ~ w n , ~ ~ . ~ '  however, that these equations are fully 
integrable if the following conditions (simulton conditions) 
are satisfied: 

In this case it is possible to use the ISM with a U- Vpair of the 
following form26,28*30 

(- (n!; nz)13 u l.' 

- (n, - 2n1)/3 w 
w * (2% - n1)/3 

If the populations of the states 12) and ( 3 )  are equal both for 
t = - co and for t = + co (all the atoms are in the ground 
state both before the arrival of the USP and after its pas- 
sage), the single-soliton solution has the usual hyperbolic- 
secant form. If the initial and final states of the atoms are 
equal but the initial populations of the excited atoms are 
different, the single-soliton solution describes the transfor- 
mation of a two-frequency pulse into a single-frequency 
one.26*30 This process was investigated also in great detail in 
Ref. 31. 

It should be noted that the requirement that the simul- 
ton condition be met is more stringent in the present problem 
than in the three-dimensional c a ~ e , ~ ~ - ~ '  although the depen- 
dence of the group velocity and of the parameter y on the 
dielectric constants E, and E, does permit some degree of 
influence on simulton formation. It would be of interest to 
investigate the propagation of USP in the general case, with- 
out the need for satisfying ( 10). Since the propagation veloc- 
ities u, , and u,, differ, the USP is expected to have spatially 
separated frequency components, each propagating inde- 
pendently and either dispersing or evolving into a single- 
frequency soliton (or solitons). An alternative can be the 
"wave trapping" investigated in Ref. 32 under the condition 
v,, =u,,, butwith y#1. 
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4. REFRACTION OF ULTRASHORT PULSE BY AN INTERFACE 

Consider now the case of an electromagnetic wave inci- 
dent on the interface from the x < 0 region. The reflected 
wave propagates back into this region, while the refracted 
wave propagates into the region x > 0. This situation is de- 
scribed by Maxwell equations with boundary conditions 
that are the same as in (1)  and (2)at x = 0, but it is now 
necessary to change the boundary conditions as 1x1 - cc to 
take into account waves that are incident and reflected as 
1x1 -+ - t4, and refracted nonvanishing waves at 1x1 + + a,. 

We begin with TE waves. The solution of the wave 
equation for the Fourier component of the intensity of the 
electric field e(x,p,w) with allowance for the behavior as 
1x1 - co , outside the interface takes the form 

A exp( ipx )  + B  exp  ( - ipx )  , x<O, 
B, 0 ) =  { 

C exp  ( i q x ) ,  x>O, 

where 

In addition, 

I ( p l k )  [ A  exp ( i p x )  - B exp ( - ipx)  1, XCO, 
hz (2, B, 0 )  = 

( q l k )  C exp ( i q x ) ,  X>O. 

The boundary conditions at x = 0 yield the relations 
between the amplitudes of the incident (A ), reflected (B), 
and refracted (C) waves and the film polarization p,: 

2p 4nk2  
C = - A + i - p , ( $ ,  a ) ,  

P+Q P+Q 

P-q 4nk2 B = -  A + i - ~ u ( p ,  0 ) .  
p+q p+9 

It is possible to introduce in the usual manner the incidence 
(8 '"), reflection (8 ') and refraction ( 8  "1 angles: 

p=ke," cos O'", q=keb" cos Of' ,  
(13) 

!3=kea" sin Oin=ksb" sin 8" 

We consider now TM waves. From (2)  we obtain, tak- 
ing into account the boundary conditions as 1x1 - co , 

exp ( i p x )  +B exp  ( - ipx )  , d<O, 
h ( x ,  p ,  a )  = C exp ( i q x )  , x>0, 

- (pike.) [ A  exp ( i p x )  -B exp ( - ipx )  1, x<O, 
- (q /keb)  C  exp ( iqx )  , x>O, 

wherep and q are defined by the same equations as in the TE- 
wave case. Using the boundary conditions at x = 0, we ob- 
tain the connections between the amplitudes A,  B, and C of 
the magnetic field intensities h (x,p,w) : 

In this case we need to have, in place of ( 14), the relations 

between the electric-field amplitudes e, (x  = O,p,w) 
= e(0,w). Defining the electric-field incident-wave ampli- 

tude e r  (0  - ,P,w as 

we obtain in place of ( 14) 

It is convenient to introduce the notation 

and combine the results (12) and ( 15) into a single expres- 
sion 

Here, for A = TE, we have 

and for A = TM, 

Relation ( 16) is general: it is independent of the type of 
resonant atom and of the frequency makeup of the incident 
wave, and is valid for plane or nonplane waves. Although we 
shall consider here only the case E, <E,, when there is no 
total internal reflection, expression (16) can be extended 
also to include the case E, > E,. At an incident angle exceed- 
ing the critical angle at which total internal reflection takes 
place, it is necessary simply to replace q in (16) by 
i ( 0  ' - k 'E, ) = iq'. 

Attention should also be called to the expression for the 
magnetic-field amplitude of the reflected wave, i.e., to the 
coefficient B in ( 14). Ifp, = 0 (there is no thin film), there is 
no y component of the magnetic field of the TM wave at a 
certain incidence angle determined from the condition 
E,P = ~ , q .  This angle tg 8'" = (E,/E, ) '/' is known as the 
Brewster angle. The presence of a thin film of resonant 
atoms, as follows from ( 14), destroys the Brewster effect. 

Just as in the case of surface waves, it is possible here to 
proceed to consider the passage of a USP with a plane front 
through an interface, and obtain in place of ( 16) the connec- 
tion between the pulse envelopes of the incident and refract- 
ed waves, on the one hand, and the polarization envelope 
that varies slowly with time. The carrier-wave frequencies 
w, and w, are chosen to meet the condition of double reso- 
nance with the three-level atoms of the film, whilep, and& 
are given by the incidence angles of the corresponding 
waves. Neglecting the derivatives of the transmission coeffi- 
cients R, (B,7,w) and of the coupling constants x, (p,w ), with 
respect to w, we obtain equations that generalize the results 
of Ref. 17 and 19 to include the case of a two-frequency USP: 
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Various combinations of different polarizations of the fields 
of a two-frequency USP are possible: A = B = TE or TM 
and A = TE, B = TM or, conversely, A = TM and B = TE. 

A very important item in Ref. 19 was the remark that an 
expression such as (17) can be replaced by a differential 
equation with a singular right-hand side. This device can be 
applied here too. We introduce auxiliary functions %',, (x,t) 
satisfying the equations 

For x = 0 these functions are defined by the relation 

Integrating(18)fromx= - 03 t o x =  - E  (E<l) ,weob- 
tain 

If Eq. ( 18) will be integrated from x = - E to x = E, we 
obtain 

8 n a  (x=E, t) = ~ A ~ ( x = - E ,  t) + 2 i x ~  (BE, ( I ) , ) ~ A ~  (t) . 

It follows from this, if ( 19) is used, that 

This expression coincides with ( 17) if we assume the identi- 
ties 

Supplementing ( 17) or ( 18) with equations that determine 
the polarizations 9 ,, ( t ) ,  we can solve the initial problem of 
USP refraction by an interface, using the following algo- 
rithm: a )  determine the initial conditions ( 18) for the speci- 
fied value of Z?:, ( t ) ;  b)  solve (18) for the indicated initial 
condition for %',, (0 - ,t) and 9,, yielding 8,, ( t )  for 
x > 0 and consequently %',, (0 + ,t); c )  determine the enve- 
lopes Z?a6, ( t )  of the transmitted ultrashort pulse in accor- 
dance with ( 19) : 

ZAatr (t) ='Iz [ R ,  (pa, 05) 8,ain (t) +SAG (O+, t, 1 . ( 19' ) 

For the equations that specify the evolution of the state 
three-level atoms, we should take (9)  with 
q1 = d,, Z?:, /fi, q2 = d31 Z?g2/% the definitions of the re- 
maining variables are the same as before. 

It can be directly verified that if the condition 

is met the system of equations (9)  and (18) is the zero- 
curvature condition for the U- V pair ( 1 1 ), the only differ- 
ence being that now V (Eq. 1 lb)  should by multiplied by 
T; '6(x),  where 

The condition (20) is similar to the condition for the 
existence of a simulton regime of propagation of a two-fre- 
quency USP in a semi-infinite homogeneous m e d i ~ m . ~ ~ - , ~  
Before we consider the solution of the system (9) and ( 18), 
let us dwell in greater detail on the "simulton" condition 
(20) which appears in the investigated problem. It is expedi- 
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ent to introduce two auxiliary functions FTE (8) and FTM (8) 
of the incidence angle 0, = 8 '"(w, ) of each of the carrier 
waves of the two-frequency USP: 

+- 1+A2 
F T M  (0) = - 

cos 0 (A2 o s 2  0) 'la ' 

where A2 = (E, - E, ) / E ~  > 0. The condition (20) can be ex- 
pressed in terms of the following functions: 

for A = TE, B = TE, 

forA = TM, B =  TM 

for A = TE, B = TM 

We denote the factor preceding the function F, (8, ) by 
g. The question is then whether suitable incidence angles 8, 
and 8, can be found to satisfy the simulton condition (20), 
which reduces to finding the solution of the equation 

Figure 1 shows plots of the functions F,, (8) and FTM (19). 
Since the function FTM(8) increases without limit as 
8-n/2, it can be seen that Eq. (21) has a solution for any 
parameter g for A = B = TM. By the same token, this is the 
most favorable case for satisfying the simulton condition. 
For A = TE and B = TM, there exists at g <  1 a value 
8 ,  = 0, for which (2 1 ) is satisfied, and if 8, is given one can 
obtain 0, ( #8,) for which (21 ) is also satisfied. Equation 
(2 1 ) cannot be solved for < > 1. In this case it is necessary to 
interchange the wave types, i.e.,choose A = TM and 
B = TE. There must then exist 0,  and 8, pairs for which 
(2 1 ) holds. 

The least favorable choice is A = B = TE. Given the 
dielectric constant difference E, - E, there exists an interval 
of the values of the parameter 5, 

FIG. 1 .  Plots of auxiliary functions FA (8): 1-A = TM, 2-A = TE. 
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for which, given 8,, we can find a value of 8, that ensures 
satisfaction of the simulton condition. Here 

It is curious that it is preferable in this case to use media for 
which E, - E, & E,. The solution of (2 1 ) for A = B = TE 
can be written explicitly as 

Similarly, for A = TE and B = TM we have 

Consider now the solution of Eqs. (9)  and ( 18) by the 
ISM, assuming beforehand that the three-level system re- 
turns to the initial state after passage of the USP. This means 
that at t + + UJ the matrix V(A,t) takes the form of a diag- 
onal matrix V' ' ' ( A )  : 

where n,, and n,, are the differences of the populations of 
the three-level system as t- - UJ . 

From the given values of ( t )  or their normalized 
values qg(t), solving the spectral problem ( I  l a )  for U(A), 
we can determine the scattering data, viz., the transition ma- 
trix T '" (A,x < 0)  and the eigenvalues (discrete spectrum 
{A,)'". To find TO"'(A) = T(A,x > 0)  and {A,)""' we can 
use the reasoning of Ref. 19 and generalize it to cover the 
case analyzed here. If we have V' + ' = V' - ', then T(A,x) 
is defined by the equation 

Since V' - ' is diagonal, the diagonal elements of the matrix 
Tare independent of x; consequently 

T:."' ( h )  =Twin ( A ) .  (23) 

From this we have {A,)""' = {A,)'". For the off-diagonal 
elements Tab we have 

if V'-'(x,A) = d i a g ( V i , V ' , V : - I ) .  Whatmakesthe 
situation unusual is that V :  ' contains a delta function. 
Following Ref. 19, the definition of To, (A,x) is completed at 
the point x = 0: 

We put 

Integrating (24), taking (26) into account, with respect to x 
from x = - co to x = - E(E> O,E< 1 ), we obtain 

Integrating (24) from x = - E to x = E we find 

Tas(h, X = E )  =Taa(h, x=-&) +2rab ( h )  Tab(h, 0). 

From this, taking (25) into account, it follows that 

Tab (h,  X = E )  = I + C ( h )  T4?(h). 
i-r* ( A )  

Since the right-hand side of (27) does not depend on x, we 
have 

T:~'(L) =Tab (A,  x=O+) = (28) 

The solutions of Eqs. (9 )  and ( 18) are obtained as solu- 
tions of the inverse problem using the scattering data 

TYt(A) and Eq. (19'). Manakov's spectral prob- 
lem, which is used here, is the result of the analysis of self- 
focusing of polarized radiation3' and of the theory of self- 
induced so that we can build on known 
results. To reconstruct the q, (t,x) that enter U(A,x,t) we 
need the quantity r, (A,x) defined as 

rl (A) =Ti, (h)lTll1 (A),  rz (A) =Ti$ (A)lT,,' ( A ) ,  

where T ;, ( A )  = dT,, /dA. Using the explicit form of V' - ', 
we can find the necessary quantities TI, and T,, : 

In addition, at the discrete-spectrum points we can represent 
r'," in the form 

rain(hn) =2qnla'"' exp [2qnton], a=l, 2, (30) 

where 
h,=b,+iq,, ton=  (2vn)-' Iroin (An)  I t  

a 

Denoting 

we get 

out ~ + R Z '  
ra (h,) = 2 q n ~ ~ ' e x p  (2ynton) l-~p)-iZ:) ' (31) 

If the inhomogeneously broadened line is symmetric in 
shape, and the USP incident on the interface is such that 
f ,  = 0, we have I z' = 0 and 

where 

It is useful to compare (30) and (32) with the analo- 
gous expressions from the theory of self-induced transparen- 
cy.34 This yields a rule for obtaining the needed results from 
those already known. Namely, wherever the path Z covered 
by the pulse occurs in an expression, the substitution 
R,Z-2qn tan yields an expression relevant to the problem 
considered here. 

By way of example, let the incident USP have an enve- 
lope gk ( t )  such that 
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The solution of the spectral problem is then known: 

h-iq 
h i  Titin = - T t a i n = T t p = ~ z t i n , ~ s p = ~  

h+iq ' 

(the remaining matrix elements are unnecessary) ; r',"(/Z, ) 
= 2771, exp (2r]to). The solution ( 18) with x > 0, obtained 

by the ISM, can be written down right away, using the rule 
formulated above: 

a t 2  
q,(t, x>O) = --8Aa(t, x>O) =2qla exp[2q (to-t+tat) ID-', 

i? 

For the case of a Vconfiguration of the energy levels we have 
R ( 1 '  = R ( 1 '  , , since n,, = n,,, if all the atoms are in the 
ground state at t = - a. Expression (35) simplifies to 

qa (6 x>O) =2qla sech [2q (to-t+tt) I, (36) 

where 

The envelope of the refracted USP takes, according to ( 19), 
(34), and (36), the form 

Thus, just as in Ref. 19, the refracted USP consists of 
two subpulses-the first due to the jump of the dielectric 
constants (Fresnel subpulse) and the second due to the reso- 
nant atom and therefore delayed in time relative to the first. 
Note the logarithmic dependence of the delay time t ,  on the 
parameter R I". The value of this parameter depends both 
on the peak value of the electric field intensity of the incident 
USP and on the incidence angle (via T, ). 

For a A configuration of the resonance levels, if all the 
atoms are initially in the ground state, we have n,, = 1 and 
n,, = 0. It follows then from (35) that 

exp 2q (to-t+ttt) 
qt(t7 x>o)=2"r*-i + exp[4i (to--t) 1 (1,' exp(4qttt) +c) . 
These envelopes do not have the shape of a hyperbolic se- 
cant, and consequently do not duplicate the shape of the 
incident pulse. In addition, their time delays are different. 
This constitutes the difference from the case of two-level 
atoms. l 9  In general, if the atoms of a thin film are pre-excit- 
ed in the initial state, the delays of the frequency components 
of the USP are not equal. 

5. CONCLUSION 

The foregoing analysis of the propagation of a surface 
nonlinear wave is restricted to the simulton regime. As is 
made clear here, this condition is difficult to meet, for in 

addition to equality of the resonance absorption lengths 
(which is necessary in the three-dimensional case), the 
group velocities must be equal. For surface waves the propa- 

- - 

gation constant P(w, ) at the carrier frequency a, has a 
complicated dependence on w,, and equality of the deriva- 
tives o f p  with respect to w at the points w, and w, would be 
surprising. Further investigation of the process of propaga- 

- - -  

tion of a surface two-frequency USP requires a numerical 
solution of the system (7') and (9) .  

In the analysis of the passage of USP through a nonlin- 
ear interface, attention was focused here also on cases that 
admit of an exact solution by the ISM. If the angle of inci- 
dence of each carrier wave is suitably chosen, the simulton 
condition (20) is easily satisfied. An interesting result is the 
appearance of a time-delayed pulse. Only in a particular case 
is the delay time the same for both frequencies of the carrier 
wave, while in general they are different. Attention should 
be called to the fact that the delayed pulses correspond in 
this paper to the discrete spectrum of the Manakov problem. 
At definite incidence angles [provided that they guarantee 
satisfaction of the simulton condition (20) 1, there may be no 
discrete spectrum at all, while at other incidence angles it 
appears. An investigation of the parameters of the delayed 
pulse with variation of the incidence angles, just as the solu- 

- ~ 

tion of refraction of small-area USP (when there is no dis- 
crete spectrum at any incidence angle) calls for numerical 
simulation of this process. 

The ISM can likewise not be used when the USP is inci- 
dent on a nonlinear interface from a medium with a larger - 
refractive index, and the incidence angle exceeds the total- 
internal-reflection angle. An investigation of the process of 
the reflection of USP in this case requires again numerical 
simulation. 

In conclusion, we wish to point out also the need in 
many cases of taking the Lorentz field into account and of 
generalizing the results of Ref. 20. 
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