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The problem of coherent enhancement of the backscattering of particles with spins = 1/2 from 
random media containing small-radius scatterers is solved exactly. The polarization 
characteristics of the angular spectrum of particles are analyzed for reflection from three- and 
two-dimensional disordered systems and for a medium with an Anderson disorder (periodic 
system of random scatterers). This analysis is carried out for the cases of magnetic and spin-orbit 
interactions with the scattering centers. Effects which have no analogs in coherent backscattering 
of light and scalar waves are predicted: these effects are the appearance of a fine structure in the 
angular spectrum of the reflected particles in the vicinity of the backward direction, a 
nonmonotonic dependence of the backscattering enhancement factor 17 on the angle of incidence, 
and discontinuous behavior of the factor 17 as a function of the ratio of the cross sections of the 
magnetic and scalar interactions when particles are reflected from systems with an Anderson 
disorder. 

1. INTRODUCTION 

Interference between the wave functions of particles 
moving along coincident paths in opposite directions signifi- 
cantly alters multiple scattering by an ensemble of randomly 
distributed centers and is known to be the cause of weak 
localization waves in a random medium. This reduces the 
electrical conductivity and the diffusion coefficient of elec- 
trons traveling in "dirty" metals and in semiconductors, and 
also alters other transport coefficients. The wave interfer- 
ence effects are manifested particularly strongly in the re- 
flection of light from turbid media,'-'' when these effects 
enhance greatly the backscattering intensity in the backward 
direction. 

Theoretical analyses have s h o ~ n ~ , ~ , ~ , ' ~  that one of the 
important features of weak localization of waves in disor- 
dered systems is its sensitivity to the symmetry of the scatter- 
ing process relative to time reversal. Those interactions 
which break the T-invariance, for example the spin-spin 
(magnetic) interaction with scatterers, can alter significant- 
ly the nature of interference in a random medium. In partic- 
ular, this gives rise to a variety of physical features in the 
behavior of the quantum corrections to the transport coeffi- 
cients of metals and semiconductors.'-' 

It is particularly desirable to analyze the phenomena 
associated with the breaking of the invariance of the scatter- 
ing relative to time reversal in the problem of coherent en- 
hancement of backscattering. In this case the observed inter- 
ference effects are no longer corrections to the observed 
transport coefficients (conductivity, diffusion coefficient, 
thermal conductivity, etc.), but alter radically the whole an- 
gular dependence of the backscattering intensity near the 
backward direction. 

The polarization effects in backscattering of light due to 
symmetry breaking in relation to time reversal are discussed 
in detail in Refs. 11, 14, and 20-25. It is shown there that the 
absence of the T-invariance always results in simple suppres- 
sion of the peak representing coherent backscattering of 
waves of the appropriate polarization. 

In the case of backscattering of particles with spin 

s = 1/2 the situation is very In particular, in 
the case of the magnetic and spin-orbit interactions we can 
expect coherent weakening of backscattering, i.e., a dip in 
the backward direction may appear in the angular spectrum 
of the scattered intensity. 

We shall give an exact analytic solution of the problem 
of coherent backscattering of spin s = 1/2 particles from 
three- and two-dimensional disordered ensembles of small- 
radius scattering centers and from a medium with an Ander- 
son type of disorder in the form of a periodic system of ran- 
dom scatterers. We shall discuss in detail the characteristics 
of the backscattering process in the case of the magnetic 
(spin-spin) and spin-orbit interactions of particles with the 
scattering centers. We shall show that the reflection of parti- 
cles from a three-dimensional system of scatterers with dis- 
ordered distributions and randomly oriented spins gives rise 
to a "fine" structure of the angular dependence of the den- 
sity of the particle flux in the backward direction, in contrast 
to the predictions of Refs. 26 and 27. At the center of an 
overall dip the angular spectrum of the backscattered parti- 
cles has a local maximum. An analysis of the exact solution 
of the multiple scattering problem shows that this maximum 
is due to the difference between the effective lengths for de- 
struction of the coherence of wave functions of particles 
characterized by parallel and antiparallel spin orientations. 
The backscattering enhancement factor reaches its maxi- 
mum value for oblique incidence of particles in a medium, 
rather than for the normal incidence which is true of the 
scalar scattering processes. l4  

An investigation of the angular spectrum of the parti- 
cles backscattered from two-dimensional disordered sys- 
tems shows that the nature of the spectrum depends strongly 
on the mutual orientation of the polarization vector of the 
incident particles and the plane of their motion. The dip in 
the angular distribution in the vicinity of the backward di- 
rection appears only for the processes involving spin reversal 
in the scattering plane. In all other cases the backscattering 
is enhanced coherently. 

In a system with an Anderson type of disorder the mo- 
tion of a particle is influenced strongly by the Bragg diffrac- 
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tion processes and the associated anomalous transmission 
and absorption of waves in a medium. The effects of weak 
localization of radiation in a periodic system of fluctuating 
scatterers have a number of features associated with the dif- 
fraction enhancement or weakening of the noncoherent in- 
teractions, which is a function of the orientation of the parti- 
cle momentum relative to the lattice. For example, in the 
Bragg diffraction geometry the backscattering enhancement 
factor 7, considered as a function of the ratio of the cross 
sections of the "scalar" and spin-spin interactions, can 
reach its maximum (7 = 2) and minimum limiting values. 

The effects considered below may be observed experi- 
mentally in investigations of backscattering of polarized 
electrons from disordered targets and also on reflection of 
thermal neutrons from crystals under conditions of a strong 
spin-incoherent nuclear interaction. 

2. ANGULAR SPECTRUM OF BACKSCATTERING FROM A 
THREE-DIMENSIONAL DISORDERED SYSTEM 

We consider the motion of a nonrelativistic spin s = 1/2 
particle in the half-space x > 0 filled with randomly distrib- 
uted scattering centers which have a small radius obeying 
r, <A, where A is the particle wavelength. 

We begin our investigation of the polarization phenom- 
ena with an analysis of the spin-spin interaction of a particle 
with scatterers. The matrix representing the scattering of a 
particle by a center located at the point R, is (see, for exam- 
ple, Ref. 28) 

where m is the mass of the particle, S, is the spin of the 
scatterers, and f i  = 1. The imaginary part of the scattering 
length A is related to the total interaction cross section a,,, 
by the optical theorem 

where a,,, = a, + a ,  + a,; a, = 4n-lA I *  is the "scalar" in- 
teraction cross section; a, = n-lB 12S(S + 1 ) is the spin inco- 
herent (magnetic) scattering cross section; a, is the cross 
section for the absorption of particles by the scattering cen- 
ter; p, = 2n-/A is the particle momentum. 

The density of a flux of backscattered radiation and its 
polarization characteristics can be described by averaging 
the one-particle density matrix over the positions of the scat- 
terers and the directions of their spins: 

where a and B are the indices of the spin components of the 
wave function of the investigated particle. 

If we ignore the recoil in collisions with the incident 
particle, we can rewrite the density matrix of Eq. (2)  in the 

form29.30 
(0) 

PUT (rt, rz) =par (r,, rz) 

where the repeated indices imply summation; G(r,rl)  is the 
Green's function of the scattering problem;30.3' (r ,rl)  is 
the density matrix of the particles that do not undergo inco- 
herent interactions in the medium (the density matrix of the 
coherent fields) : 

(r, r') =p?! $0 (r, PO) $0' (r', PO). (4)  

In the last expressionpg represents the polarization density 
matrix of the incident particles, whereas ICl,(r,p) is the wave 
function of the scattering problem corresponding to the 
boundary condition in the form of a plane wave with a mo- 
mentum p incident on a given surface from the region 
x =  - w (seeRefs.30and31): 

The tensor function Tap,, (r , ,r;  ;r2,r; ) in Eq. (3)  de- 
scribes the evolution of the wave field in the course of multi- 
ple scattering of particles in matter. In terms of the impurity 
diagram technique, it is governed by a sum of connected 
diagrams without external Under weak localiza- 
tion conditions (i.e., whenp,lg 1, where I = (nu,,, ) -  ' is the 
mean free path and n is the number of the scatterers per unit 
volume) the dominant contribution to Tap,,, (rl ,r;  ;r2,r; ) 
comes from a series of ladder and fan (maximally crossed) 
diagrams. 

A series of ladder diagrams corresponds to a sequence 
of independent incoherent scattering events. In the sum of 
such ladder diagrams we shall separate the contribution of 
single scattering 

where the tensor asp,, is given by the e x p r e ~ s i o n ~ . ~ . ~  

and aaB = (a :p,4p,a & ) are the Pauli matrices. Then, the 
function L,,, (r,,r; ;r,,r; ) satisfies the following equation 
(Fig. 1) 

2n ' 
L~~~~ (rl, r,' ; rz, rZ1) =( ;) nzaappTvapgv66 (r,-rz) 

FIG. 1 .. 
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FIG. 2 

Such fan diagrams describe interference between the wave 
functions of the particles moving in a medium along coinci- 
dent paths but in opposite directions. The integral equation 
for the sum of such fan diagrams is (Fig. 2) 

In contrast to the scalar scattering case, 149'69'8,'9 Eq. 
(8) for CarSVS (rl,r;;r2.r; ) cannot be reduced to Eq. (7) by 
simple transposition of the arguments and the spin indices 
(because a, #apa ) . The physical reason for the absence of 
this symmetry between Eqs. (7)  and ( 8 )  is the breaking of 
the invariance of the scattering matrix of Eq. ( l ) ,  with re- 
spect to reversal of the sign of the projection of the particle 
spin (for the particles under consideration this is equivalent 
to time reversal). 

The tensors LuPy6 ( r  ,,r: ;r2.r; 1 and CaBy6 (rl ,r;  ;r2,r; 1 
can be expanded in terms of the eigenvectors of Eqs. (7) and 
(8) (for details see the Appendix) and can be represented in 
the form 

where the propagator II (a;r,rl) = II (a;  (p - p1(,x,x') satis- 
fies the equation 

A comparison of Eqs. ( l o )  and (9)  readily shows that the 
h h 

tensor Cis  identical with L apart from transposition of the 
second pair of arguments and a change in the sign in front of 
u matrices. Physically, such a transformation corresponds 

h 

to "reversal" of one of the two particle paths occurring in L 
(compare Figs. 1 and 2). 

An analysis of Eq. ( 10) shows that the tensor factors in 
the first and second terms of the above expression are the 
operators performing projection onto states with a specific 
value of the total spin of two interfering particles.32 We can 
therefore say that the first term in Eq. (10) represents a 
singlet contribution and the second a triplet contribution to 
the polarization density matrix of Eq. (3). 

Substituting Eqs. (9)  and ( l o )  into Eq. (3),  we can 
calculate the flux of the particle scattered along the direction 
defined by PI = ( P I ~ ~ P I ~ ~  =PO COS 81 ,  
p, sin 8, cos p,p, sin 8, sin p) : 

where I; is the surface area of the investigated medium. We 
then find that Jay (S,,p,) is described by 

x [T n (a.+o.; R, R') 

8asSraf (a,@aT) LO,+ oo-'/soa 1 
X Pea - n ( o 0  - K ~ 8 ; ~ , ~ f )  4 4n 

The first term in Eq. ( 13) represents the contribution of the 
single-scattering processes, whereas the second represents 
incoherent multiple scattering, and the third appears be- 
cause of the interference between the wave functions of a 
particle in a random medium. In contrast to the scalar scat- 
tering ~ a s e ' ~ , ~ " - ' ~  in the presence of the spin interaction 
(a, #O) the second and third terms of Eq. ( 13) are different 
along the backward direction (p, = - p,) . 

If we exclude the case of grazing incidence and the es- 
cape of particles from a medium (cos a,, (cos8, I )pC,  where 
,uc ( n  ( A  1 ) 112po< 1 is the cosine of the critical angle), we 
can ignore the refraction and Fresnel reflection of waves at 
the boundary of the scattering medium and we can then de- 
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scribe ICl,(r,p) in Eq. (13) using the approximate expression using a method described in Ref. 361. In an analysis of the 
interference effects in multiple spin-spin incoherent scatter- 
ing we consider Eq. ( 18) in the special case of totally polar- 
ized incident radiation, i.e., we assume that 

whereas Eq. ( 1 1 ) with x > 0 and x' > 0 can be modified by 
substituting the Green's function for an infinite medium3' 

10) 
pea =66+6a+='/z ( 6 6 6 + n ~ ~ ~ ) .  

The angular distribution of the particles reflected without a 
change in the polarization is 

In this case an analytic solution of Eq. ( 11 ) can be obtained 
explicitly (see Ref. 33). According to Ref. 33, the function 

X 5 9 exp (-zg-z'E1) II ( 0 ;  p, X ,  x r )  dz dx? 15 1 
0 

can be described by 
whereas the distribution of the particles escaping from the 
medium with the opposite spin direction is 

J--(61,91) 

where 

H(P, ~ I v )  - 
arctg (LZ+v2) 'h 

(G"v2) "' 

If Y = 0, then H ( ~ , W / Y )  is identical with the Chandrasekhar 
function H(p,w) known from radiative transfer theory. 34935 

The relationship ( 16) allows us to write down the final 
expression for the angular distribution of backscattered par- 
ticles: 

The sum of Eqs. (20) and (21 ) gives the total intensity of the 
backscattered radiation: 

where w, = uO/utot, w, = uS/utot , pi = cos if,, i = 0,1, and 

The difference between Eqs. (20) and (2 1 ) is propor- 
tional to the degree of polarization of the reflected particles. 

The terms in the braces in Eq. (22) represent the inter- 
ference of particles with parallel and antiparallel spins. The 
numerical factors in front of these terms are proportional to 
the degeneracy multiplicity ( 2 s  + 1 ) with respect to the 
"total spin" of the interfering particles (corresponding to 
S = 1 and S = 0, respectively). 

The angular distributions calculated from Eqs. (20)- 

Equation ( 18) represents the complete solution of the 
problem of calculating the angular distribution of particles 
reflected from a disordered medium in the case of the scalar 
and spin-spin interactions with the scattering centers [gen- 
eralization of Eq. (18) to the backscattering of particles 
from a disordered layer of finite thickness can be carried out 
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FIG. 3. Angular spectrum of reflected particles in the vicinity ofthe back- 
ward direction calculated for the magnetic scattering in a disordered me- 
dium: a)  without (curves 1 and 2 )  and with (curves 1' and 2') spin rever- 
sal; b )  total flux density. Parameters of the medium: 
8, = sin-'(L/2?~1) = 1"; I ) ,  1') a,, = 0.1, w, = 0.9; 2 ) ,  2') w,, = 0, 
w, = 1.0. The curves are normalized to the relevant values of the incoher- 
ent flux density. 

( 2 2 )  are plotted in Fig. 3. The angular dependence of the 
flux density of the particles scattered with no change in the 
polarization always has a maximum in the backward direc- 
tion. The angular distribution of the particle reflection ac- 
companied by spin reversal [Eq. ( 2  1 ) 1 and the angular de- 
pendence of the intensity in the vicinity of the backward 
direction [Eq. ( 2 2 ) ]  are governed by the competition 
between the contributions of the singlet and triplet states. 
Since w ,  is positive, the intensity peak associated with the 
contribution of the triplet term is always sharper than the 
intensity dip caused by the singlet state. In particular, this 
has the effect that even in the case of pure spin-spin scatter- 
ing the angular distribution of Eq. ( 2 2 )  has a local maxi- 
mum near the p, = - p, direction. 

This feature of the angular spectrum is due to the differ- 
ence between the characteristic distances 
I ,= ,  = 3 / 2 ( n u s ) - ' ,  and I , = ,  = 1 / 2 ( n a s ) - ' ,  at which the 
coherence of the wave functions of the particles with parallel 
and antiparallel spins is lost, and is the result of very many 
interactions between the particle and the scatterers. The dis- 
tribution found in Ref. 26 using the double-scattering ap- 
proximation has no intensity maximum along the p, = - p, 
direction. 

An analytic investigation of the profile of the coherent 
backscattering peak is easily carried out in the case of rela- 
tively rare spin-spin interactions ( a ,  g u , )  and in the case of 
weak absorption (a, g o , ) .  Using an asymptotic expression 

for the Chandrasekhar function H(,u,w 1v) when 1 - 4 1 
and v( 1 (Ref. 3 3 ) ,  we find that for small angular deviations 
8of  the momentum p, of the particles from the exactly back- 
ward direction [ O g  ( p o l )  - ', I = (nutot  ) - ' ] the interference 
terms in Eq. ( 2 2 )  can be represented in the form 

where 

It follows from Eqs. ( 2 3 )  and ( 2 4 )  that in the absence of 
absorption (a,  = 0) the ratio of the characteristic angular 
widths of the triplet and singlet terms in the spectra of Eqs. 
( 2 0 ) - ( 2 2 )  is AO,/AO, = 1/311'. An increase in the ratio 
q , / a ,  gradually smooths out the coherent backscattering 
peak. 

The behavior of the interference contribution to 
J ( 8 , , p I )  at high angles of deviation from the backward di- 
rection [ O )  ( p o l )  - I ]  also depends on the cross section ratio 
a , / a O .  Using the asymptotic form of the function H ( p , w  Iv)  
at high values of ~ $ 1  (Ref. 3 3 ) ,  we can readily show that for 

the interference term in J ( 8 , p l  ) becomes negative. 
An important characteristic of the interference of 

waves and particles under multiple scattering conditions is 
the factor g  representing the enhancement or weakening of 
backscattering, defined as the ratio of the observed flux den- 
sity to the "background" density of the flux of incoherently 
scattered particles along the exact backward ( p ,  = - p,) 
direction. Using Eq. ( 2 2 ) ,  we can write down g  in the form 

where g s c ( w )  = 2  - H - 2 ( p o , ~ )  is the backscattering en- 

FIG. 4. Dependences of the backscattering enhancement factor on the 
angle of incidence of particles on the surface of a disordered medium: 1 ) 
o,,= 1.0; o, =O; 2 )  w,,=O.99, o, =0.01; 3 )  o,,=0.95, o, =0.05, 4)  
0,,=0.9,0, =0.1; 5 )0 , ,=0 .5 ,0 ,  =0.5. 
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hancement factor in the scalar case.33 The dependence of the 
factor 7 on the cosine of the angle of incidencep, in the case 
when a, f.0 is nonmonotonic (Fig. 4).  The maximum value 
of 7 for w, > 0 corresponds not to the normal incidence of 
radiation on a medium, as in the scalar scattering case, 33 but 
to some specific value p,""" < 1. An increase in the ratio 
a,/a, reducesp,""". This behavior of the factor 7 is related to 
the influence of the spin-spin scattering for which the T- 
invariance limits the multiplicity of the collisions contribut- 
ing to the interference part Jc of the angular spectrum. 

In fact, in accordance with the differential of the factor 
7, it can be represented in the form 

where Jl and JL are the intensities of single and multiple 
(k>2) incoherent backscattering. Since 
(a, + a ,  ) > (w, + 1/3w, ), (w, - w, ), the multiplicity of 
incoherent scattering is higher than the effective number of 
scattering events that destroy the coherence of the wave 
functions of the particles with parallel and antiparallel spins. 
However, a reduction in p, reduces the multiplicity of the 
collisions resulting in incoherent backscattering and the ra- 
tio Jc/JL rises. Forp, g 1, when the main contributions to JC 
and J, come from double collisions, this ratio approaches 
unity. A reduction in the cosine of the angle of incidence 
enhances the single scattering role and the factor ( 1 + J,/ 
JL ) in Eq. (26) decreases monotonically. The maximum 
of 7 corresponds to such values of p,""" < 1 that the effective 
multiplicity of the collisions contributing to the interference 
term JC and to the incoherent intensity JL are quantities of 
the same order of magnitude. When p, <pCLgmaX is reduced still 
further, the angular distribution of the reflected particles 
begins to be dominated by the single scattering processes 
(J, 1 J, $ 1  ) and the factor 7 decreases to unity. 

When the particles are incident normally on a surface 
(pO = 1 ), the dependence 7 = 7( a,/ao) is monotonic and 
w e h a v e ~ ( 0 )  = 1 . 8 8 1 7 a n d ~ ( m )  =0.995. 

3. POLARIZATION EFFECTS IN THE SPIN-ORBIT 
INTERACTION 

We shall now consider to backscattering of particles 
from a disordered system of zero-spin centers when the spin- 
orbit interaction becomes important. In this case the scatter- 
ing matrix considered in the momentum representation is of 
the form 

where p and p' are the momenta of a particle before and after 
a collision. 

The differential cross section for the scattering of parti- 
cles by a single center is not isotropic in the spin-orbit inter- 
action case. An allowance for the angular anisotropy of the 
scattering cross section greatly complicates the equations for 
the tensor functions Lapya (rl ,r;  ;r2,r; ) and 
CaBYS (rl ,r;  ;r2,r; ), and it makes the problem of calculation 
of the angular spectrum of the reflected particles very diffi- 
cult. However, if we ignore the exact form of the reflection 
spectra, we can find those new qualitative characteristics of 
the angular distribution of particles which are due to the 
symmetry of the spin-orbit interaction under time inversion; 
this can be done by applying the isotropic scattering approxi- 

mation. It is interesting to point out that this approximation 
is fully justified when collisions accompanied by spin rever- 
sal are relatively rare (a,$ a,,, where a,, is the spin-orbit 
scattering cross section) and the directions of particles after 
consecutive spin-orbit interaction events are ~ncorrelated.~ 

In the approximation of isotropic single scattering the 
equation for the function LaDys ( r  ,,r; ;r,,r; ) applicable to the 
spin-orbit interaction differs from Eq. (7)  only by the re- 
placement of gs with a,, in the scattering tensor . The 
equation for CaB,, (r,,r;;r,,r; ) is obtained from Eq. (8)  if 
instead of a,D,, we substitute a tensor (see Refs. 2,4, and 5)  

The difference between the tensors aaB,, and xaDys is in this 
case related to the time-reversal symmetry of the scattering 
matrix of Eq. (27): 

<p'~&~'lp)= (2nJm) (A+iC[-p, -pl] ( - 8 ) )  

= (2nlm) (A+iC[pf, p]s) . 

The procedure of calculation of the angular distribution 
of backscattered particles carried out using Eq. ( 18) differs 
in no way from the procedure used above in the magnetic 
interaction case and it effectively reduces the modification of 
Eqs. (18) and (20)-(22) by replacing of a, with u,~, in the 
terms describing the usual incoherent scattering, and a ,  
with - (T,, in the interference terms. In particular, for 
J ( s I , p , )  = J++(a l ,p , )  + J--(fil,pl), the following 
expression (o,, = g,s,/ot,t ) applies: 

The first term in Eq. (29) describes the usual angular spec- 
trum of the incoherently scattered particles, whereas the sec- 
ond and third terms are the results of the triplet and singlet 
interference between the particles. 

In the absence of absorption (go = 0)  if the angles of 
deviation from the backward direction are small 
[Og (pol)-'], the triplet and singlet contributions to Eq. 
(29) can be represented exactly as was done earlier in Eqs. 
(23)-(24): 

According to Eq. (3  1 ), the same contribution to the angular 
spectrum of the reflected radiation has a "triangular" singu- 
larity in the backward direction, which demonstrates'0324 the 
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FIG. 5. Angular spectrum of the reflected particles calculated in the vicin- 
ity of the backward direction for the spin-orbit scattering in a disordered 
medium: 1) o,, = 1.0, o,,, = 0; 2) o,, = 0.9, o,,, = 0.1. The curves are nor- 
malized to the corresponding values of the incoherent flux density. 

conservation of the coherence of the wave functions of the 
particles moving along oppositely directed paths. 

An analysis of the above results leads us to the conclu- 
sion that the angular spectrum of the particles which are 
backscattered without spin reversal should exhibit a smooth 
maximum, whereas in the case of spin reversal there should 
be a dip with a triangular singularity. Such a triangular dip 
along the backward direction occurs also in the total distri- 
bution J(9-,,pi ) (Fig. 5) .  

These features of the angular distribution of the reflect- 
ed radiation are due to the interference of the particles char- 
acterized by parallel and antiparallel spins. Since time rever- 
szl alters the scattering amplitude 7(p1 ,p , s )  into 
7( - p, - p', - s), it follows that the T-symmetry of the 
amplitude of Eq. (27) conserves the coherence of the wave 
functions of the particles with antiparallel spins moving 
along coincident trajectories in opposite directions. On the 
other hand, the coherence of the wave functions of particles 
with parallel spins is destroyed over distances of the order of 
the mean free path relative to the spin-orbit interaction, i.e., 
for Iso = (noro - I .  

FIG. 6. Orientational dependence on the factor representing the enhance- 
ment of the backscattering of particles from a periodic system with an 
Andersondisorder: 1) o, = 1.0,0, = 0 ; 2 )  o, =0.9,u, =O.l(u, +u, ) .  
Bragg geometry case, y,, = &,,/2JRe V I (the value yo - 0 corresponds to 
the exact Bragg condition). 

4. COHERENT BACKSCATTERING FROM A SYSTEM WITH AN 
ANDERSON DISORDER 

Generalization of the above expressions to the scatter- 
ing of particles by fluctuating periodic structures is readily 
made by replacing the scalar scattering cross section a,, in 
Eqs. (7)-(8) with the "isotopic" incoherent scattering cross 
section a, of Ref. 37 (the corresponding scattering channel 
is associated with fluctuations of the magnitude of the poten- 
tial, representing the interaction of a particle with separate 
periodically distributed centers) and by going over from in- 
tegration over the volume of the scattering medium to sum- 
mation over the crystal lattice sites:j8 

An equation similar to Eq. ( 1  1 )  for the propagator 
Q(a;R, R, ) is now 

nno 
Q (0; Ra, Rb) = - I G,, (Ray Rb) 1 m2 

The main difficulties encountered in the solution of Eq. (33) 
and calculation of the angular spectrum of Eq. (32) are re- 
lated to the complex structure of the wave functions Y (R,p) 
and of the Green's function G,, (r ,r l )  describing the problem 
of particle diffraction by the periodic potential of a crystal. 

For a weak potential we can find 9 (R,p) using the two- 
wave approximation of the dynamic diffraction theory while 
in solving Eq. (33) we can ignore the influence of the diffrac- 
tion effects on multiple s~attering.~'. '~ The subsequent inte- 
gration of Eq. (33) and calculation of the density of the flux 
of backscattered particles of Eq. (32) are similar to the pro- 
cedures applied in Ref. 38 to scalar fields. The peak profile 
and the polarization features of the process of coherent back- 
scattering are then similar to those discussed in Sec. 2. 

The most interesting is the problem of how the anoma- 
lous transmission and absorption of particles in a crystal 
influence the backscattering enhancement factor 7. We ana- 
lyze the Bragg diffraction of the incident and reflected parti- 
cles in which the effects of the anomalous transmission and 
absorption of radiation are manifested most strongly. 38 The 
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wave function Y(r,p) at the lattice sites is then (see, for 
example, Refs. 37 and 38) 

where u = p/m is the velocity of the particles; Vis the Four- 
ier component of the periodic potential corresponding to the 
diffraction reflection by the reciprocal lattice vector G,  
G, = - /GI , and the parameter E represents the "energy" 
deviation from the exact Bragg condition 
E = [ (p  + G)' - p2]/2m. The exponential nature of the de- 
pendence of the wave function on the depth of penetration of 
the radiation x, into a crystal makes it possible to use Eq. 
(25) in calculating the backscattering factor 7, provided we 
replace po with cos S0Re( 1 + ~V/E,)  ' I 2 ,  where 

as yo = E ~ / ~ I  Re V I. We can see from the above expression 
that in the limit y,+O (i.e., in the vicinity of the exact Bragg 
geometry) the first argument of the Chandrasekhar func- 
tions in Eq. (25) becomes infinite. The use of the familiar 
expression39 

lim H (p, o) 10) = (1-a) -'" 

u+m 

yields an unusual result: 

Jim q = { for (JFO, 
Y0+o for oS>O1 

with wi = ui/(ui  + a, + a,) .  
This discontinuous behavior of the enhancement factor 

7 in the vicinity of the point yo = 0 is due to the same phys- 
ical factor as the shift of the maximum of the dependence 
7(p0) toward grazing angles of incidence, which occurs as 
the ratio us/uo increases [see Eq. (25) 1. In fact, the near- 
zero value of the parameter yo corresponds to an anomalous- 
ly deep penetration of the field of the incident radiation into 
a crystaL3' Therefore, in the absence of absorption, for 
wi = 1 and as = 0, the contribution to the interference term 
of Eq. (10) is made by the processes of the scattering of 
"infinitely high" multiplicity [J,/J, = 0 in Eq. (26) 1 and, 
in full agreement with the familiar law of enhancement of the 
"multiple" part of the scattered radiation inten~ity, '~. '~." 
the limit of Eq. (37) amounts to 2. An allowance for the T- 
invariant spin-spin interaction (us > O) limits the multiplic- 
ity of the collisions, governing the value of Jcand  suppresses 
absolutely the coherent backscattering process. The depen- 
dence 7 (yo) illustrating this behavior is plotted in Fig. 6. We 
can see from this figure that the curve corresponding to 
a, > 0 lies below the curve obtained for a, = 0, which con- 
firms the picture of the effect discussed above. 

5. BACKSCATTERING OF PARTICLES FROM TWO- 
DIMENSIONAL DISORDERED SYSTEMS 

An important feature which distinguishes two- from 
three-dimensional systems is the conservation of the projec- 
tion of the spin of the particles along the z axis, perpendicu- 
lar to the scattering plane xy, in the magnetic and spin-orbit 
interactions. Consequently, when particles are reflected 
from a medium with a two-dimensional disorder, we find an 
additional dependence of the angular spectrum on the orien- 
tation of the polarization vector of the incident particles rel- 
ative to the xy plane, which results in a qualitative difference 
between the polarization phenomena in a two-dimensional 
system from those discussed above in the case of a three- 
dimensional system. 

We shall now analyze from the beginning the process of 
multiple scattering of particles in the magnetic interaction 
case. An example of a two-dimensional disordered medium 
with such an interaction is a system of randomly distributed 
vortices with random (clockwise or anticlockwise) direc- 
tions of the current. 

The equations for the tensor functions 
Laoy6 (r, ,r;  ;r2,r; ) and CaBUS (r, ,r;  ;rZ,r; ) are then obtained 
directly from Eqs. (7) and (8)  if instead of the scattering 
tensor of Eq. (6)  we substitute 

where a, and a ,  are the scalar and magnetic (spin incoher- 
ent) scattering cross sections for the two-dimensional case. 
The cross sections a, and a ,  have the dimensions of length. 

Since the tensor uaByfi is expressed in terms of the matri- 
ces SUB and u &, it follows that transposition of the argu- 
ments r, and r; and of the spin indices can reduce the equa- 
tion for C r r r r  ) to the equation for 
LaoyS (rl ,r;  ;r2,r; ). The solution of the latter in the two-di- 
mensional case can be written as follows: 

The propagator II (u;r,rt ) - II (a; ly - y'l ,x,xf ) satisfies the 
equation 

+ % j drff 1 G (r, 1") I 'II (o; I", r'), 
m2 

where G(r,rl) is the Green's function of the appropriate two- 
dimensional Schrodinger equation and n is the number of 
scatterers per unit area. Integration in Eq. (40) is carried out 
over the half-plane x" > 0. 

We shall now consider the physical meaning of the var- 
ious terms in Eq. (39). In the expression for the sum of the 
ladder diagrams Lapya (rl ,r;  ;r2,r; ) the first term describes 
the particle density and the second the polarization of the 
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particles in the case of multiple incoherent scattering in a 
disordered medium. In the expression for the sum of the fan 
diagrams CmB,, (r,,r; ;r,,r; ) the first term represents inter- 
ference between the wave functions of the particles with 
identical signs of the spin projection on the z axis, whereas 
the second represents the interference of the wave functions 
of particles with the opposite signs, i.e., these terms give re- 
spectively the triplet and singlet interference contributions 
to the density matrix. 

Equation (40) is the two-dimensional analog of Eq. 
( 11 ). If we ignore the Fresnel reflection and refraction of 
particles at the boundary of the investigated medium, Eq. 
(40) can be solved exactly (see Ref. 33). 

Substituting Eq. (39) into the expression for the density 
matrix of Eq. (3),  we can readily calculate the angular spec- 
trum of the backscattered particles which in the two-dimen- 
sional case is related top,, (r,rl) by the expression 

where we have written px =po cos 9,,pil =py =po sin 9, 
and 9 is the length of boundary lines separating the medi- 
um from vacuum. 

The density of the flux of backscattered particles polar- 
ized along the z axis is 

where the function 

is the two-dimensional analog of the "generalized" Chan- 
drasekhar function H(p,w 1 Y) (Ref. 33). The conservation 
of the projection of the spin s, in the case of multiple scatter- 
ing in a two-dimensional medium makes the angular spec- 
trum of the particles polarized along the z axis and undergo- 
ing the magnetic interaction exactly the same as the angular 
spectrum of the backscattering of zero-spin particles. The 
scattering amplitudes for the forward and backward waves 
with parallel spins are identical at each of the centers and the 
magnetic interaction does not disturb their coherence. As in 
the scalar case,33 in the absence of absorption (a ,  = 0) the 
angular spectrum of Eq. (42) has a sharp "triangular" peak 
in the backward direction. 

Note that, in accordance with the above discussion, the 
only contribution to Eq. (42) is that made by the first term 
of Eq. (39) which describes the particle density in the sum of 
the ladder diagrams and represents the interference of the 
wave functions of particles with parallel spins in the sum of 
the fan diagrams. 

The situation is quite different when particles polarized 
in the scattering plane are reflected. The projection of the 
spin along any axis in the xy plane is no longer an integral of 
motion and we can therefore have scattering with spin rever- 
sal. The wave function of a particle polarized in thexy plane 
can be represented as a superposition of the wave functions 
with s, = 1/2 and s, = - 1/2. Therefore, the interference 
between the wave functions of counterpropagating particles 
polarized in the scattering plane includes the contribution of 
the wave functions of particles with identical and opposite 
projections of the spins along the z axis. It follows that the 
expression for the backscattering spectrum should now con- 
tain both terms of Eq. (39). 

The flux density of the reflected particles polarized in 
the scattering plane is 

Here, the plus sign in Eq. (44) corresponds to reflection 
without spin reversal, whereas the minus corresponds to 
spin reversal. 

Since the magnetic interaction breaks the time-reversal 
symmetry, the coherence of the wave functions of the parti- 
cles with antiparallel spins is destroyed over distances of the 
order of the mean free path under the magnetic scattering 
conditions, i.e., over distances I,, = (nu, ) - '. Consequently, 
the singlet contribution to Eq. (44) is not only less than the 
triplet contribution, but it is characterized by a smoother 
dependence on the angle 6 representing the deviation from 
the backward direction. 

In the absence of absorption the angular spectrum of 
Eq. (44) has a sharp triangular peak along the backward 
direction, and this is true of the backscattering accompanied 
by conservation of the polarization and of the processes 
which involve reversal of the particle spin. One should men- 
tion also that if oo = u., , a particle polarized in the xy plane 
seems to "forget" the spin direction after each scattering 
event: J+ + (8,) = J-  - (9, ). 

If the polarization of the scattered particles is ignored, 
the expression for the angular spectrum 
JxY = J+ +XY + J _  - XY is identical with Eq. (42) obtained 
above. 

We now analyze the polarization characteristics of the 
angular spectrum of the particles reflected in the presence of 
the spin-orbit interaction. The scattering amplitude is 
thenz4 

In contrast to the case of the magnetic interaction discussed 
above, the amplitude of Eq. (45) is invariant under time 
reversal. Consequently, in the case of multiple scattering in a 
medium we can expect conservation of the coherence of the 
wave functions of the particles moving along coincident op- 
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posite paths and characterized by opposite signs of the pro- 
jection of the spin along the z axis. In the case of the wave 
functions of particles with the same spin projections along 
the z axis the coherence is destroyed over distances on the 
order of the mean free path in the spin-orbit interaction case 
Ira = ( n a.yo - ' . 

In the approximation which ignores the angular anisot- 
ropy of the spin-orbit scattering4 the expressions for the 
sums of the ladder and fan diagrams have the same matrix 
structure, but they cannot be converted from one to the other 
simply by transposition of the coordinates and the spin in- 
dices: 

where a, and a ,  are the cross sections of the scalar and spin- 
orbit interactions, whereas the propagator n(u;r,rr) satis- 
fies Eq. (40). 

Using Eqs. (46) and (47), we readily obtain expres- 
sions for the angular distributions of backscattered particles 
with different polarizations in the initial and final states. The 
relationships for J z  and J y  are similar to Eqs. (42) and 
(44) and can beobtained from Eqs. (42) and (44) by replac- 
ing a, with in the terms describing the distribution of 
incoherently scattered particles, and by replacing a, with 
- in the interference terms of the angular spectrum. 

The conservation of the spin projection s, has the effect 
that the contribution to the angular spectrum J z  is made 
only by the interference of the wave functions of particles 
with identical projections of the spin along the z axis, the 
coherence of which is lost over distances of the order of I,,. 
Therefore, the peak in the angular distribution of the parti- 
cles polarized along the z axis is smoothed out." 

On the other hand, in view of the nonconservation of 
the spin projection in the plane of motion, the angular spec- 
trum J y  k includes also a term describing the interference 
of the particles with opposite signs of the spin projection 
along the z axis and, in contrast to the magnetic scattering 
case, the singlet contribution to the density of the flux of the- 
reflected particles is much greater than the triplet contribu- 
tion. Consequently, in the absence of absorption (a, = 0) 
the angular distribution of Jx$ , has a sharp triangular peak 
and JxY has a dip of the same triangular shape. 

6. CONCLUSIONS 

We have obtained the exact solution of the problem of 
coherent backscattering of particles with s = 1/2 from ran- 
dom media containing small-radius scatterers. We classified 

the polarization effects observed on the reflection of parti- 
cles from three- and two-dimensional spatially disordered 
media and from a periodic system with an Anderson disor- 
der in the two cases of the spin-spin and spin-orbit interac- 
tions with the scatterers. 

We predict effects that have no analogs in the coherent 
backscattering of light and scalar waves, such as the appear- 
ance of fine structure in the angular spectrum of particles in 
the vicinity of the backward direction, nonmonotonic de- 
pendence of the backscattering enhancement factor r ]  on the 
angle of incidence, and discontinuous behavior of this factor 
7 when particles are reflected by systems with an Anderson 
disorder, considered as a function of the ratio of the spin- 
spin and scalar interaction cross sections. 

We are grateful to Yu. A. Kravtsov and M. I. Ryazanov 
for their interest and valuable comments. 

APPENDIX 1 

The eigenvectors of the collision operator in the equa- 
tion for La,,, can be found by introducing tensors 

and defining their multiplication rule as follows: 

It readily follows from Eqs. ( A l )  and (A2) that 

It is clear from Eq. ( 7 )  that the selection of the eigenvectors 
of the collision operator reduces to a solution of the problem 
of the type 

(ooE+'/,o$) (E+@) =g ( E + P ~ ) .  (A41 

The use in Eq. (A4) of the rules of Eq. (A3) gives the follow- 
ing quadratic equation for P: 

~'-'/,p-'/s=0. 

which yields the eigenvalues and the normalized eigenvec- 
tors of the problem of interest to us, 

Similarly, we can calculate the eigenvectors of the collision 
operator of the equation for Cap,, by defining the product 
rule 

which leads to 

The eigenvalues and the normalized eigenvectors of the spin 
part of the collision integral of the equation for Ce,,, de- 
duced using the rules of Eqs. (A6) and (A7) are 
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Substitution of Eqs. (A5) and (A8) into Eqs. (7 )  and (8) 
reduces this expression to the form given by Eqs. (9)  and 
(10). 
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