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Possibilities for electron acceleration by intense laser light in a static magnetic field are examined. 
An acceleration mechanism is described in which the transverse magnetic field masks the 
oscillatory nature of the laser light. The latter is seen instead as a set of quasisteady crossed 
electric and magnetic fields. The conditions for the occurrence of this mechanism and the 
increment in the electron energy are found. Analytic expressions are derived, and numerical 
calculations are carried out. Under optimum conditions, the electron energy may be increased 
severalfold by a single passage through the focus. 

1. INTRODUCTION 

The literature reveals a significant recent interest in la- 
ser acceleration of electrons.'-l2 The interest stems from the 
presumed high efficiency of the corresponding devices. The 
laser acceleration schemes which have been proposed can be 
divided qualitatively into three main groups: 

1 ) vacuum devices (the inverted free-electron laser,'.2 
the inverted Compton laser,3 and certain others); 

2)  devices in which a plasma is to be used, and a longitu- 
dinal plasma wave is to cause the acceleration (these devices 
use plasma beat-wave ac~elerat ion,~,~ acceleration in a plas- 
ma-wave field crossed with a perpendicular static magnetic 
field,' etc. ); 

3 )  devices in which a condensed medium is to be used as 
a retarding system, to reduce the phase velocity of the elec- 
tromagnetic wave causing the acceleration (a  waveguide,' a 
surface wave with total internal re f lec t i~n ,~ ,~  acceleration on 
the basis of the inverse Cherenkov effect,'&I2 etc.). 

Each of these schemes is interesting in itself, although 
each suffers from certain limitations. For example, the capa- 
bilities of an inverted free-electron laser would be limited by 
the large length and by nonlinearity (saturation) effects. 
These effects would prevent the use of an intense accelerat- 
ing wave. In any scheme in which the properties of a medium 
are to be utilized, the field intensity is also limited by the 
condition that the medium should not be damaged by the 
field. For a condensed medium, this limitation means that 
there should be no breakdown, melting, etc. In a plasma, the 
field must not be so strong that the repulsion of plasma elec- 
trons from the focus by ponderomotive forces would become 
important in the strong nonuniform field. 

All the schemes which we have listed are of a resonant 
nature in terms of the initial energy of the electrons, so it 
would be a complicated matter to achieve repeated accelera- 
tion in such devices. 

In the present paper we consider another approach and 
some other schemes for laser acceleration of electrons- 
schemes which do not suffer from these severe intensity limi- 
tations and which are not of an explicitly resonant nature. 
Since the efficiency of these acceleration schemes can be 
quite high, their nonresonant nature raises the possibility in 
principle of cyclic acceleration. These new schemes are 
based on the use of the nonuniform field of focused intense 
laser light. With a static magnetic field having a suitable 

configuration, these are possibilities for efficient accelera- 
tion in this case. 

2. TRANSVERSE MAGNETIC FIELD 

2.1. Formulation of the problem and solution method 

We consider an electron which, in the absence of a laser 
field, is moving in the xz plane in a static, uniform magnetic 
field H,, which is directed along the y axis (Fig. 1 ). We 
assume that at the time t = 0 the orbit of the electron is tan- 
gent to the z axis at the point z,. The classical equations of 
motion of an electron in the magnetic field are then 

uo 
z=zo +-sin Qt, 

52 

vo 
x = - (cos Pt - I ) ,  

52 

where c = 1, S1= eH0/&, is the Larmor frequency, E,, is the 
energy of the electron, and uo is its velocity. The radius of the 
Larmor orbit is R = v,/n. 

We now assume that the electron is acted upon not only 
by the magnetic field Ho but also by the field of the laser 
light. This light is polarized in the (x,z) plane, is focused, has 
a wavelength A, and is propagating along the z axis. The 
focus of this laser beam has a diameter d and a length L (Fig. 
1 ) . We assume 

By virtue of inequality (2) ,  the longitudinal component E, 
of the vector E is small; we will ignore it, assuming E Ilx. The 
electric field (EJlx) and the magnetic field (HJJy)  of the 
wave are chosen as follows: 

H,=E.zE.-E, ( z )  cos [ o ( t - z )  +cpol, ( 3 )  

where w = 2r/A, E,(z) is the electric field amplitude, which 
depends weakly on z, and po is the phase of the electromag- 
netic field at the point z = 0 at the time t = 0. Actually, Eo 
depends not only on z but also on the transverse coordinates 
x and y, but we will also ignore that dependence. 

Near the point z = z,, i.e., at small values oft, the first of 
Eqs. ( 1 ) becomes 
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FIG. 1 .  Geometry of this acceleration method. 

When this expression is substituted into expression (3)  for 
the laser field, the phase of the field (the argument of the 
cosine) becomes 

The typical time scale or length scale over which the field E 
changes substantially (changes sign) along the trajectory of 
an electron is thus 

We assume that this length is small in comparison with the 
length of the focus: 

From the condition that the two terms inside the braces 
in Eq. (5) are comparable in magnitude, we can introduce 
the concept of a critical value of the relativistic factor, y,, , 
which will be important for the analysis below. The critical 
value y,, is defined by y,, = ( w / f i )  Noting that the Lar- 
mor frequency is inversely proportional to y, we can write 

The equations of motion of an electron in a static mag- 
netic field and in the field (3)  are 

where p = EV is the momentum of an electron, v is its veloc- 
ity, and E is the energy. 

Taking account of the variation of the field ( 3 ), we will 
use perturbation theory to find an approximate solution of 
Eqs. ( 8),  assuming that the field E is weak. In a zeroth-order 
theory, a solution of system (8)  is given by the functions 
xco) (t) ,  z"' ( t ) ,  which are found from Eqs. ( 1 ) in the case 
E = = const. In first order in E, the rate of change of the 
energy is given by 

In Subsection 2.2 below, we derive the increment in the 
energy of the electron, AE" ' , according to Eq. (9) .  If we are 
interested in a repeated interaction of the electron with a 
train of laser pulses, however, we should treat the field phase 
po as random and take an average over it. In this case Ad1)  

vanishes (more on this below), and we should go to second- 
order perturbation theory to calculate a nonzero increment 
in the energy. To do this, we must find the velocity v and the 
coordinates r of the electron to first order in E, i.e., the quan- 
ti t ies~"'  andr"' . To calculate v, "', v,"', x"', z'l' we write 
corresponding equations which follow from ( 8 ) : 

where E ( ' )  -E is given by (9) ,  and the frequency 
fl = eHo/E0 is determined, as before, from the initial, E-in- 
dependent energy of the electron. 

The rate of change of the energy of the electron is deter- 
mined by the last of Eqs. (8),  which takes the following form 
to second order in E: 

2.2. Electron acceleration in first-order perturbation theory 

We first find the increment in the electron energy which 
is linear in the electric field of the wave. For this purpose it is 
sufficient to integrate Eq. (9)  with the approximate expres- 
sion (4)  for the field phase p ( t ) .  As a result we find 

We wish to stress that it is the initial, unperturbed energy of 
the electron which is used in determining the relativistic fac- 
tor y = ~ ~ / r n $ l .  

By virtue of definition (5)  and condition (6), the enve- 
lope of the field, Eo(zo + t ) ,  varies only slightly over the 
interval to, so we can replace Eo(zo + t)  by Eo(zo) in Eq. 
(12). As a result, the solution of (12) takes the following 
form:I3 

where @({) is the Airy function,I4 

and y,., is given by (7).  We can draw some conclusions from 
(13) and (14). 

1. The change in the energy of the electron, AE" ' , given 
by ( 13) is proportional to the electric field amplitude of the 
wave at the point zo at which the unperturbed orbit of the 
electron is tangent to the axis of the laser beam. 

2. The quantity AE"' is proportional to the sine of the 
field phase at the point z,, at t = 0; taking an average over p,, 
causes A&(') in ( 13) to vanish. 

3. By virtue of the properties of the Airy function, the 
value of Ad1)  is very small for y < y,, in ( 7 ) ,  i.e., for 6. 1. 
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Under the condition y$ y,, (f < 1 ), expression ( 13) can be 
approximated by 

The absolute increase in energy, A&'", fory> y,, in- 
creases with y, in proportion to Y' '~, while the relative in- 
crease falls off as y2'3. From the standpoint of the relative 
increase, the optimum situation thus corresponds to y z  y,. 

2.3. Quadratic acceleration at low energies 

As was shown above, taking an average over po causes 
the increment in the electron energy found in the first-order 
perturbation theory in Eo to vanish. To find a nonvanishing 
average change in the energy of the electron we need to cal- 
culate . TO do this, we need to solve Eqs. ( 10) and then 
integrate ( 1 1 ). These calculations are simple but laborious. 
Skipping the details, we write the result averaged over p,, 
(we omit the averaging sign from Ad2' ): 

vo 
xexp[ io( t-t1 - - (sin Qt - sin Q t l ) ) ] }  , ( 16) Q 

where 

1 - sinZ Qt cos Q (t-t') 
F ,  = 

cos2 Qt 

sin Qt sin Q (t-t') vo cos at' 
cos Qt cos2 Qt ' 

1 
Fz = - ( 1  - cos 52 (t-t') ) f v0 (cos Qt - cos Qt') 

cos Qt 

-v:Q (t'-t)sin Qt'. (17) 

Expressions ( 16) and ( 17) can be simplified consider- 
ably by virtue of the small values of the parameters IRt I < 1 
and l /y< 1. The methods for approximately evaluating the 
integrals, and the final results found, differ substantially for 
the regions of low and high energies, which are defined by 
the conditions y < y,, and y > y,, , respectively. We first con- 
sider the case y < y,, . In this energy region the exponential in 
the integrand in ( 16) is a rapidly oscillating function o f t  '. 
After multiplying and dividing the integrand by 
- iw( 1 - u, cos Slt '), we can integrate over t ' by parts. In 

the terms which contain the functions P I  and F, in ( 16), the 
first nonvanishing results (which are on the same order of 
magnitude) are found through a double and triple, respec- 
tively, integration by parts. The condition under which this 
calculation procedure is valid is that the corrections found 
through further integration by parts be small. One can show 
that this condition is y < y,., , as has been assumed. The result 
of the calculation of AE in ( 16) by this method is 

- 
e2Quo sin QtEo2 (zo+t) zo+vo sin Qt 

AE=- 
4 ~ ~ 0 ~ 1  dt c0s2 8i! (I-V.  cos Q f )  Q 

X (1-3vo cos Qt+2 cosz Qt) . 

The singularity of the integrand at Slt = a plays no 
role here, since there is no field (Eo  = 0 )  in this region, by 
virtue of condition (2).  Making use of the small values of the 
parameters IRt I < 1 and l /y<  1, we specify a model for the 
envelope Eo in order to carry out some explicit calculations: 

Eo (z) =Eo exp (-z2/L2). (19) 

As a result, Eq. ( 18) becomes 

In the casez, = 0 we have AE = 0, since the integrand is odd. 
At small values of IzOl ( IzO 1 L ), Eq. (20) simplifies and can 
be approximated by 

Here we have used yflL $ 1 or 

LBRIy. 

By virtue of condition (22), the integral in (21) can be 
written in the form 

TQL 00 - 
so we find estimate (21) for A d 2 '  . The function AE"' (zO) is 
of odd parity in its argument (Fig. 2). It reaches a maximum 

FIG. 2. The relative change in the average energy of the electrons, E'" /E, , ,  

versus the position z,, at which the electron trajectory is tangent to the axis 
of the laser beam. a-Low energies, y < y,,, I-R / y ;  b-high energies, 
Y>Yc',,. 
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at zo- - R / y ,  so the maximum energy increase can be esti- 
mated to be 

We stress that this acceleration effect is not associated 
with gradient forces, although AE is proportional to z, [see 
( 18) 1. Acceleration occurs for zo < 0. In this case, the gradi- 
ent force is a retarding force at the point z,, at which the 
electron orbit is tangent to the axis of the laser beam. In 
general, whenever an electron passes through the focal re- 
gion acceleration by gradient forces would be impossible be- 
cause these forces are potential forces. The acceleration ef- 
fect described here is determined not by the average 
ponderomotive potential of a relativistic electron15 but by 
oscillations of an electron in the field of the wave. At the 
applicability limit of estimate (23), i.e., for R - yL, the max- 
imum relative increment in the energy is (eEA / 2 ~ m ) ~ .  

2.4. Acceleration in quasisteady crossed field 

For y > y,, , the procedure of evaluating the integral in 
( 16) through an integration by parts cannot be used. Since 
the condition y > y,., corresponds to the case of high ener- 
gies, the general expressions (16) and (17) simplify in this 
approximation: 

m t 

e2B4 A&(') = - - Re dt dt' Eo (zo+t) Eo (zo+tf ) 
4&o -m -m 

The characteristic value t, of the values of t  - t ' which 
contribute significantly to the integrals in (24) is deter- 
mined by the general expression (5)  for to. It follows from 
that expression that the curvature of an electron orbit in a 
static magnetic field for y > y,, disrupts the interaction with 
the laser field before the latter can change sign. Over the time 
t, given by (5)  the electron is acted upon by the crossed 
electric and magnetic fields of the laser wave, which are 
steady, in a sense. There is no averaging over many oscilla- 
tions. In this case the acceleration mechanism is quite differ- 
ent in nature from that for y < y,, . 

By virtue of condition (6),  the amplitudes E,(zo + t)  
and Eo(zo + t ' ) vary only slightly over intervals on the order 
of to in (5).  This can be utilized to simplify expression (24) 
further. The integrals over t and t ' in (24) are evaluated by 
replacing the variables t - t ' = u and t + t ' = u with the help 
of expression ( 19) for Eo(z) in the limit L - oo . Skipping the 
details of the calculation, we write the final result: 

where r ( x )  is the gamma function. 
At the applicability limit of this calculation method, 

with y - y,, and eEA -m, we have -E,,, according to 

(25); i.e., the electron acceleration is an extremely large ef- 
fect. 

While the function is odd for y < y,., [see (20)], 
the functional dependence Ad2' (zO) is qualitatively differ- 
ent for y > y,, : The acceleration is proportional to the square 
of the field at the point z,, and the function Ad2'(z0) [see 
(25)] is an even function, which reaches a maximum at 
z, = 0 (Fig. 2).  Under the optimum conditions for each of 
the acceleration mechanisms, estimates (23) and (25) agree 
in order of magnitude. 

Since the laser field does not have time to change sign 
over a time interval -to, expression (25) can be interpreted 
qualitatively as an acceleration in steady-state crossed fields 
in the presence of an additional static magnetic field H,. We 
are led to ask which of the fields has the greater effect and 
should be considered in lowest order. To answer this ques- 
tion we estimate the transverse electron velocity u, at small 
values of t  in two extreme cases: in a static magnetic field Ho 
alone and in a static magnetic field crossed with a static elec- 
tric field of equal magnitude E, without the static field H,,. 
Using Eqs. ( 1 ) and the results derived in Ref. 16, we easily 
find 

Under the conditions eEA < m and y > y,, , the inequali- 
ty uy < u : ~ " ' ,  holds; i.e., the curvature of the electron trajec- 
tory in the field Ho is more substantial than that in crossed 
fields. This is the justification for the use of perturbation 
theory in the laser field. The criterion in this case is, accord- 
ing to (26), 

This condition may be satisfied even though the condition 
E< H,, does not necessarily hold. 

If condition (27) does hold, we cannot make direct use 
of the solution, which we mentioned above, of the problem of 
acceleration in steady-state crossed fields.'' As before, we 
must consider the effect of the field Ho exactly in the zeroth 
approximation. We do this in Eqs. ( 1 ) and then by iterating 
in E incorporate the interaction with the laser field. Under 
the approximation (6),  the field E can be assumed constant 
in Eqs. (8) :  E = Eocosp,,. This assumption simplifies the 
problem greatly and makes it a rather simple matter to de- 
rive the changes in the electron energy in first and second 
orders in E: 

- e2E2 gzti. A&(')=eEBt2 cos rpO, A&(') = - 
6 ~ 0  (28) 

Substituting the value t = to from (5)  into these equa- 
tions for the case y > y,, , we find results which are the same 
(to within coefficients of order unity) as results which have 
already been derived, ( 15 ) and (25). 

2.5. Estimates and numerical calculations 

The results derived above show that there are two im- 
portant parameters in this problem: y/y,, and 

q=heEo ,,/m. (29) 

The latter parameter is a measure of the acceleration effi- 
ciency. It is related to the parameter used in the power-series 
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- 
As(*', MeV 

- 
A E  I * !  arb. units 

Eo , MeV FIG. 5. Increment in the energy of the electrons versus the factor y for 

FIG, 3, I~~~~~~~~ in the energy ofthe electrons versus their initial energy various laser beam intensities. 1-1 = 1014 W/cm' ( = 0.25 MeV); 

for various magnetic field strengths. The curves are labeled with the value 2-1 = 3' 10" W/cm2 ( = 6 MeV); 3-1 = 10'' ~ / c m '  ( = 14 
of H,, in kilogauss. The light intensity is I = 10'' W/cm2. MeV). 

expansion in the field E. The physical meaning of the param- 
eter 7 is the work performed by an electric field of strength 
Eo over a distance on the order of the wavelength of the light. 
The parameter 7 can also be thought of (as in Ref. 17) as the 
ratio of the amplitude of the electron velocity oscillation in 
the field of the wave to the velocity of light. 

Let us look at some estimates. We take A = lo- '  cm, 
w = 2- lo i4  s ' (the beam from a CO, laser), L = 0.3 cm, 
d = 0.01 cm, y = 10, and H, = 2. lo4 Oe. In this case we 
have a= 3. 101° s - ' and R = 1 cm, and conditions (2)  and 
( 6 )  hold. 

The parameter 7 in (29) has a value of 0.5 at a light 
intensity I  = lOI4 W/cm2 and a value 7 = 5 at I  = 10'" 
W/cm2. The ratio y/y,, for these values of H,, w, and y is 
roughly 1/2. We thus see that these parameter values corre- 
spond to the transition region between low and high ener- 
gies. An estimate of the increase in the electron energy from 
(25) shows that the quadratic acceleration becomes com- 
parable to the linear acceleration at the light intensity 
I -  l ~ ' ~ - l O "  W/cm2, so we are justified in using a perturba- 
tion theory in the field E at intensities I u p  to these values. At 
larger values of E and I,  the problem will have to be solved 
numerically. 

Numerical calculations which we have carried out con- 
firm the basic qualitative predictions of the theory which 
were given above. Figure 3 shows the energy of accelerated 
electrons, averaged over the field phase p,, as a function of 
the initial energy of the electrons for various strengths of the 
transverse magnetic field H,. The error of these calculations 
is - 15%. The intensity of the laser light is 3. IOI5 W/cm2. 

Eom , MeV 

A basic feature of the curves in Fig. 3 is a sharp increase 
in the energy increase with increasing initial electron energy 
E,. This effect corresponds to a transition from the case 
y < y,, to the case y > y,, for acceleration in crossed fields 
[see (25)l.  

The maximum energy increase does not depend on the 
magnetic field Ho (within the errors). The position of the 
maximum, E,, (Fig. 4), has a magnetic-field dependence 
H ;  (from the condition y z  y,, we conclude 
corn cc H ;  0 . 5 ) .  Figure 5 shows the same curves as in Fig. 3, 
but here the parameter is the intensity I,  and the magnetic 
field H, is fixed at Ho = 5 kHz. The curves in Fig. 5 coincide 
up to I = (4-7). 1014 W/cm2. This result corresponds to the 
value 7 = 0.5, which is the limiting value from the perturba- 
tion-theory standpoint. The change in the shape of the 
curves and the shift of the maximum at high values of the 
intensity I cannot, of course, be explained by the theory 
above, which is based on a method of iterations in the field E. 
The maximum increase in the energy and the dependence on 
the intensity (Fig. 6 )  agree well with the theory within the 
range of applicability of the theory, i.e., at 15 lOI5 W/cm2. 

It is interesting to note the "phase focusing" of the elec- 
trons: The phase distribution of the electrons as they pass 
through the region near z = 0 differs from the uniform dis- 
tribution specified at t = - W .  The electrons become 
bunched in phase near q, 1, =, = - 11/2, i.e., specifically un- 
der those conditions which maximize the acceleration effect 
in first order in the field. This phenomenon is reflected by 
Fig. 7. 

We have not studied such characteristics of the accel- 

A E ,  MeV 

FIG. 4. Optimum initial energy of the electrons versus the magnetic field FIG. 6.  Maximum increase in energy versus the light intensity for H = 5 
for Z = 10'' W/cm2 and tan a = 0.4. kHz. 
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FIG. 7. Phase distribution of electrons as they pass the point z = 0 (H = 5 
kHz, I = 10'' W/cm2). The horizontal line shows a uniform phase distri- 
bution. 

eration as the average energy buildup and the phase distribu- 
tion of the electrons for the case in which the initial electron 
beam is not monoenergetic. 

In considering the possibility of cyclic acceleration, we 
need to recall that the electron energy spectrum is deter- 
mined by the preceding acceleration processes, so it is only in 
the first stage of the acceleration that we can talk in terms of 
a monoenergetic electron beam, as we have done in the pres- 
ent paper. Figure 8 shows the evolution of the electron ener- 
gy spectrum in this case. We see that many of the electrons 
are in a high-energy tail; in other words, the acceleration 
process may be though of as a transformation of the original 
spectrum consisting of a shift A&' up the energy scale, a 
broadening T, and a loss of some electrons, S. For the condi- 

- 

tions in Fig. 4 we would have = 2.2 MeV, A&' = 6 
MeV, r = 2 MeV, and S = 67%. 

3. LONGITUDINAL MAGNETIC FIELD 

In all the schemes discussed above the static magnetic 
field Holly was directed perpendicular to the direction of the 
basic motion of the electrons and to the axis of the laser beam 
(i.e., thez axis). What are the possibilities for electron accel- 
eration in other field configurations? Let us consider the case 
of a longitudinal magnetic field H,llz. In this case the role of 
the magnetic field and the very formulation of the electron 
acceleration problem are quite different from those in the 
case of a transverse field. The transverse magnetic field 
serves as a factor which limits the duration of and spatially 
localizes the interaction between the electron and the laser 
field. A longitudinal magnetic field cannot play such a role: 
It curves the trajectpries of the electrons, twisting them into 
a spiral around thez axis. Under these conditions, the nonu- 
niformity of the focused laser light emerges as a major factor. 
It is more or less clear at the outset that the acceleration 

FIG. 8. Electron energy spectrum after the electrons have passed through 
the focus (H,, = 5 kHz, I = 10 'W/cm' ) .  The horizontal line shows a 
uniform energy spectrum. 

effect (if it exists at all) should be optimized when the length 
of the caustic is roughly equal to one turn of the spiraling 
electron orbit in the magnetic field, i.e., under the condition 
L - v, /R, where (as before) R is the cyclotron frequency, 
and v, is the longitudinal component of the initial velocity 
of an electron. Under the condition LSv,/R the electro- 
magnetic wave is approximately a plane wave, and we know 
that the energy of an electron does not change in a plane 
wave in a uniform magnetic field in the absence of a cyclo- 
tron resonance. 

Under the condition L <  v,/R the region in which the 
electron interacts with the laser field is itself very small, and 
the change in the electron energy is correspondingly small. 

If an electron spiraling in a magnetic field H, is to expe- 
rience approximately the maximum effect of the laser field, 
the transverse dimension of the caustic must be quite large: 
d 2 R - v,,/R, v,, is the component of the initial velocity of 
the electron in the plane perpendicular to the magnetic field. 

Finally, over a wide range of the values of y, for all 
feasible magnetic fields H,, the conditions 
$ < R < L - v, /R - IR ' hold. These conditions state that 
there is no cyclotron resonance; a cyclotron resonance 
would occur in a longitudinal field at w y - IR. 

The calculations of the change in the energy of an elec- 
tron as it passes through the focus are largely similar to the 
calculations above. We will accordingly skip the details, fo- 
cus on certain basic points, and write the final result. As in 
the preceding section of this paper, the interaction of the 
electron with the magnetic field should be taken into ac- 
count exactly in the zeroth approximation. The solution of 
the corresponding equations of motion is analogous to ( 1 ) 
and can be written 

X ' ~ ' = X ~ +  (v,,/Q) sin Qt+ (v,,/Q) (cos Qt- I )  , (30) 
y(O'- yo+ (vvO/Q) sin Qt- (vZo/Q) cos Qt, 

where x,, yo, z, and v,, v,, , v, are, respectively, the coordi- 
nates and velocities of the electron at the time t = 0. The 
interaction with the laser field is dealt with by perturbation 
theory. To first order in E we find an exponentially small 
value of A & ( ' ) ( t +  oo ) by virtue of the condition y'A<L. 

In second order, after taking an average over the field 
phase p, [see (3  ) I ,  we find 

rn 

~ ~ ( 2 )  = - e2"V~" ' dt E: (zo+t) sin 2 (Qt+a) , 
2 ~ 0 0 ~  ( i - ~ , ~ )  "__ 

where v,, = (v, * + v N 2 )  'I2 and a = arctg(v,/v,, ). Using 
the explicit expression for EO(z) in ( 19), we can rewrite 
(31) as 

x exp [ - s] sin 2 (62i0+a). (32) 

Acceleration occurs if sin 2 ( flzO + a)  < 0. The acceleration 
effect reaches a maximum under the condition 
Rz, + a = - n-/4 + m, n = 0, + 1, f 2. As a function of 
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L, the quantity A&"' reaches a maximum at CIL = v, ; this 
value corresponds to the condition L -- R /v,, . 

The energy increment Ad2' given by (32) depends 
strongly on the relation between v,, and u,, i.e., on the rela- 
tion between the transverse and longitudinal components of 
the initial energy of the electron. The restriction 
d R R = v,, /a should be kept in mind here; because of this 
restriction, v,, cannot be too large. Assuming 
R -d  = (AL) "' and using L=: v,/n, we find the maximum 
permissible value to be v,, = (2n-Ww) The correspond- 
ing maximum increment in the energy of an electron is 

Comparison with (25) with y- y,, shows that the effi- 
ciency of the acceleration in a longitudinal magnetic field is 
comparable to that of acceleration in a transverse field only 
at extremely large values of y: y- (w/fl) '/' - 10' (in the 
case w = 2.10i4 s-I, = 2.101° s-I) .  Note, however, that 
in the case of acceleration in a longitudinal field the effi- 
ciency of the process increases with increasing y: Ae2,Ae/ 
E -  y. This feature could potentially make the case of a longi- 
tudinal magnetic field attractive for a study of acceleration 
in the case of high energies. 

4. CONCLUSION 

We have studied certain schemes for the acceleration of 
electrons in a focused laser field in the presence of a static 
transverse or static longitudinal magnetic field. In evaluat- 
ing these schemes from the standpoint of efficiency and fea- 
sibility, we should give preference to the case of the trans- 
verse uniform magnetic field under conditions such that the 
regime of quasisteady crossed fields is realized (Subsections 
2.4 and 2.5). According to the results found, the accelera- 
tion efficiency can be quite high in this case: The electron 
energy can increase severalfold during a single passage 
through the focus. This possibility of arranging conditions 
such that the oscillatory nature of the laser field is masked by 
the static magnetic field, and the acceleration occurs in qua- 

sisteady crossed fields, is a new physical result, which has 
not been described in the literature previously, to the best of 
our knowledge. In order to make practical use of this result, 
it will be necessary to analyze the possibilities for cyclic ac- 
celeration. In order to maintain optimum acceleration con- 
ditions [ y = y,, (2) ] it will be necessary to reduce the mag- 
netic field in synchronization with the increasing value of y, 
specifically, in accordance with H, a y 2. The primary limi- 
tation of this acceleration mechanism is the condition t,, < L 
which we adovted above. Whether this is a fundamental li- 
mitation and whether the acceleration mechanism in quasi- 
steady crossed fields can be achieved for to> L are questions 
which go beyond the scope of the present paper. 
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