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A rigorous theory is derived for the space-time discrimination of uncorrelated spatial profiles 
obtained in stimulated backscattering of light in a photorefractive crystal in which oppositely 
directed waves are used to inscribe gratings by a diffusive mechanism. The physical reason for the 
discrimination is a preferential propagation of the conjugate configuration through regions where 
the time needed to inscribe the grating is shortest. The problem is solved through a numerical 
study of equations derived analytically for the conjugate wave with a speckle in the nondepleting- 
pump approximation. The optimum conditions for phase self-conjugation are found. The 
conditions for obtaining it are outlined. The theoretical results agree with experimental results. 

The interaction of light waves in photorefractive crys- 
tals has attracted much interest recently because of a variety 
of physical effects and possibilities for controlling light 
beams.'.' In particular, photorefractive crystals are the most 
reliable media for phase self-conjugation of the beams from 
visible-range cw l a s e r d 7  

Phase self-conjugation of low-noise cw light was 
achieved in Refs. 5-7 in crystals in an arrangement similar to 
that used for phase self-conjugation in stimulated back- 
scattering, which is the layout ordinarily used for phase con- 
jugation of intense light from pulsed In this meth- 
od, the "pump" beam (the beam to be conjugated) is given a 
speckle by a phase plate and then sent into a medium in 
which the stimulated backscattering occurs and leads to 
nonlinear reflection of the beam. Under certain conditions- 
the entire caustic of the light beam is inside the nonlinear 
medium, and the number of speckle spots in this volume is 
sufficiently large-the reflected light called the "Stokes 
wave" is dominated by the component which is the conju- 
gate of the incident beam. Although the schemes for phase 
self-conjugation in stimulated backscattering are the same, 
the physical mechanisms which result in the selection of the 
conjugate component in the reflected light are quite different 
for the different types of scattering and for the different re- 
gimes. 

Underlying the physical mechanism for the selection of 
the conjugate component for stimulated Brillouin scattering 
isu--~o the linear dependence of the local stimulated-Bril- 

louin-scattering gain of the Stokes wave on the local intensi- 
ty of the conjugated pump. The reason for the preferential 
amplification of the conjugate component of the Stokes wave 
is that its spatial profile matches that of the gain over the 
entire scattering volume: The locations of the intensity maxi- 
ma of this configuration automatically fall at maxima of the 
gain. 

A distinctive feature of stimulated diffusion back- 
scattering, which is observed in LiNbO, crystalsh~" and 
BaTiO,  crystal^,^,^," is that the steady-state gain for the 
wave propagating opposite the pump is independent of the 
local pump intensity. 

As was shown in Ref. 6, preferential amplification of 
the conjugate component occurs only in the stage in which 

the stimulated diffusive scattering builds up; it fades away as 
a steady state is approached. The reason for this preference 
here, in contrast with the case of stimulated Brillouin scat- 
tering, is that the conjugate configuration builds up at a rate 
high in comparison with that of the nonconjugate compo- 
nent, because the local relaxation time rM of the excitation 
grating in the medium is inversely proportional to the local 
pump intensity 1: T, (R)  a 1/1(R). The conjugate compo- 
nent propagates primarily through regions of pump maxi- 
ma, where the process builds up relatively rapidly. 

In this paper we derive a quantitative theory for the 
phase conjugation accompanying stimulated diffusive back- 
scattering in photorefractive crystals. This study shapes the 
qualitative arguments of Ref. 6 into a rigorous theory. 

1. DERIVATION OF RELAXATION EQUATION FOR THE 
PHOTOINDUCED ELECTRIC FIELD GRATING 

Oppositely directed light waves of the same frequency 
and polarization, EL exp( - iwt - ikz) and 
E, ( - iwt + ikz), interact during stimulated diffusive scat- 
tering in photorefractive crystal on the grating of the quasi- 
static electric field F? exp(2ikz) + C.C. which is induced in 
the crystal when charge carriers which have been trapped by 
defects are redistributed (Fig. 1).  This redistribution of 
charge in the volume of a crystal results from a spatially 
nonuniform diffusion current of photoexcited carriers, 
which arises at gradients of the carrier density in the field of 
the interference pattern EFE, exp(2ikz) + C.C. of the mix- 
ing waves. When the crystal has a photorefractive effect 
which converts the electric field profile into a refractive in- 
dex profile 

6n (R) ='/,n3r8eZiAz -b C.C. 

( r  is the electrooptic coefficient, and n is the refractive index 
of the crystal), the light waves in turn sense the electric field 
grating which they have induced and are rescattered into 
each other by this grating. 

To derive a relaxation equation for the amplitude of the 
grating of the induced electric field, we use the standard 
equations of the band m ~ d e l ~ . ' ~ , "  for the current J, the 
charge density p, the density n ,  of free carriers (fo~definite- 
ness, we assume electrons), and the electric field F (R) ,  of 
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FIG. 1 .  Mixing of oppositely directed light waves E, exp( - ikz) and 
E, exp(ikz) at a grating of a diffusion electric field L'exp(2ikz) in an 
LiNb0,:Fe crystal. 

the light waves excited by the interference pattern I ( R )  in 
the crystal: 

Here e,  p,  and D are the charge, mobility, and diffusion coef- 
ficient of the free carriers; 2. is the dielectric tensor; a is the 
optical absorption coefficient in the crystal; fiw is the energy 
of the photon; r is the carrier lifetime; and the term pI in  Eq. 
( l a )  describes the photogalvanic component of the cur- 
rent.I4.l5 The zero on the right side of Eq. ( l c )  corresponds 
to the usual assumption that the free carriers are in a quasi- 
steady state; that assumption is valid if r is much shorter 
than the time required to establish the process, as it is, by a 
huge margin, for the beams from cw lasers. 

For definiteness we consider the experimental condi- 
tions of Ref. 6, in which a linearly polarized pump beam 
enters an iron-doped LiNbO, crystal along the direction par- 
allel to the C optic axis. For this case we can make the follow- 
ing simplifications. Since we have P = pe, in this geometry 
(e, is a unit vector along the C direction), and since the 
relations 

hold for collimated laser beams, where A8 is the divergence 
of the beams, and R is the wavelength in the crystal, the 
redistribution of charges occurs along thez axis, which is the 
axis along which the beams propagate. Here J - Je, . For this 
reason we can also ign2re the transverse components of the 
photoinduced field: g - ge, .  The propagation of light 
beams near the direction of the optic axis of a uniaxial crystal 
can be assumed essentially isotropic. We thus ignore the de- 
polarization of the light beams and assume 

Finally, the high doping level of the crystal used Ref. 6 al- 
lows us to ignore the saturation of the space-charge 
field,'.",13 even in our case of a mixing of counterpropagat- 

ing waves. In this approximation the absorption coefficient 
a and the linear recombination time r are constants. As a 
result, our initial system of equations, ( 1 ), takes the simple 
form 

dn. I=epn,&-eD - + PI, 
dz  

(2a) 

The spatial distribution of the light intensity in the crys- 
tal in the course of stimulated diffusive scattering is 

Z(R) = I EL I 2+EL'Ese2ikz + c.c,,+ I Es I 2=zo+zlezikz + C.C. 

We thus seek a solution of Eqs. ( 2 )  in the form of a sum of 
the zeroth and first spatial harmonics of the grating: 

We restrict our discussion to the case in which the pump 
suffers no depletion, I,,=: lE, I'%I,. We can then solve the 
system ( 2 )  by perturbation theory. For the amplitudes of the 
zeroth harmonics, we find in this manner 

For a crystal in an open circuit the solution of the relaxation 
equation for the zeroth harmonics is 

This solution describes cancellation of the photogalvanic 
current by a drift current in the field g,,( t) ,  produced by 
charges at the boundary of the mixing region. Here 
g,, = P/ep8r  is the photogalvanic field, r, = ~ITU,,/E,, is 
the Maxwellian relaxation time in a crystal with a photocon- 
ductivity a,, = epn,,, and p is the carrier mobility. 

The relaxation equation in which we are interested, for 
the amplitude of the first harmonic of the electric field, 
F?, ( t ) ,  can be found easily from Eqs. (2) ,  with the help of 
the solution (4) :  

Here we have introduced the following notation: %', 
= 2kD/p is the diffusive field of the grating, whose wave 

number is 2k, and I,h~,,, = prg ,,,, ,, . are the drift lengths in 
the photogalvanic field, the diffusive field, and the field 
g,,(t). 

The drift lengths in an LiNb0,:Fe crystal are known to 
beextremely short ( 5 10 ' cm), SO terms of the type kl,,,,,,, 
can be ignored in ( 5 ) .  As a result the relaxation equation 
becomes the relation which was used in Ref. 6: 
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It can be seen from Eq. (6)  that in addition to the com- 
ponent of the electric field grating formed by the diffusive 
current, g l  a ik7 ,, which is displaced with respect to the 
interference pattern EL *E,exp(2ikz) by a quarter of a peri- 
od, an unshifted component 29, a g,, exp( - t /r,) ap- 
pears in a crystal which exhibits a photogalvanic effect, such 
as lithium niobate. However, the photogalvanic current 
which excites this component disappears over the relaxation 
time t-r, of the inscribed grating because of a screening 
effect. It can be shown that the relative size of the correction 
for the photogalvanic effect decreases in accordance with 
( ~ ( ) / t ) ~ ,  where ~ ~ , = ~ , ( / 2 9 , ~ / ~ , 1 ) " ~ ,  and is less than 
10% for t = 57,. Since the time scale for the onset of stimu- 
lated scattering is usually many times the grating relaxation 
time,9s'0 the unshifted component of the grating can be ig- 
nored over most of the time required to establish the stimu- 
lated diffusive scattering, and the relaxation equation for 
excitations of the medium can be put in a form typical of 
stimulated scattering: 

In this equation, unlike equations for other types of stimulat- 
ed scattering, the relation time r, depends on the pump 
intensity: rM a n o  I a 1 EL j - 

To study the growth of the Stokes wave E ,  as a function 
of position and time from a seed noise scattered by crystal 
defects near the rear surface of the crystal, z = 0, we use the 
parabolic wave 

which is valid for describing the diffraction of light beams 
for which the angular divergence is not large, AO< 1. In this 
equation, r = (w/c)n31r131 g, is the steady-state gain for 
the mixing of the counterpropagating waves in the crystal, 
r,,  is the electrooptic coefficient, Q obeys Eq. (7 ) ,  and the 
diffraction of the pump wave EL is described by the parabol- 
ic equation 

which corresponds to the propagation of a nondepleting 
pump along the - z direction. 

2. EQUATIONS FOR THE CORRELATED AND 
UNCORRELATED COMPONENTS OF THE STOKES WAVE 

The relaxation equation ( 7 )  can be solved easily for 
each point in space by expressing the time evolution Q(R,t)  
in terms of the (as yet unknown) functional dependence 
E ,  (R,t) : 

t 

As a result, the equation for the Stokes wave becomes 

The solution of this equation depends strongly on the spatial 
structure of the pump wave, which determines the spatial 
structure of the function r, ( R )  a 1, I .  Let us examine and 
compare three versions of the spatial structures of the inci- 
dent wave EL and the reflected wave E , .  

1 ) If the pump wave is a plane wave, with EL = const, 
then r, is also independent of the spatial coordinates, and 
all spatial configurations of the wave E ,  are equally probable 
by virtue of the linearity of Eq. (11). It is thus sufficient to 
solve the equation for only one plane-wave component, e.g., 

Es ( z ,  t )  = a, (z, t )  e"', 

which is directed strictly opposite the pump wave, 
t 

2 )  If the pump wave has a speckle, and if the length 
scales of the variations in the speckle field satisfy 

(A and A 6  are the wavelength and divergence of the beam) 
are much shorter than the corresponding longitudinal and 
transverse dimensions of the mixing region (for a focused 
beam, this condition corresponds to complete immersion of 
the caustic within the crystal), the grating relaxation time 
r, ( R )  is a function of position. In this case, we would ex- 
pect differences in the amplification of the conjugate and 
nonconjugate configurations of the Stokes wave. Making use 
of the linearity of Eq. ( 11 ) we seek a solution of this equation 
in the form' 

where a ,  (z,t) and a2(z,t) are amplitudes which vary slowly 
over length scales I , .  They describe the growth as a function 
space and time of the conjugate and nonconjugate configura- 
tions excited when the pump wave is spontaneously scat- 
tered by crystal defects in the opposite direction. In addition, 
I, = (IEL 1') is the average pump intensity, and N(r,z) is 
the spatial distribution of the uncorrelated wave. This distri- 
bution satisfies a propagation equation which is the complex 
conjugate of (9 ) ,  the orthogonality condition (NE, ) = 0, 
and (for simplicity) the normalization condition 
(IN 1" = 1. 

Substituting the conjugate part of the solution ( 13) into 
( 1 1 ), averaging the resulting equation over the ensemble of 
realizations of the speckle field E, after first multiplying the 
right and left sides df the equation by E T (Ref. 9);and mak- 
ing the assumption that the amplitude a ,  (z,t) is determinis- 
tic, we find 

t 

where the angle brackets mean an average over the ensemble 
of realizations. 

3 )  Accordingly, we find the following equation for the 
slowly varying deterministic amplitude of the uncorrelated 
component, a,(z,t), amplified in the pump field EL (r,z): 

t 
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The integrodifferential equations (14) and (15) de- 
scribe the evolution as a function of position in the mixing 
region of the envelopes for the conjugate and nonconjugate 
components of the reflected wave. Their solution for a ,  (L, t )  
and a,(L,t) at the crystal face where the laser beam enters 
makes it possible to see the time evolution of the nonlinear 
reflection coefficient, 

~ ( t ) " I a ~ ) ~ + \ a ~ \ '  9 

and the quality of the conjugation, 

H(t)=lal121(laj12+ 1 ~ ~ 1 ~ ) .  

3. ANALYTIC SOLUTION OF THE EQUATIONS FOR THE 
SLOWLY VARYING AMPLITUDES 

It is convenient to solve Eqs. ( 12), (14), and ( 15) by 
Laplace transforms in the variable t .  The Laplace transforms 

of the envelopes a,  (z,t) obey the equation 

where .Y,,,,,] (s) are the Laplace transforms of the kernels of 
the integral operators on the right sides of Eqs. ( 12), ( 14) 
and ( 15), respectively. In ( 16) we have used the substitution 
of variables x = Tz/2, T = t / ( T , ) .  Since Y ,  (s)  does not 
have an x dependence, the solution of Eq. ( 16) is 

Ui a, (x, S )  = - e x p [ P i  ( s ) x ] ,  
S 

(17) 

where a, = s'i; (0,s) corresponds to boundary and initial 
conditions 

u, (0, t )  =ai (2, 0) =ai. 

It is customary to choose the conditions in this form for 
stimulated-scattering problems:y a; corresponds to the ef- 
fective amplitude of the corresponding component which is 
excited in a small region near the rear of the crystal, 
0 < z  5 r ' , as a result of spontaneous scattering of the 
pump wave into this component by crystal defects. Since the 
amplification of the Stokes wave in the mixing volume is 
exponential, it is this region which dominates the amplitude 
of the component at the exit, at z = L (since the signal from 
this region travels farthest in the crystal). 

For the exponential kernel of Eq. (12), the Laplace 
transform of the function a,,(z,t) reduces to the sum of two 
tabulated transforms: 

We then find 

After transforming the kernel ( 1 + T) ' of the opera- 
tor of Eq. ( 14) and substituting into ( 17), we find the fol- 
lowing expression for the Laplace transform of the function 
'i, (x,s): 

al n, ( x ,  S )  = -exp{[ ( I - s )  +sbe"E, ( s )  1x1, 
S 

(1%) 

where 

Correspondingly, for 'iz (x,s) we find 

aa z2 ( x ,  s )  = - exp {[ I-sea& ( s )  1x1. 
S 

(20a 

Unfortunately, these functions do not reduce to tabu- 
lated functions. For the functional dependence of interest 
here, 

+O+im 

a ( x  ) = ( 2 ) -  ds e"b (2 ,  S )  , 

we need to use the contour shown in Fig. 2, with Re 
s < l ~ l , l ~ l - 0 ,  to carry out the integration in the complex 
plane. This integration contour is chosen because of the pole 
in the integrand at the points = 0 and because the integrand 
is an analytic function throughout the plane of the variables, 
with a cut ( - a, 0) ,  as can be seen from the representation 

a 

E, ( s )  =- [C + ln s + ( - I ) ?  ] 
k = i  k!k 

where C i s  Euler's constant." 
Since the integrand satisfies the conditions of Jordan's 

lemma in the left half-plane, we can write 

where J , , , , ,  are the values of the integrals along the corre- 
sponding trajectories (Fig. 2 ) .  As a result, using the rela- 
tion'' 

where I,, is the modified Bessel function. FIG. 2. Integration contour used in the derivation of ( 19b) and (20b). 
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where Ei(y) is the integral exponential function, we find 

I a p  r~ 
az (z, t )  =& exp (: - ){I -7J - s i n ( - a p e - P )  

0 P 2 
t rz 

xexP [ - p  - - - 
(TM) 2 

p e p  E i )  I]. (20b) 

4. DYNAMICS OF THE STIMULATED DIFFUSIVE 
SCATTERING 

Using these results, we can describe the evolution of the 
reflection process for the corijugate and nonconjugate com- 
ponents of the Stokes wave and thus their competition in 
time. Figure 3 shows the results of numerical calculations 
from ( 19b) and (20b), in units of TL, for the behavior of the 
total gain 

giL=In (a, (L ,  t )  /ai ( ?  

over a distance L for the situations considered. The indepen- 
dent variableis thenormalized time@ = t /(r,) (TL /2)",. 
Examining Fig. 3, we first note that these curves are "essen- 
tially self-similar" in this normalization of the coordinate 
axes. The self-similarity is not perfect, but the total gain val- 
ues for each spatial configuration change by less than 2% as 
the parameter TL-the overall steady-state gain-varies 
over the range 10-20. The second point we note is that the 
conjugate component, being diffracted to a relatively great 
extent in regions in the mixing region with a minimum local 
rise time 

overtakes the nonconjugate wave in growth. The overall gain 
values for these configurations move asymptotically close 
together only at times dozens of times longer than the aver- 
age Maxwellian time (r,). The third point we note is that 
the time over which the nonlinear reflection coefficient sta- 
bilizes can be estimated to be t,,, zz (7,) (TL) I/*. This result 
is close to the estimate found for this parameter for other 
types of stimulated ~ c a t t e r i n g . ~ ~ ' ~  

~ 1 s ;  shown in Fig. 3, by curve 3, is a plot of the loga- 
rithm of the discrimination coefficient, lnK, where 

From this curve we get an idea of the level of the discrimina- 
tion of the nonconjugate components and thus the quality of 
the conjugation. This curve again is essentially self-similar, 
as is demonstrated by Fig. 4, from which we see that 
(g ,  - g,) ,,,/r = In K,,, /TL and @,,, , where K,,, is the 
maximum value of the discrimination coefficient, and a,,, 
is the corresponding time, are essentially independent of TL. 
The curves in Fig. 3 agree well qualitatively with the experi- 
mental curves from Ref. 6. They demonstrate that the reflec- 
tion coefficient stablqizes at a steady-state level, the extent of 
conjugation attains a maximum (a  maximum of the dis- 
crimination gain) in a very unsteady region, 
tmax 5 0,5 (7, ) ( r L )  I",, and the quality of the conjugation is 
gradually degraded at t >  (rM)(T=C)L'2. It is difficult to 
make an exact quantitative comparison of the experimental 
and theoretical results, however, because the experiments 
were carried out in a focused pump beam, in an absorbing 
crystal, and in the pump saturation regime, and none of these 
factors were considered in the theory. In particular, the ex- 
periments of Ref. 6 revealed a decrease not only in the extent 
ofconjugation in a nearly steady state but also in the absolute 
strength of the conjugate component. This effect would ap- 
pear to be a consequence of pump depletion, and could not be 
predicted by a linear theory. 

5. ESTIMATES OF THE CONJUGATION QUALITY 

The quality of the conjugation in stimulated back- 
scattering of a speckle pump wave is known9 to be deter- 

D I 5 10 e 
FIG. 4. 1-The dimensionless time a,,,,,, at which the discrimination is at 
a maximum; 2-the relative discrimination gain (g ,  - gz) ,,,,,,/T at these 

FIG. 3. The overall gain values ( 1) g,L and ( 2 )  g2L and ( 3 )  the discrimi- times. The independent variable is the gain of the overall steady-state 
nation gain ( g ,  - g Z ) L  versus the dimensionless time O. amplification, r L .  
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mined by the following factors: the degree of discrimination 
of the nonconjugate components, K, the fraction of the con- 
jugate component in the spontaneous seed noise which is 
concentrated in the solid angle occupied by the reflected 
wave; and the level of the "serpentine" distortions due to the 
scattering (through small angles) of the self-conjugate com- 
ponent by spatial variations in the local stimulated-scatter- 
ing gain. 

For a speckle pump beam which is focused in a crystal 
in which the caustic is completely immersed, the solid angle 
occupied by the Stokes wave is determined by a geometric 
factor, specifically, the ratio of the diameter of the caustic to 
its length: AR- A8 - (d /L)*, where A8 is the diver- 
gence of the speckle pump wave in the mixing region. For 
this reason, the fraction of the power of the seed sources 
which corresponds to the conjugate component, 

= la ,/a,/*, can be estimated from 

where 8, is the diffraction angle, which corresponds to the 
diameter of the caustic, and No is the number of speckle spots 
in the conjugate beam. If we then ignore the serpentine dis- 
tortions, we can easily work from ( 13) to find an estimate of 
the extent of conjugation, H: HZ [ 1 + N / K ( L )  ] I, where 
K ( L )  is the discrimination coefficient in the exit cross sec- 
tion, z = L. 

Since the absolute values of the discrimination coeffi- 
cient are small in comparison with other types of stimulated 
scattering in our situation, specifically, since we have 
K,,, zexp(0.21TL) (this quantity would not exceed lo2 
for the typical values I'L - 20), we would have to reduce the 
number of speckle spots in the conjugate beam in order to 
achieve a high conjugation quality. For a fixed value of the 
total gain r L  (fixed by the crystal), however, a decrease in 
the number of speckle spots in the pump beam gives rise to a 
sharp increase in the serpentine distortions. The fraction of 
the energy represented by the serpentine noise is determined 
by the average fluctuation in the local stimulated-scattering 
gain, g = (g) + Sg, over the longitudinal correlation length 
of the pump field, Ill -A /A8 (Refs. 9, lo) :  

The dimensionless coefficient (Sg2) '12/(g) here is deter- 
mined by the dependence of the local gain on the pump in- 
tensity, and the coefficient p ,  is determined by its angular 
spectrum. For stimulated Brillouin scattering we would 
have g = G lE, 12, so that for a speckle field with Gaussian 
statistics we would have 

The last equality holds for focused beams, since we would 
have L /l,, z N p  for them. The typical values of p, for sti- 
mulated Brillouin scattering, p,-0.1-0.2, would make it 
possible to experimentally observe a conjugation quality (at  
K)N,) on the order of 8 6 9 0 %  for the typical values 
( g ) L z 2 5  and Nh'2z20 (Ref. 9 ) .  

In the case of stimulated diffusion scattering, the local 
gain is a more complicated function of the pump intensity, 
but the results of this study show that one can estimate the 
relative scale of the spatial fluctuations of the gain, which 
would confer an advantage on the amplification of the conju- 

FIG. 5. Contour curves of the phase conjugation quality for the value 
p 2 =  10 2 .  

gate component under maximum-discrimination condi- 
tions: 

<6g2)" In K 
-k- 

<g) r L  ' 

The level of the serpentine distortions during stimulated dif- 
fusion scattering, 

is thus smaller by a factor of roughly p,/p, z l?L /lnK,,, =: 5 
than during stimulated Brillouin scattering for a given over- 
all gain and for a given pump angular spectrum. 

We adopt the following expression, which incorporates 
both the serpentine noise and the limitation on th'e discrimi- 
nation coefficient, for the maximum attainable extent of con- 
jugation, H,,, : 

At small values of N,/K,,, andp21'L /N  :I2, this expression 
becomes the corresponding limiting expressions. Figure 5 
shows, in the coordinates r L ,  N;", "quality contour 
curves," i.e., lines corresponding to a fixed extent of conju- 
gation, according to (21) with p, = 10 - 2 .  The values 
H,,, z 70% found experimentally at N,, - 30 agree well with 
the theoretical predictions of this formula for the value 
T L  Z 20. 

We wish to thank B. Ya. Zel'dovich for a useful discus- 
sion of methods for analyzing, Eqs. (7)-(9),  A. V. Mamaev 
for assistance in reconciling the theoretical and experimen- 
tal results, and A. V. Sukhov for assistance in deriving ( 18). 

' P. Giinter and H. Huignard (editors), Photorefractive Materials. Effects 
and Devices, Springer-Verlag, Berlin, 1988. 
M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photosensitive Elec- 
trooptic Media in Holography and Optical Data Processing, Nauka, Len- 
ingrad, 1983. 
' J. Feinber, Opt. Lett. 7, 486 (1982). 
'M. Cronin-Golomb, B. Fischer, J. 0. White, and A. Yariv, IEEE J. 
Quantum Electron. 20, 12 ( 1984). 

'T. Y. Chang and R. W. Hellwarth, Opt. Lett. 10,408 (1985). 

844 Sov. Phys. JETP 70 (5), May 1990 V. I. Vinokurov and V. V. Shkunov 844 



'A. V. Mamaev and V. V. Shkunov, Kvantovaya Elektron. (Moscow) 
15, 1317 (1988) [Sov. J .  Quantum Electron. 18, 829 ( 1988)l. 

'A.  V. Mamaev and V. V. Shkunov, Kvantovaya Elektron. (Moscow) 
16, 1863 ( 1989) [Sov. J. Quantum Electron. 19, 1199 ( 1989) 1. 

'B. Ya. Zel'dovich, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizul- 
lov, Pis'ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 
(1972)l. 

"B. Ya. Zel'dovich, N. F. Pilipetskii, and V. V. Shkunov, Principles of 
Phase Conjugation, Springer, New York, 1985 Nauka, Moscow, 1985. 

"V. I. Bespalov and G. A. Pasmanik, Nonlinear Optics and Adaptive La- 
ser Systems, Nauka, Moscow, 1986. 

I '  A. V. Mamaev and V. V. Shkunov, Proc. of CLE0'89, MD4. 
l 2  N. V. Kukhtarev, V. B. Markov, S. G. Odulov et al., Ferroelec. 22, 949 

(1979). 

845 Sov. Phys. JETP 70 (5), May 1990 

"T. J. Hall. R. Jaura, L. Connors, and P. D. Foote, Prog. Quant. Electr. - - 
10,77 (1985). 

I4V. I. Belinicher and B. I. Sturman. Usv. Fiz. Nauk 130, 415 (1980) 
[Sov. Phys. Usp. 23, 199 (1980)l. 

I5V. I. Belinicher, V. K. Malinovskii, and B. I. Sturman, Zh. Eksp. Teor. 
Fiz. 73,692 ( 1977) [Sov. Phys. JETP 46, 362 ( 1977) 1. 

"G. A. Korn and T. M. Korn, MathematicalHandbook forScientistsand 
Engineers, McGraw-Hill, New York, 1968 (Russ. Transl. Nauka, Mos- 
cow, 1974). 

Translated by Dave Parsons 

V. I. Vinokurov and V. V. Shkunov 845 


