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The time-dependent problem of the scattering of an electron by a periodic potential existing in a 
restricted region is solved. The wave functions of the electron are found in the interaction region. 
A theory of a quantum-mechanical parametric resonance is proposed for the specific case of 
nonrelativistic free-electron lasers of the diffraction-radiation generator type. 

We shall use a semiclassical approximation to deter- 
mine the resonance states of a charged particle in the interac- 
tion region for scattering by a periodic potential existing in a 
restricted zone (interaction space). The theory proposed es- 
sentially deals with the Landau damping (inverse damping) 
in which the transit time T (defined below) of a particle 
crossing the interaction space is an analog of the mean free 
time. 

The problem is of interest in studies of radiation phe- 
nomena in free-electron lasers and in the channeling of 
charged particles in crystals. The difference between these 
sources of electromagnetic oscillations is in how the periodic 
potential is created and in its nature. 

The quantum-mechanical approach to a study of the 
states of particles in the interaction region is used mainly in 
studies of the channeling effect (see, for example, Ref. I ) ,  
where, as is known, the states can be separated into above- 
and below-barrier due to the presence of the interchannel 
potential barrier. It is also known that a parametric reso- 
nance (dechanneling resonance)' takes place during chan- 
neling, whose theory can be developed using the classical 
approximation. 

We shall consider above- and below-barrier states 
which appear because of the existence of nonperiodic bound- 
ary conditions since the system is not closed. The band of 
energies which is forbidden in the problem with the Born- 
von Karman boundary conditions becomes filled, and this 
defines the energy of a particle as a continuous function of its 
momentum. Because of the restricted interaction region, 
both increasing and decreasing solutions of the Schrodinger 
equation are taken into account in the interaction region. 

We consider a potential which is periodic not only in 
space, but also in time, and we show that the existence of 
below-barrier states in combination with the limited resi- 
dence time in the potential gives rise to a quantum-mechani- 
cal parametric resonance. 

We consider as a specific application of the theory the 
determination of the states of an electron in a traveling-wave 
field, the amplitude of which is small outside the interaction 
region. This method of imposing a periodic potential is used 
in nonrelativistic modifications of free-electron lasers 
(based on the use of the Smith-Purcell effect3) of the diffrac- 
tion-radiation generator type4 or of the orotron type. These 
free-electron lasers have open resonators in which one of the 
mirrors carries a diffraction grating of length L with a period 
d and the total number of periods is N = L /d>)  1. 

The diffraction-radiation field appears because of fluc- 

of the grating and is perpendicular to the grating lines). This 
field is concentrated between the resonator mirrors and rep- 
resents a set of fast harmonics which become detached from 
the grating and slow harmonics which are localized near the 
grating ~u r f ace .~  

The Smith-Purcell effect represents generation of elec- 
tromagnetic oscillations in the millimeter and submillimeter 
ranges assuming a constant field and is the result of the inter- 
action of particles with the slow part of the diffraction-radi- 
ation field. We shall ignore the edge effects and assume that 
the interaction region is equal to the grating length. 

The diffraction-radiation generators, the orotron, and 
other modifications of free-electron lasers6 are devices with a 
sustained interaction. The condition governing the duration 
of the interaction 07% 1 (where w is the frequency of the 
generated radiation, T = L /v,,, v, = p,/m is the unperturbed 
velocity of an electron, p, = fik, is the electron momentum 
governed by the accelerating potential U, and m is the elec- 
tron mass) is also the condition of adiabaticity of the interac- 
tion of a particle with the field and it determines the possibil- 
ity of existence of metastable states in the interaction region. 

A theory of the operation of free-electron lasers of this 
type is usually based on classical electrodynamics. However, 
in the classical approach the problem is complicated and it 
has not been studied much, because it leaves undetermined 
the nature of the radiation-generating current and the satu- 
ration mechanism. Attempts to use a quantum-mechanical 
approach were reported in Refs. 7 and 8. 

We shall show that a one-particle (corresponding to 
low-density fluxes) semiclassical approximation without 
allowance for the spin states of an electron can be employed 
to demonstrate that the lasing mechanism is a quantum-me- 
chanical parametric resonance representing a "horizontal" 
intraband transition in the presence of a "vertical" interband 
transition, and that the saturation mechanism is the inter- 
band transfer process. 

SCHRODINGER EQUATION AND ANALYSIS OF ITS 
SOLUTIONS 

1. We consider the interaction of electrons with the field 
near the surface of a grating (transverse coordinate z z 0 ) .  
Then, ignoring the dependence of the field potentials on z 
and neglecting the small y and z components of the electric 
field intensity, we shall postulate that the scalar potential is 
@(x,t) = 0 and the longitudinal component of the vector 
potential A(x,t) = {A(x,t),O,O} is of the form 

tuations (depending harmonically on time) of the density of ca 

an initially unperturbed flux of electrons moving near the A (2, t)= r. expLi(k.x-~f+t).) 1, (1  
surface of a grating along the x axis (this axis is in the plane Op-m 
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where k, = w/u;, = ( 2 ~ / d ) s ;  the phase velocity of the sth 
harmonic is u;, <c; c is the velocity of light; r, exp(il;l, ) is 
the complex amplitude of the sth harmonic of the field which 
varies adiabatically with the time t and will be assumed to be 
constant; we take a>, (l;ls I for s#O. 

It follows from the theory of collisionless plasma9 that 
an effective energy exchange between electrons and the field 
described by Eq. ( 1 ) occurs if the resonance condition for 
synchronization of a particle with one of the harmonics of 
the field (we consider specifically the first harmonic and 
omit the index s = 1 in future) is satisfied: 

where Au = uO - up, (we consider here the case a>O). 
Then, the secular one-dimensional Schrodinger equa- 

tion, written down to within terms of order c- '  inclusive, 
can be simplified by ignoring the interaction with the non- 
synchronous part of the field: 

1 er 
-[p2+ T{$, cos(kr-of+?)) ] Y (x, t) =iA - a'4' (2, t )  
2m at 

In Eq. (2)  the quantity {j, cos(kx - wt + 7)) is the 
anticommutator of the particle momentum operator and of 
the real part ofthe field of the first harmonic; e is the electron 
charge. 

Equation (2)  is a quantum-mechanical analog of the 
classical mechanics equation which describes the parametric 
resonancelo that occurs near the doubled frequency w 0 z  1/ 
2w. 

The period of the potential along the variable x is L 
(kL = 277N), while in terms of the variable t it is T,,, where 
Tph = L /uph. 

We solve Eq. (2)  by adopting a coordinate system 
linked to the wave:. 

Then, separating the motion of the reference system, we 
seek the wave function of an electron in the form 

Y (u, t') =cp(u) exp [i(yu-Qt') 1, (3  

where 

and ?iR is the required energy. In the range of frequencies 
and velocities used in nonrelativistic free-electron lasers4 the 
quantity which is quantized is 

where h is an integer. 
We use the variables (u, t ') in Eq. (2)  and substitute the 

function ( 3 ) ,  ignoring the terms that do not contain the 
quantity y as a factor. The operator (fi2/2m)V: then trans- 
forms to 

where V, = a/&. It therefore follows that Eq. (2)  ex- 
pressed in terms of the variables (u, t ') is formally identical 
with the Schrodinger equation for a channeled particle' in 
which the role of the mass is played by the energy. We shall 
use this operator in the more convenient form j:/2m,, 
wherej, = - ifiV,. 

Finally, the Schrodinger equation (2) transforms into a 
Mathieu equation for the wave function p (u ) : 

where 

and R = 2eyr/eZik is the constant representing the coupling 
between the electron and the field (which is a classical quan- 
tity). 

We shall ignore the dissipation of the energy in the in- 
vestigated system and assume that the Hamiltonian of Eq. 
(2)  is Hermitian, i.e., that Im Y = 0. 

The quantity R differs from zero in a region of length 
Ax = L = v0r  = up,, rPh ; in a moving coordinate system the 
"length" of the interaction region is 

where u, = u(L,t ,+ r ) ,  uO=  U(O,t,), t O + ~ > t > t O i s  the 
interaction time (for simplicity we shall assume in future 
that u, = 0 that u, = Au) and wt, is the phase of the travel- 
ing electron. 

Solving Eq. (4) in the range u < 0, u > Au we obtain the 
following solutions: 

9,' (u) --exp (ivu) +B exp (-ivu) , cpT1(u) =D exp (ivu) , ( 5 )  

where B = const and D = const. 
We find Y by assuming that in the wave function of Eqs. 

(3) and (5)  [expressed in terms of the variable (x, t ) ]  we 
have the following quantity characterizing the incident flux: 

Hence the quantity being quantized is 

where Ak = k, - k,, , n is the integral part of the number v, 
1 > Jql = I f ( / N ,  and g and f are integers. 

We shall show below that the quantity ; fikq is the re- 
duced electron quasimomentum. Since in this problem the 
period of the diffraction grating d is an analog of the period 
of a one-dimensional crystal lattice, it follows that k = 2 ~ / d  
is an analog of a one-dimensional reciprocal lattice "vector." 
Then the integer f flying within the range N > b  - N is equal 
to the number of the allowed values of q in a band and the 
density of states in this band is 

L Nd -- -- 
2n 2n ' 
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In the interaction region the solution of the Mathieu 
equation is 

where 

(PV* (a, R) =exp [*(p+in) ul F,* (u, R)  , 

F.* (u, R) = Cl (v, R) exp (*2iul), 

p' (v,R) = p (v,R ) + in is a characteristic exponent defined 
to within an integer n: 

It follows from the theory of the Mathieu equation that, 
depending on the quantities v and R, the solutions of this 
equation form stable [where Rep(v,R) = 01 and unstable 
[Re p (v,R) # 0]  bands which transform continuously from 
one to the other. At the band boundaries we have 
p (v,R ) = 0. Hence, v is a function of R: 

where q,,,, (0)  = 0 and v,,,, ( R )  is the value of the quantity 
v at the upper (lower) boundary of the band. 

The solutions of the Mathieu equations at the boundar- 
ies (edges) of the band are 

cpnt (u, R) =Cen (u, R) , vnb (u, R)=Sen(u, R ) ,  

where Ce, (u ,  R )  and Se,, (u, R )  are the periodic Mathieu 
functions. 

It therefore follows that the wave functions (3)  and (6)  
are of the above-barrier ( R e p  = 0 )  or below-barrier 
(Re ,LL #0) type. The above-barrier functions (5 )  are the pe- 
riodic Floquet-Bloch functions, where fikp(v,R) is the re- 
duced quasimomentum. 

Inside an energy band v, (R)  >Y>Y, (R ) the quantity 7 
varies continuously on transition from one band to another 
and, therefore, the electron energy 

is a continuous function of the electron quasimomentum 1/ 
2fikv. 

It follows from the expression for the energy that for 
v< y (E,, GO)  the electron is in a bound state. The energy of 
the ground state is E,,,. The energy spectrum represents 
bands of energies of above- and below-barrier states which 
transform continuously from one to the other. In the wave 
functions of Eqs. (3) and (6)  the quantity 1/2Zikq is the 
reduced quasimomentum. 

At the boundaries of the nth unstable band the electron 
energy is governed by the values of the quantities v,,,, .Then 
the width of a below-barrier band is 

It follows from the theory of the Mathieu equation that the 
width of an unstable band decreases rapidly as its number 
increases. If R is small, we find that A, - R is small even for 
n = 2. 

The quantity p (v, R )  for a below-barrier band governs 
the decay constant of the initial state of an electron. We can 
in fact represent the wave function of Eqs. (3)  and (6) by 
returning to the variables (x, t )  and going over from the 
index v to the index n: 

where 

1 
xexp{- [II (*p.+iy) ~ i v  (kx-at) I}, 

2 

It follows from the above expression for the wave func- 
tion that for p,, (q,R) > 0, the interaction of the initial state 
of an electron decays within the interaction region (fik ,+ 
= p,). The decay constant is then Re T, = wp,, . The life- 

time ofthis state is T = (up,, ) - ' and the width of thelevel is 
h p , ,  . The condition for the existence of a metastable state is 
T B  r ,  i.e., 

p n - i B a ~ ,  p,.Ki. 

In addition to decay of the initial state, the wave func- 
tion of an electron with the momentum fik , increases with 
time (which decreases with depth in the interaction region). 
The growth rate has the value Re T,,. The quantity Im T,, 
determines the detuning of the transition frequency. 

The values of the energy in the field of the traveling 
wave found above are quantizable and positive, which means 
that these diffraction-radiation generators and the orotron 
are lasers utilizing free-free transitions. 

2. The explicit form of the dependence ofp ,, on v and R 
can be found for the case of coupling of an electron to the 
field using the relationship" 

nR2 sin nq 
ch npn = cos nq + 

4v (v2- 1) ' ' 

where the smallness of the quantity pH implies the smallness 
of q. 

The second term of the right-hand side of Eq. (7) has 
two resonant values of v, namely v = 1 + q, v = q. Expand- 
ing the right- and left-hand sides of Eq. (7 )  in terms of the 
small quantitiesp and q, we find (to lowest order) in the first 
resonance case 

1 
pt (9, R) = 7 (R2-4q2)"a. 

Hence, it follows that for values of /qJ  > 1/2R the quantity 
p, is purely imaginary, whereas the wave functions are of the 
above-barrier type. 

For q lying within the interval 
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the solution of the Mathieu equation are unstable and the 
wave functions are of the below-barrier type. The numbers f 
lie within the interval 

(it follows from the condition of quantization of the quantity 
v that RN is an integer) and the density of states in the be- 
low-barrier energy band is 

RL df 
-=- 
,2n 2n' 

It follows from the above expression that the minimum 
value of the quantity defined by it is R,,, Z N  -I. 
At the limits of the instability region we have 

The width of a below-barrier energy band is 

The solutions of the Mathieu equation at the edges of a be- 
low-barrier band, considered to lowest order in R, are stand- 
ing waves cos u and sin u with the corresponding wave func- 
tions described by Eq. ( 3). 

The approximate wave functions p f (u;q,R) can be 
found by determining, in accordance with the familiar 
scheme," the approximate values of the functions F,+ 
(u,R ). Ignoring the details of the calculations, we find-to 
the first nonvanishing order in p ,  , q, and R, going over from 
the parameters q, R to c, R,-that 

where C,, = const, 

fiut t = arctg- , n2taO. 
4 

Hence, we obtain the dependences of the quantities q 
and yon R throughout the full range of existence of a quan- 
tum-mechanical parametric resonance: 

and the energy distribution El [q(<,R) 1 in a below-barrier 
band, considered as a function of the parameters of the sys- 
tem. The quantity p , (q,R ) regarded as a function of < and R 
is described by 

1 
p(I;,R)=-Rsinb. 

2 

The required functions are 

The unknown coefficients B, D, and C,,, (including 
2C, ) can be found from the condition of continuity of the 
approximate wave function of Eq. (6) and its derivative of 
the points u, = 0 and u, = Au. 

The result is 

Ct=-x" exp[-p,(Au+it)], 
C2=x-' exp(ptAu), 

B=x-' sh (ktAu), D=2ix-' sin f ,  

where 

The approximate wave function described by Eqs. (3  ) 
and (6)  for the first below-barrier energy band can then be 
described as follows in terms of the variables (u, t ' )  and ( x ,  
t): 

Y t  (u, t'; 5, R)  =x-'{sh[pt (Au-u) +it]  exp (iu) 
+sh [pt (Au-u) ]exp(-iu))exp[i(yu-Qttf)] , (8)  

Y, ( x ,  t ;  5, R) =x-'{G+ sh[pt (Au-u)+if] exp[i(k,x-Qt+t)] 
+G- sh [pt(Au-U) ] exp [i(k,x-Qt-t) ] }, 

where 

It follows from the above expressions that the wave 
function for a below-barrier band increases with time (it de- 
creases with depth in the interaction region) and this defines 
the investigated below-barrier (tunnel) transition as a quan- 
tum-mechanical parametric resonance. The tunnel barrier is 
the band of energies which are forbidden in the problem with 
the Born-von Karman boundary conditions. 

An electron in the zone in which a quantum-mechanical 
parametric resonance exists (which is a below-barrier band) 
is a two-level system with the energies E: and E ;  and with 
the intraband ("horizontal") transition frequency 

where the energy difference fiAw,,, = 2hpvph is a classical 
quantity and Ap = p, - p,, . The detuning of the transition 
frequency is 

The populations of the states are governed by the 
squares of the moduli of the coefficients in front of the plane 
wave in the first function (8) .  For v > 0,the population in- 
version is independent of time and is given by 

where 

We can easily show that reversal of the sign of the variable u 
in Eqs. (5)  and (6)  (or the assumption v<O) leads to a 
"negative" inversion of the populations, which is equal to 
the value obtained above. 

Using the wave function (8) ,  we can obtain the distri- 
bution of the charge density p ,  and of the current density j, 
in the interaction region: 

pt(u; t ,  R) =eIx {sin2 5-1-cos 5 cos 2u 

+ch [2pt (Au-u) ] [ 1 
+cos 5 cos 2u-sin sin 2u th 2pt (Au-u) ] 1, 

(9 )  
it (u; b, R) =uphpt(u; 5, R ) .  

In the second resonance case we find from Eq. ( 7 )  that 
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Rep, = 0 and Imp,  = + 2 - ' 1 2 ( ~  + 2q2) ' I2  apply near 
the ground state. At the boundary of an energy band we have 
q = 2-I" i~ .  However, as pointed out above, we are ignor- 
ing the states with complex values of v. 

In the limiting case of full synchronization of the parti- 
cle and wave ( v  = 0) ,  we find that Au = 0. It follows that for 
u,, = up,, "channeling" of a particle across the interaction 
region takes place, i.e., the passage across this region is free 
of scattering. The wave function of an electron in the ground 
state Y,,(x,t) is the wave function of free motion with a mo- 
mentum p,, . 

The existence of two resonance values of v implies the 
possibility of an interband ("vertical") transition from a 
narrow band of above-barrier states to a narrow subband of 
resonance states adjoining the ground state. 

The wave function in a below-barrier band, regarded as 
a linear combination of the functions (8)  depending on the 
discrete parameter q, differs little from the wave function at 
the center of the band (where 6 = 7~/2),  since the coeffi- 
cients of its expansion (due to the smallness of q) can be 
expanded in powers of q: 

where 

We can similarly represent the wave function in the subband 
near the ground state. 

It therefore follows that an electron in the states with 
the wave functions \V , (x,t;r/2,R ) , Y,(x,t) considered to 
lowest order in the small quantity q is a two-level system 
with the energies E l  and Ep,, and a transition frequency 
given by 

It therefore follows that the frequency of a "horizontal" 
transition differs from the doubled frequency of a "vertical" 
transition by ( 2 ~ ) ~ '  ("electron frequency shift"). 

The population of the states with the energy E ,  is 

so that the difference between these populations to lowest 
order in R is 

The strength of the spontaneous ("vertical") transition 
is readily calculated using the method familiar from quan- 
tum electronics" and is given by 

It follows from the above expression that the measured pow- 
er is a classical quantity. 

In the present approximation characterized by yBN 
(representing the free-electron laser approximation) the de- 
pendence of the spontaneous radiation power on the variable 
u (i.e., on the variables x and t )  differs little from linearity 
because the "length" of the interaction region is 

Hence, a quantum-mechanical parametric resonance repre- 
sents effectively the possibility of a "horizontal" (intra- 
band) transition of frequency Am,,, =2Am,,, in the pres- 
ence of a spontaneous "vertical" (interband) transition. 

SMITH-PURCELL EFFECT 

The Smith-Purcell effect is the result of the interaction 
of an electron with all the ha r~on ic s  of the field ( 1 ). How- 
ever, our theory of a quantum-mechanical parametric reso- 
nance is also a theory of this effect because in the presence of 
a resonance the nonsynchronous part of the field is in fact a 
time-dependent perturbing correction to the Hamiltonian of 
the Schrodinger equation. 

We now consider how the quantities responsible for the 
existence of a quantum-mechanical parametric resonance 
vary with the number of the synchronous harmonics, oscilla- 
tion frequency, and grating parameters. 

Synchronize an electron with asth harmonic of the field 
(s+ 1 ) we assume that 

We can then easily show that 

where 

A reduction in the quantity R, with increasing harmon- 
ic number reduces p, (c,R, ) and the density of states in a 
below-barrier energy band, which in the final analysis re- 
duces the population inversion 8 ,,, ({,R, ) [note that the 
product is p, ({,R, )Au, = const]. 

Using the above expressions for R ,  and y,, we can now 
write down the existence condition for metastable states 

This leads to the familiar (in theory and practical applica- 
tions of nonrelativistic free-electron lasers) fact that an in- 
crease in the oscillation frequency requires a reduction in the 
grating period and this imposes restrictions on the upper 
limit of the frequencies which can be generated. 

When the interaction is with higher harmonics, the rel- 
ative desynchronization increases: 

a.=~,y~-~, v.=v(S, R.)=l+ q ( % ,  R , ) .  

Hence we can readily obtain the value of the accelerating 
potential difference necessary for the existence of a quan- 
tum-mechanical parametric resonance, which is 

This dependence of U on s explains the observation fa- 
miliar from the experimental studies of the diffraction-radi- 
ation and orotron generators that an increase in the acceler- 
ating voltage increases the output radiation power until 
lasing is suppressed. 
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It follows from the above theory of the quantum-me- 
chanical parametric resonance that an increase in the vol- 
tage results in gradual synchronization of an electron from 
the high harmonics right down to the first, which has the 
maximum phase velocity and amplitude. 

The frequencies of the transitions due to the interaction 
with the harmonics characterized by s# 1 are the same as for 
the interaction with the first harmonic; the only difference is 
the "electron frequency shift" which increases with the 
numbers. 

We can now describe the saturation mechanism as fol- 
lows: at values of the accelerating voltage higher that needed 
to synchronize an electron with the first harmonic a nonra- 
diative interband transfer process takes place from a below- 
barrier band to higher above-barrier bands. 

When the accelerating potential U (s# 1)  corresponds 
to saturation, we have v z  1 + 'I2R, which should make it 
possible to determine experimentally the value of the con- 
stant representing the coupling of an electron to the field 
(amplitude of the first harmonic). 

In conclusion, we should point out that formulation of 
the problem and of the above conditions demonstrates that 

the theory of the Smith-Purcell effect is a model analog of 
the inverse Landau damping for a low-density plasma. 
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