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A new mechanism of phase conjugation due to stimulated Brillouin scattering is proposed. This 
mechanism relies on the difference in the suppression of the scattering of the conjugated and 
unconjugated components because of the inhomogeneity of the plasma where the scattering takes 
place. The parameters of the plasma and of the incident radiation needed to ensure phase 
conjugation are determined. 

1. INTRODUCTION 

One of the important practical applications of stimulat- 
ed Brillouin scattering (SBS) is phase conjugation of wave- 

The use of a plasma as an active medium for SBS3-6 
is promising because it makes it possible to extend phase 
conjugation to the long-wavelength infrared and microwave 
ranges. This is particularly relevant, for example, in phase 
conjugation of CO, laser radiation since SBS has been ob- 
served at the wavelength of such radiation (A --, 10pm) only 
in 

A conventional method of phase conjugation as a result 
of SBS that the amplitude of the density perturba- 
tion should be related locally to the amplitudes of electro- 
magnetic waves, which is ensured by the condition v1) 1, 
where v-I is the attenuation length of sound and I is the 

2. PRINCIPAL EQUATIONS 

We shall assume that in a longitudinal inhomogeneous 
plasma with the characteristic inhomogeneity scale I we can 
expect scattering of the incident pump beam 

El=eEoIal(x, t ,  r )exp(io, t - iktx)+ c.c.1 

accompanied by the formation of a counterpropagating elec- 
tromagnetic wave 

The scattering occurs by an ion-acoustic wave 

longitudinal correlation length of the pump field. lo   his con- Here, ( = 2, 3)  are the dimensionless amplitudes of the 
dition is readily satisfied in a low-temperature plasma, but 

interacting waves, while k ,  z k2 z k, and k, = 2k are their 
the absorption of electromagnetic waves, which is strong be- wave numbers. In the vicinity of the phase-matching point 
cause of the high frequency of elastic collisions, heats the (x = 0) the equations describing the steady-state interac- 
plasma. This can reduce significantly the efficiency of SBS tion are 
and phase conjugation. I '  The role of thermal nonlinearities - - 
can be minimized by increasing the plasma temperature. 
However, in view of the considerable difference between the 
electron and ion temperatures ( T, ) T, ), due to the weak- 
ness of the Coulomb conditions, the Landau damping of ion 
sound is weak and the condition ~ 1 %  1 may be disobeyed. 
These contradictory requirements make it difficult to 
achieve the conventional mechanism of phase conjugation as 
a result of SBS in a plasma. 

We shall propose a new mechanism for phase conjuga- 
tion as a result of SBS in a collisionless plasma, the essence of 
which can be stated briefly as follows. It is known that SBS is 
influenced significantly by spatial variations of the plasma 
density and temperature, leading to failure to satisfy the 
phase-matching conditions needed to ensure the efficient in- 
teraction between the waves resulting in suppression of the 
SBS process.'2." In the case of stimulated scattering of radi- 
ation with a speckle structure the suppression of amplifica- 
tion because of the plasma inhomogeneity is stronger for 
components uncorrelated with the pump radiation than for 
the components which repeat the pump structure, so that 
SBS in an inhomogeneous plasma may result in phase conju- 
gation. 

We shall consider this phase conjugation mechanism in 
the simple case of steady-state SBS. 

i 
a,. +- 2k A,a,+icp,~,=-I'a2a,, 

i 
-az, + - 2k Alaz+icpz,a,=ra,a,', 

where pi (x)  are the values of the phase mismatch due to 
variation of the plasma density; I-- ' = (k&ao /  Ep N,  )- ' 
is the characteristic nonlinear interaction length; Eo is the 
amplitude of the incident wave; No is the plasma concentra- 
tion; Ep = ( 16nN0 T, ) 'I2 is the characteristic plasma field; 
N, = mw2/4n-e2 is the critical plasma concentration; v is the 
spatial damping rate of an ion-acoustic wave (damping of 
electromagnetic waves is ignored). It should be noted that 
the coefficient I' represents a smooth (on a scale of L) func- 
tion of the longitudinal coordinate T ( x ) .  We shall use I' to 
denote T(x)  at the phase-matching point x = 0. 

We can demonstrate the existence of phase conjugation 
in an inhomogeneous plasma by considering the problem of 
stimulated scattering assuming that the pump field is con- 
stant, i.e., we assume that the amplitude a ,  satisfies the equa- 
tion 
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i 
a,,  + - Alal+icp,~,=O. 

2k ( 2 )  

We also assume that the amplitude can be represented in the 
form 

where the function Y, has a complex spatial structure with a 
characteristic transverse scalep, which is much less than the 
beam width, and with a constant (over the cross section) 
average intensity; moreover, this function satisfies the equa- 
tion 

i 
Y w + - A Y I I I = 0 .  

2k  
(4) 

If in any cross section we know the function Y (x1,r'), 
then the solution of Eq. (4)  satisfying the above boundary 
condition is 

where G is the Green's function of Eq. (4) : 

ik ik (r-r')' 
G ( 2 ,  X I ,  r,  E') = ]e (x-XI) .  

2n (x-x')  

Here, 6(x)  is a unit function. Knowing the solution of Eq. 
(4),  we can write down the amplitude of the pump wave in 
the form 

Without limiting the generality of the treatment we shall 
assume here and below that 

so that the normalization constant (average intensity) is al- 
ready included in the definitions of the fields and of the 
damping coefficient T. 

Using the known Green's function of the equation for 
an ion-acoustic wave, we can rewrite the initial system in the 
form of an integrodifferential equation for the scattered 
wave amplitude: 

i  
-&, + - Ala2+icp2p2=r ( x )  ai ( x )  2k 

X j I' ( X I )  G; ( x ,  X I ,  r ,  r') a: ( x r l  r l )  a2 (x',  r l )  hf dart, 

where 

ik, 
G, = 

e x p  [- ik3 (r-r')' - - v (x-XI)  ] 0 (x -XI)  
2n (x-2') 2 (x-x') 

is the Green's function of the equation for an ion acoustic 
wave. 

We shall obtain an equation describing amplification of 
a conjugate wave using a standard methodIs2 and we shall 
seek the solution of Eq. (7)  in the form of conjugated and 
unconjugated waves 

a2=Az (5 )  exp [ i q 2 ( x )  I Y l*(x,  r)+Zz, ( 8  

assumin.g that 5, is orthogonal to YT, i.e., assuming that 

We substitute Eq. (8)  into Eq. (7 ) ,  multiply the resul- 
tant expression by Y, (x,r), and integrate over the transverse 
cross section of the beam. Consequently, subject to the 
smallness of the gain in a distance equal to the correlation 
length, which can be represented in the form 

we obtain an equation describing the conjugated wave gain: 

where Kc,,, is the kernel of the equation describing the am- 
plification of the correlated component. Its value is given by 
the expression 

x Gs ( x ,  x', r ,  r')  yt (x ,  r )  Y (XI,  r')#r dartl 

where the function F i s  

F ( x ,  V )  =I'(x) I' ( x l ) e x p  [-icp(x) f icp(xr) 1, q=cpt+~z. 

We can obtain an equation describing the amplification 
of waves uncorrelated with the pump radiation by employ- 
ing a method proposed in Ref. 10, i.e., we adopt a plane wave 
as a "typical representative" of an uncorrelated component 
and (applying the method described above) we obtain equa- 
tions of the form ( 10) with a kernel K = K,,,,,, , where 

K, , , ,~~ , ,  = F ( x ,  x l )  J G; ( x ,  x', r ,  r') T i  (5,  r )  Y l  (z ' ,  r') 8 r  d2r'. 

Equation ( 12) is valid subject to the same condition (9)  as 
Eq. (10). 

We can represent the kernels given by Eqs. ( 11 ) and 
( 12) explicitly by assuming that Y, (x,r) is a Gaussian sta- 
tistically homogeneous random field and by replacing inte- 
gration in Eqs. ( 11) and ( 12) with respect to r' by statistical 
averaging. In the case of the equation describing a correlated 
component, this procedure follows:' 

J Y :  ( x ,  r )  Y ,*2(x1,  r f )  d2r'= <Y 12(x l  r )  Y ;2 ( x f  , r l )  ) 

= 2 < Y 1  ( x ,  r )  Y t ' ( x f ,  r') )' = 2B2(x-xr,  r - r r ) ,  

(13) 

where B(6,q) is the correlation function of the random field 
Y; { = x - x', q = r - r'. We note that the function B(6,q) 
satisfies Eq. (4)  (Ref. 14) and if it has the Gaussian profile 
with the characteristic transverse scalep when 6 = 0, i.e., if 
B(0,q) = exp( - 1,7~/~'), then for any value of 6 it can be 
represented in the form 

which shows that the role of the longitudinal correlation 
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length is played by the quantity kp2 = I (Ref. 14). Repeating 
the same operations on Eq. ( 12), we find that 

Y i  (x,r) Yi* (XI, r1)d2f=B (E, q).  

Therefore, the kernel of Eq. ( 10) is 

K(x, x') =F (2, 3') Z(x-x') , (15) 

where in the case of the correlated component the function 
Z ( g )  is given by the expression 

while for the uncorrelated component we have 

Zuncorr (O=J G:(E, q)B(E, q)d2q. 

If the correlation function is Gaussian, l4  these integrals 
can be calculated explicitly. Consequently, if k, = 2k, we 
find that 

z,,,, ( 5 )  =2e-vE/(1-2iyE), 

where y- '  = kp2 = I is the longitudinal correlation length. 
The kernels of the integral equations for the correlated 

and uncorrelated components are identical in structure and 
differ only in the values of x = x' and the characteristic lon- 
gitudinal scales. We can obtain the solution of the integrodif- 
ferential equation ( 10) on the assumption that the scale LA, 
of the change in the amplitude of the scattered wave consid: 
erably exceeds the characteristic scale L, of changes in the 
kernels of the integral equations: 

(the limits of the validity of this expression will be explained 
later using the final result). Subject to this condition the 
function A, can be taken outside the integral and Eq. ( 10) 
then becomes a simple differential equation 

where the local growth rate g(x)  is given by 

If p ( x )  = 0 we obtain the familiar special cases from 
Eq. (19). For example, for ~ 1 3 1 ,  i.e., if the sound attenu- 
ation length is short compared with the correlation length of 
the pump field, we find that the local growth rates of the 
correlated and uncorrelated components Re g,,,, = 2r2/v 
and Re g,,,,,, = r2 /v  differ by a factor of 2 and, if the ampli- 
fication length is sufficiently large, we can expect phase con- 
jugation.'.' These expressions are valid if r < v .  

In the opposite limiting case when the correlation 
length of the pump field is short compared with the attenu- 
ation length of sound (v l4  1 ), a calculation of the integral of 
Eq. ( 18) shows that selection of the correlated and uncorre- 
lated (with the pump wave) structures disappears and the 
spatial gain is given by 

which is valid when r 4 y. This result is analogous to that 
obtained in Ref. 15 for one-dimensional fluctuations of the 

pump wave. 
It therefore follows that in a homogeneous medium we 

can expect phase conjugation only if 

which expresses a local dependence of the gain on the pump 
wave amplitude. 

3. PHASE CONJUGATION IN AN INHOMOGENEOUS PLASMA 

In a hot nonisothermal plasma when the attenuation of 
sound is governed by the collisionless Landau damping, 
which should be weak at temperatures T, Ti, the local con- 
dition of Eq. (21) is quite likely to be disobeyed. However, 
we shall show that selection of the components correlated 
and uncorrelated with the pump wave occurs in an inhomo- 
geneous plasma even in the absence of a local relationship 
between the gain and the amplitude of the pump wave, i.e., 
when the condition (21) is disobeyed. This effect is due to a 
difference in the suppression of stimulated scattering of the 
conjugated and unconjugated components as a result of the 
plasma inhomogeneity. 

In calculating the effects of selection of the correlated 
and uncorrelated components in the case of weak attenu- 
ation of sound (i.e., when vl< l ) ,  we proceed as follows. In 
the vicinity of the phase-matching point (we assume that 
there is only one such point, located at x = 0 )  we expand the 
difference phase 

cp (3) = 1 (ki+ki-kl) dx 

as a Taylor series and we retain the quadratic term: 

cp (x) =axZ/2, (22) 

where a = d6k /ax=:2kO/L, (L, is the characteristic scale 
of the plasma inhomogeneity) and, moreover, to simplify 
calculations we assume that r ( x )  = exp ( - x2/2L ') (L is 
the layer thickness), i.e., the interaction of the waves is con- 
centrated in a region with a characteristic length L in the 
vicinity of the phase-matching point. Under these assump- 
tions the function F(x, x')  becomes 

Now, knowing the exact form of the kernel ( 16), we can 
readily calculate the total amplification of the scattered 
wave over the whole interaction length, i.e., we can calculate 
the quantity exp G, where G is given by the integral 

We are interested in the value of this integral subject to 
the natural conditions a/? -4 1 (i.e., /<a - '  ) and L B y- ', 
which imply that many correlation lengths can be fitted 
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within the phase mismatch length a-'I2 and within the 
pump localization length L. First evaluating the integral 
with respect to x in Eq. (24), we find that 

ca 

and if the interaction length is sufficiently long (i.e., if 
a2L 9 y2 ) , this expression becomes 

In the opposite limiting case when 9 a2L 2, we obtain 
the total logarithmic gain 

Re G a r2Lly, 

which corresponds to the local growth rate of Eq. (20). 
The failure of Eq. (25) to depend on L demonstrates the 

arbitrary nature of the approximation r (x )  selected solely 
to ensure convergence of the intermediate integrals and for 
convenience of calculations. It readily follows from Eq. (25) 
that the total gain is governed by the pump wave intensity 
and by the inhomogeneity parameter a ,  and also that-apart 
from the factor Z(0)-it is identical with the familiar 
expression for the gain experienced by a scattered wave in 
the field of a plane pump wave.'*-l4 Equation (25) demon- 
strates that in the case of SBS in an inhomogeneous plasma 
there is selection between the components correlated and 
uncorrelated with the pump because the values of Z (0 )  for 
these components differ by a factor of 2. 

We now consider the spatial dependence of the local 
increment g ( x )  . If Ix 1 9 L, and a L  S 1, this dependence be- 
comes rn 

g ( x )  =rz ) exp ( t ag2 /2 - i a fx )  Z ($) dk,  (26) 

where Z ( 6 )  is given by Eq. ( 16). 
Figure 1 shows graphically the dependence g(y = yx) 

obtained by numerical integration of Eq. (26) subject to the 
condition a/? = 0.1. 

Analytic expressions for the function g can be obtained 
for a ' '2 \xl  9 1: 

for the conjugated wave and 

FIG. 1 .  Dependence of the local gain g on the dimensionless coordinate 
y = x / l  for conjugated (curve 1 )  and unconjugated (curve 2 )  waves. 

for the uncorrelated wave. 
It follows from the above expressions and from Fig. 1 

that the amplification of the component correlated with the 
pump wave is concentrated in a wider region than the ampli- 
fication of the uncorrelated wave. 

The value of g(0)  for a L  2, 1 can also be calculated 
analytically. Its real part is 

Re g ,,,, (0) = Re g ,,,,,, (0) = nr2/4y. 

It therefore follows that the local growth rates for the corre- 
lated and uncorrelated waves are similar at low values of x: 
g -  r2/y,  and selection is due to the different characteristic 
amplification lengths of the components, which are of order 
La,, - y/adL.  The condition for this approach to be valid 
is the smallness of the gain experienced in a distance equal to 
the longitudinal correlation length of Eq. (9) .  

It follows that in a layer of inhomogeneous transparent 
plasma with a single phase-matching point the process of 
SBS occurs under the spatial amplification conditions and 
the values of the gain are different for the components corre- 
lated and uncorrelated with the pump wave. 

Phase conjugation in the case i f  weak damping in an 
inhomogeneous plasma is, as demonstrated by Eqs. (24) or 
(26), a nonlocal interference effect in no way related to the 
localization of the process of stimulated scattering in a dis- 
tance equal to the size of one spot in a speckle structure 
because the phase matching is lost in a distance equal to this 
length. 

A qualitatively different situation may be encountered 
in a transparent plasma with two phase-matching points 
(Fig. 2). If the range of the scattered or ion-acoustic wave is 
sufficiently long, the amplification of waves in the vicinity of 
each such point is no longer independent. The existence of 
such a feedback mechanism may have the effect that SBS 
occurs during lasing,I6 i.e., we can expect the existence of 
modes growing with time and with their growth limited only 
by the nonlinear effects. In view of the difference between the 
gains in the vicinity of the phase-matching points of the 
waves correlated or uncorrelated with the pump, the tempo- 
ral instability growth rates are different for these waves and 
the wave with a transverse structure identical with the pump 
wave will grow fastest. 

We can estimate the instability increment by assuming 
that the interacting waves are amplified in the vicinity of the 
phase-matching points and the gain is exp G, whereas in the 
regions between such points the waves propagate freely and 
are attenuated. Then, the gain experienced in one complete 
round trip from the interaction region and back again is 
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FIG. 2. Geometry of the interaction waves in a plasma with two phase- 
matching points. 

where v ,  and v are the spatial damping rate of the scattered 
and ion-acoustic waves, and L,,, is the distance between the 
phase-matching points, so that the instability growth rate is 
given by 

where r = L, , ,  ( l / c  + l / c , )  is the signal phase-conjugation 
time in the feedback loop, and c  and c ,  are the group veloc- 
ities of the scattered and ion-acoustic waves. 

Since G is twice as large for the conjugated wave, it 
follows that its growth rate is greater and the quality of phase 
conjugation increases with time until the wave amplitudes 
reach the level at which they become limited by nonlinear 
effects. 

Obviously, lasing is retained when the phase-matching 
points come closer together even if L, , ,  = 0 .  This corre- 
sponds to approximation of the phase mismatch cp in the 
relationship ( 2 2 )  by an expression of the form q, = x x 3  type, 
but in contrast to Eq. ( 2 2 )  in this case the reduction of Eq. 
( 10) to Eq. ( 18) is no longer possible, and this situation 
requires a separate analysis. 

4. CONCLUSIONS 

Phase conjugation due to the mechanism discussed here 
occurs in the case of strong SBS in an inhomogeneous plas- 
ma. We now summarize all the restrictions mentioned 
above. Selection of the growth rates requires that the scales 
should be I<a-'I2<L, and alL% 1 ,  which sets the limits to 

L ,  from above and below. If L,  is too large, the scattering is 
exactly the same as in an inhomogeneous layer of length L, 
whereas if L ,  is too small, the amplification becomes much 
weaker. If these conditions are obeyed, the gain is given by 
Eq. ( 2 5 ) .  

In the case of phase conjugation by SBS in a plasma it is 
necessary to ensure GZ 15-20, or in terms of the dimension- 
al variables (k&, ) (E, f lo/Ep N,  ) ~ 6 ,  and hence using the 
characteristic plasma parameters encountered in the experi- 
ment~ ' -~  we readily obtain an estimate of the required laser 
radiation power density. For example in the case of CO, 
laser radiation of wavelength A z 1 0 p m  ( k z 6 ~  lo3 cm- ' ) 
incident on a plasma characterized by T, z 100 eV, L ,  z 1 
cm, N,,z0.3Nc,  and N ,  --,  1019 ~ m - ~ ,  we should use radi- 
ation with a very reasonable value of the power density 
q z  10" W/cm2. 
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