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Various vacuum expectation values in one-dimensional quantum systems are studied using finite- 
size effects. The scaling dimensions of the principal operators are found in a continuum model of a 
one-dimensional Bose gas with a general form of interaction. In the model of an XXZ Heisenberg 
antiferromagnet the asymptotic forms of the correlators of certain nonlocal operators (disorder 
operators) are found. It is shown that finite-size effects can be used to find the spectrum of the 
scaling dimensions in fermion systems. 

1. INTRODUCTION 

An efficient method, involving the use of conformal in- 
variance at a critical point, has recently appeared for the 
study of one-dimensional quantum systems.'-6 In one-di- 
mensional systems a phase transition occurs at zero tem- 
perature, and although the conformal symmetry here is ex- 
act only at large distances it is fully adequate for the 
determination of quantities that do not depend on the struc- 
ture of the interaction on small scales. As a rule, it is these 
quantities that are of real interest in the theory of one-dimen- 
sional systems. Primarily, we have in mind correlation func- 
tions, i.e., vacuum expectation values of products of opera- 
tors at different spatial points. 

The principal properties of correlation functions of one- 
dimensional systems are associated with their power-law de- 
crease at large distances (at zero temperature) and with the 
continuous dependence of the power exponents on the inter- 
action These exponents are sometimes called 
critical indices, and their determination is one of the prob- 
lems of the theory. 

As is well known, in the two-dimensional case confor- 
mal symmetry imposes extremely stringent restrictions on 
the spectrum of the scaling dimensions of the operators of 
the theory. lo It is this circumstance that gives the possibility 
of finding the critical indices of the correlation functions in 
one-dimensional quantum systems (i.e., in two-dimensional 
models of quantum field theory with one space and one time 
dimension). The central charge and the dimensions of the 
operators of the effective conformal theory that arises in the 
long-wavelength limit can be determined using the so-called 
finite-size effects. ' 

We recall the basic formulas. Let the conformal theory 
be specified on an infinite strip of width L in the spatial direc- 
tion. Then to each conformal primary operator #,,, there 
corresponds an infinite set ("tower") of eigenstates ) of 
the Hamiltonian, the energies 

and momenta 

the scaling dimension and spin, respectively, k,Z)0 are inte- 
gers, E',"" is the ground-state energy, a n d p t  is the momen- 
tum of the lowest state I$) from this tower when the system 
has infinite length. Finally, the parameter v in ( l a )  takes 
into account the possible difference in the units of measure- 
ment of the spatial and temporal quantities; in other words, u 
is simply the velocity of acoustic excitations in the system 
(the group velocity on the Fermi surface). Thus, to 
determine the spectrum of dimensions of the primary opera- 
tors it is sufficient to find the energies E $ (0,o) -- E f of the 
lowest excitation of each tower to order L -I: 

We note that states with k,ft #O from the tower correspond- 
ing to the primary operator $ correspond to the so-called 
"descendent" operators of $ (Ref. 10). They have a well- 
defined scaling (but not conformal) dimension h + k + ft  
and, as we shall see below, also give a contribution to the 
correlation functions. 

As is well known,',* the central charge of the Virasoro 
algebra that arises is related to the volume'correction -L - ' 
to the ground-state energy of the system. For example, in the 
case of periodic boundary conditions, 

Here E,, is the ground-state energy density in infinite volume. 
The first term in (3)  depends on the way in which the theory 
is regularized, and the second term is universal. 

Often it is more convenient to use another version of 
this formula. By virtue of the conformal invariance, the de- 
termination of the corrections to the energy in powers ofL - ' 
at zero temperature ( T  = 0 )  is equivalent to the determina- 
tion of the temperature corrections to the free energy for 
L = cc . Then (3a) can be rewritten in the form 

where f(T)  is the free-energy density at temperature T. 
The long-wavelength asymptotic form of the pair 

(equal-time) correlator of the fields q5 is 

2n 
( l b )  

(4 (I) $J (0) ) =x-~" COS (Pm9x). 
PL' (k ,  E )  =P," + (s+k-k) 

(4) 
LA The oscillatory factor cos (P t x )  arises because of the pres- 

(with (vacl #A,Ti I vac) $0). Here, A and h are the conformal ence of the gap P i  in the spectrum of the momentum opera- 
dimensions of the operator #, h = A + h and s = A - h are tor. Henceforth in this paper, for simplicity, we consider 
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only equal-time correlators, the asymptotic form of which is 
determined by the scaling dimension h of the field 4. Une- 
qual-time correlators depend also on the spins of the opera- 
tor 4. 

In Refs. 3-6 Eqs. ( 1 )-(3 ) were used to determine criti- 
cal indices in one-dimensional exactly solvable models. In 
this case the energies of the lowest excited states can be 
found exactly by means of the Bethe method.12 An already 
extensive literature has been devoted to these questions (see, 
e.g., Refs. 1-6 and 13-20). However, in all these papers the 
possibilities of the new method were not exploited in full 
measure, and certain important aspects have not been re- 
flected in the literature. First, the method described turns 
out to be applicable to models with interaction of general 
form, making it possible to obtain results of practically the 
same degree of completeness as in exactly solvable models. 
Second, the results obtained previously are valid only for 
Bose systems, and in systems of Fermi particles the critical 
indices differ, generally speaking, from boson critical in- 
dices. Finally, it is found that, by using finite-size effects, it is 
possible to find also the vacuum expectation values of certain 
nonlocal operators. It is to the study of these questions that 
the present paper is devoted. 

We shall consider two basic types of one-dimensional 
system: a continuum model of a spinless Fermi or Bose gas 
with interaction of general form, and a lattice model of a 
Heisenberg XXZ antiferromagnet-a model which, for bre- 
vity, we shall sometimes call simply a spin chain. The sec- 
ond-quantized Hamiltonian of the first model has the form 
(in units in which the particle mass is equal to 1/2) 

where L is the length of the system, V(x) is a certain pair- 
interaction (pair-repulsion) potential of quite general form, 
and g > 0 is the coupling constant. The operators $*, $ satis- 
fy standard equal-time (anti) commutation relations. Some- 
times, in order to indicate the type of statistics explicitly, we 
shall write $, or 11,. The number Nofparticles in the system 
is conserved; in the thermodynamic limit N- CO, L - co the 
quantity p = N/L is the equilibrium density. We note that 
for V(x) = S(x) there exists an exact solution of this mod- 
el.'' In the language of first quantization the Hamiltonian 
( 5 ) has the form 

N V 

We shall also use the first-quantization representation oc- 
cassionally for reasons of convenience. 

The Hamiltonian of the spin chain has the form 

Here, L is the number of lattice sites, d are the Pauli matri- 

ces, and y is the anisotropy parameter. For y = 0 we have 
isotropic (XXX) Heisenberg antiferromagnet. The XXZ an- 
tiferromagnet ( 6 )  admits an exact solution: All the eigen- 
states of the Hamiltonian can be constructed in explicit form 
by the Bethe method.I2 The simplest eigenstate, in which all 
the spins point in the same direction (i.e., the total spin is 
equal to L /2 ) ,  is the "bare" (nonphysical) vacuum. The 
physical vacuum of the antiferromagnet has the minimum 
possible total spin (0 or 4, depending on the parity of the 
number L of sites) and is obtained by filling the bare vacu- 
um. Here, the number N of reversed spins plays the role of 
the number of particles in the model (5).  

The models described have many physical properties in 
common, and are solved by similar methods. In particular, 
in both cases the low-energy spectrum characterized by the 
absence of a gap and by the presence of only one sound veloc- 
ity u. The calculations of the central charge from formula 
( 3 give c = 1 (Refs. 1-3), i.e., both systems fall in the uni- 
versality class of the Gaussian m ~ d e l . ~ '  This corresponds to 
the fact that the lowest excitations are phonons describable 
by the free theory. 

In systems of particles with internal degrees of freedom 
there are several branches of gapless excitations, with, gener- 
ally speaking, different sound velocities. The analysis of this 
more complicated case lies outside the scope of the present 
paper. 

We shall say a few words about the long-wavelength 
approximation that we are considering. The characteristic 
distances x, over which, in a Bose or Fermi gas, individual 
particles can be "felt" is of the order of L /N = l/p. Over 
large distances x s x ,  a certain effective theory, describing 
phonon excitations, arises. In this case all information about 
short distances is contained in the constant u. The long- 
wavelength excitations, corresponding to a linear dispersion 
law (small energies E ) ,  lead to effective asymptotic scale and 
conformal invariance. At the same time, this implies that 
deviations in Eqs. ( 1 ) - (3 )  from the exact conformal theory 
can appear only for small values of L, i.e., series in inverse 
powers of L in these formulas can be used effectively. 

We not briefly describe the content of the article. In Sec. 
2 we calculate the energies of the lowest excitations in finite 
volume in the Bose-gas model (5)  and obtain the spectrum 
of scaling dimensions. In Sec. 3 it is shown how, on the basis 
of these data, the asymptotic series for the correlation func- 
tions is obtained. Very important examples (the pair corre- 
lator of the densities and the one-particle density matrix) are 
analyzed in detail. It is found that the theory of finite-size 
effects has a natural extension that makes it possible to find 
the vacuum expectation values of certain nonlocal opera- 
tors; Sec. 4 is devoted to these questions. The account is 
given principally for the example of the spin chain ( 6 ) ,  for 
which certain previously unknown correlators, of interest in 
their own right, are found. Finally, in Sec. 5 the case offer- 
mion statistics is considered and the critical indices in the 
Fermi-gas model ( 5 ) are found. 

A brief account of some of the results of this paper was 
published in Ref. 22. 

2. SCALING DIMENSIONS IN THE BOSE-GAS MODEL 

In this section we find the scaling dimensions of the 
operators in a Bose system described by the Hamiltonian 
(5).  As is clear from the Introduction, for this it is necessary 
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to classify those low-lying excitations which become gapless 
as L + oo. We shall assume that periodic boundary condi- 
tions are imposed, i.e., the particles are on a circle of length 
r 
L. 

The excitation spectrum of the system (5 )  is depicted 
schematically in Fig. 1. Universal characteristics of the spec- 
trum are the absence of an energy gap at small momenta and 
the vanishing of the energy at momenta that are multiples of 
277p. These properties hold for a wide class of potentials 
V ( x ) ,  both long-range and short-range. We must consider 
this spectrum for large but finite values of L. In this case it 
becomes quasi-discrete, i.e., consists of individual closely 
spaced points (Fig. 2). In particular, an energy gap of order 
L - ' appears. We are interested in those states which possess 
zero energy in the limit L -. cc . From these it is necessary to 
choose one state with the minimum energy for each branch 
of excitation. These will be the states I#) corresponding to 
the primary operators. Simplifying slightly, one can say that 
to each gapless branch in the excitation spectrum corre- 
sponds its own primary operator. Points in the spectrum that 
are neighbors of 14) are states from the corresponding tower 
with k > ~ o r E > ~ i n  ( l a ) .  

The energies E f of the states I # )  can be found by direct 
calculation if a method of constructing the physical vacuum 
is explicitly known, as it is, e.g., in the model with 6-function 
interaction or in other exactly solvable models. This was 
done in Refs. 3-6. In the general case it turns out that the 
states I#) correspond to distinct points of the spectrum, the 
energies of which can be found from thermodynamic consid- 
erations without detailed knowledge of the structure of the 
vacuum. 

We shall demonstrate this using the system (5)  as an 
example. We confine ourselves first to excitations for which 
the number of particles is conserved. The simplest excitation 
satisfying the properties listed above is the creation of one 
phonon with the minimum possible momentum + 2r/L 
(the points A,, &, in Fig. 2). The energy, obviously, is equal 
to 2rv/L, and there is no gap in the momentum spectrum: 
Pt =O. Form ( l a )  and ( l b )  we immediately obtain 
h = + s = 1. We denote the corresponding primary opera- 
tors by #: . Thus, 

<$+O(x)$+O(0)>=<$-O(x) d-'(0) )=x-~, 
17) 

More interesting is the excitation with momentum equal to 
2rp  (the point A, ). Here the gap in the momentum spec- 
trum is equal to 277p. Physically, this corresponds to "rota- 
tion" of the entire system as a whole with the smallest possi- 

FIG. 1.  Excitation spectrum of a one-dimensional spinless Bose gas. 

. . . . . . . A ? .  1 . . -  , . ?<,... ., - 
A,. .A,  - 0  A ,  

Zf lp 4'zp s*p 

FIG. 2. Spectrum of the same system in a finite volume. 

ble angular momentum (the first level of the rotator). In 
other words, this state is obtained from the vacuum by going 
over a uniformly moving reference frame. Because of the 
periodic boundary conditions, the velocity of this reference 
frame is quantized. We thereby obtain an entire 'family of 
states I#,,, ) (m is an integer) satisfying the necessary con- 
ditions (the points A, etc. in Fig. 2). Their momenta are 
multiples of 277p: Po,, = 2rmp, and the energies are found 
in an elementary manner by considering the motion of the 
system as a whole (we recall that in our units the mass of 
each particle is equal to 1/2) : 

From this we calculate the dimensions of the operators #,,, : 

It should be noted that this way of arguing is not fully consis- 
tent, since it does not take into account the quantum nature 
of the ground state. 

The same result can be obtained more rigorously as fol- 
lows. We consider a change to another inertial reference 
frame (for reasons of convenience, here we shall use the lan- 
guage of first quantization). The complete N-particle wave 
function then transforms in accordance with the rule 

N 

and, from the condition that the wave function be unique, we 
obtain a discrete set of momenta q = 2rm/L. By acting on $ 
with the Schrodinger operator (5b) we obtain (8) .  

The states 140, )andl#o,m ) are excitations in the sector 
with a constant number of particles. Besides these there are 
also excitations that arise when particles are added to the 
system. As usual, when working with a variable number of 
~artizles itAis necessary to modify the Hamiltonian: 
H - H  - - p a ,  where 

pa= lim - a E y  I 
L+or aN p=O~n.t 

A 

is the chemical potential and N is the particle-number opera- 
tor. In the case ofboson statistics the addition of n paticles to 
the system leads to an energy shift 

Here we have used the well known thermodynamic relation 
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We denote the corresponding primary fields by ; we find 
their dimensions from ( 10); 

Finally, we can construct all possible combinations of 
the excitations described, i.e., add n particles and then "ro- 
tate" the system as a whole on the mth level. Corresponding 
to this are operators I$,,, with dimensions 

where we have denoted 

For the case V(x) = 6(x)  the dimensions h o,, and h ,,, 
were first found in Ref. 3, in which they were expressed in 
terms specific for integrable systems. It can be shown that 
the dimensions from Ref. 3 coincide with ours if we express 
them in terms of the sound velocity. In our opinion, ( 12)- 
( 13) is a preferable form of writing the result, since these 
expressions have meaning for arbitrary potentials and all the 
information about the potential is collected in the single pa- 
rameter v (or R ). 

For completeness we give the corresponding results in 
the case of the antiferr~magnet.~.'~ Here too there are pri- 
mary operators 4: with dimension 1 and operators #,, 
with dimensions determined by Eq. ( 12) with 

In exactly solvable models the central charge can be 
calculated using Eq. (3b). For V(x) = 6(x)  in (5),  and for 
the XXZ magnet (6),  one obtains c = 1 (Ref. 3 ) .  From the 
results of Ref. 23 it follows that the central charge also has 
the same value for the potential V(x) = x2 (the Sutherland 
model). Unfortunately, we do not know how to find f( T) for 
small T for potentials of general form. Nevertheless, the 
form of the spectrum of dimensions ( 12) makes it possible to 
assume c = 1 for a wide class of potentials. As already noted, 
this is entirely natural, since a theory with c = 1 describes a 
phonon system in the long-wavelength limit. As is well 
known, almost all conformal theories with c = 1 are equiva- 
lent to Gaussian models24 with a spectrum of dimensions of 
the form ( 12) and can be characterized by a single contin- 
uous parameter, on which the conformal dimensions de- 
pend. 

More specifically, the Gaussian model is the two-di- 
mensional free theory of a massless scalar field q,(z,Z) that 
takes values in a circle of radius R (i.e., it is necessary to 
identify q, and q, + 217R). The action has the form (here, 
z = x + i y , Z = x - i y )  

and possesses obvious U( 1 ) invariance. 
The spectrum of dimensions of the Gaussian model is 

given2'.24 by Eq. (12); from this the meaning of the intro- 
duction of the parameter R becomes clear (in string theory it 
is called the compactification radius). The operator 

#$ (4: ) can be identified with the (anti) chiral U ( I )  cur- 
rent dzq, (d;q,), and #,,, can be identified with the follow- 
ing exponential of the free fields: 

where :...: implies suitably defined normal ordering and the 
conformal dimensions are determined from the relations 

(A,  A) = (p2/2, jj2/2), h=A+d, s=A-A,, (17) 

( p ,  jj) = (nR-'+mR/2, nR-'-mR/2), n, m=Z. ( 18) 

We note that the spectrum (18) is invariant under the 
"dual" transformation R -2 /R ,  and R = 2'" is the self-du- 
ality point, corresponding to an isotropic antiferromagnet. 

3. ASYMPTOTIC FORM OF THE CORRELATION FUNCTIONS 

In this section we show how, using the results of Sec. 2, 
one can obtain asymptotic series for the most important cor- 
relation functions in the model (5a)-the pair correlator 
H ( x  = (,o(x)p(O)) of the densities [here, p (x)  = $* (x)  
$(x) is the density operator], and the one-particle density 
matrix S (x )  = ($* (x)$(O) ). In the case of the spin chain 
their analogs are the correlators H ( x ) =  
(a: 4 ) and S (x )  = (a,+ a; ), where a' = a' + i d .  

The operators $(x) andp (x) themselves do not possess 
well defined conformal dimensions, but, being local opera- 
tors, they should be represented in the form of a linear com- 
bination of primary operators and their descendants. We 
@all write this expansion for an arbitrary local operator 
O(x) (composed, e.g., ofp, tj, $* ,...) in general form. In- 
order not to encumber the formulas, we now write this ex- 
pansion somewhat symbolically, without inclusion of the 
descendents, and discuss the role of the latter separately lat- 
er. In particular, it will be seen that the "descendants" do not 
make a contribution to the leading terms of the asymptotic 
form, so that if we are interested only in the leading terms we 
make direct use of the expansion in the primary operators. 
We have 

where the sum over 9 denotes a sum over the primary opera- 
tors and the C+ are certain numerical coefficients. The pres- 
ence of the gap in the spectrum of momenta has been taken 
into account explicitly i~ this^formula. In the calculation of 
correlators of the type ( O ( x ) O ( y )  ) the products of primary 
operators # are averaged using the familiar rules of confor- 
mal t h e ~ r y . ' ~ , ~ ~  In practical calculations it is convenient to 
make use of the representation of the primary fields in the 
form of the exponentials ( 16) and to average them by means 
of the standard technique of functional integration with the 
quadratic action ( 15 ) . 

The coefficients C+ in ( 19) are nonzero only for the 
operators # that satkfy th! following selection rule: C+ # O  
provided that (vac IO(x) I#) #O is the thermodynamic limit 
(here, (vacl is the physical vacuum; for brevity, averaging 
over the physical vacuum is sometimes denoted simply by 
angular brackets). For example, using the results of Sec. 2 
we obtain in the case of boson statistics 

03 
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9.' (x) = cmW exp (-2nimx) #-I>-rn (x) , (20b) 

p (z) = l + O  (x) + # - O  (x) + cmr exp (2nimx) d,m(x). 

In the latter formula #,, denotes the unit operator. The co- 
efficients in (20)-(21) possess, of course, the symmetry 

By means of these expansions it is not difficult to find all 
the terms of the asymptotic form of the correlators H(x )  and 
S(x) ,  and also their many-point analogs. We note that in the 
calculation of H(x )  terms (#:(x)#$(O)) 
= (4: (x)@ (0) ) -xP2 arise, the exponent of which cor- 

responds to the canonical dimension of the operator p and 
does not depend on the coupling constant. 

We now discuss what is given by taking the descendants 
into account. Generally speaking, in the expansion ( 19) we 
should include all the descendant operators of each primary 
operator # that satisfies the selection rule given above. Ac- 
cording to the general relations of conformal field theory, 
the replacement of the operator #(x)  in the correlator 
(# (x)# (0) ) by any particular one of its "descendants" is 
equivalent to differentiating this correlator with respect to x 
a certain number of times. Thus, the inclusion of descen- 
dants adds to the asymptotic form terms with exponents ex- 
ceeding the exponents of the leading terms by a natural num- 
ber. For example, the descendants 4 , ,  of the first level make 
a contribution proportional to 

x-'hR'-i sin (2npx) 

to H(x) .  Taking these considerations into account, we write 
out the resulting asymptotic series ( x s p -  ' ): 

nk + Ex-.  [ C A,,,,' cos (2nmpx + -).-'I, 
m= l k=O 2 

[z B , ,  cou (2nmpx + @)x-']. 
m=O k=O 2 

Here, A and B are certain numerical  coefficient^.^' 
Expressions (22) and (23) agree with the known exact 

results. We have in mind the calculation of the density ma- 
trix in a system of impenetrable bosons [V(x) = S(x) ,  
g = w in (5)]26,27 and one exact result for the correlator 
H ( x )  in the so-called Sutherland model [ V(x) = x P 2  in 
(5)  ] with the special coupling-constant value g = 24 (Ref. 
28). In these cases the asymptotic form for the correlators 
does indeed have the same structure as in (22) and (23). 

It is possible also to compare these expressions with the 
results of Refs. 29 and 30, in which the asymptotic forms of 

H ( x )  and S ( x )  were found by direct calculations with the 
assumption that the potential V(x) is long-range and the 
coupling constant g is large. Here, for the parameter R ,  with 
all orders of perturbation theory in g-I taken into account, 
the same expression ( 13) was obtained. For large g, how- 
ever, R is a small parameter. This is the reason why only the 
"primary" terms of the asymptotic form [i.e., the terms with 
k = 0 in (22) and (23 ) 1 are present in the formulas of Refs. 
29 and 30. The other terms cannot be seen against the back- 
ground of the slowly decaying terms proportional to 
- m'R '/2 . The term proportional to x - ~  in (22) cannot be 

obtained by the method of Ref. 29 for the same reason. At the 
same time, in certain models, e.g., in a magnet with n-/ 
2 < y < a, this term is the leading term. 

Here we should like to discuss in a little more detail the 
meaning of the series (22)-(23) with unknown coefficients. 
It would appear that a function of highly arbitrary form can 
be expanded in such a series. Nevertheless, important infor- 
mation is contained in the expansion (22)-(23). 

First, in all cases when these expansions are obtained by 
other methods (see above), the coefficients A and B fall off 
rapidly and the series converge very well. Moreover, calcula- 
tions of the correlators by other methods usually reproduce 
not the full answer but the first terms of the indicated expan- 
sions, so that these series appear to be adequate to the prob- 
lem. 

Second, the subseries that correspond to the contribu- 
tion of the descendants [the sums over k in (22)-(23)], 
which give powers of x differing by an integar, can be "fold- 
ed" into a smooth function. At the same time, the sum over 
the primary operators contains fractional powers of x. For 
an irrational value of R the number of different noninteger 
powers is infinite, and this evidently implies the presence of 
the essential singularity. On the other hand, for a rational 
value of R in (22)-(23) there is only a finite number of 
types of branching. This case corresponds to the rational 
conformal the~r ies ,~ '  and we thus see a manifestation of the 
finiteness of the number of fields that are primary with re- 
spect to a large chiral algebra.32 

The natural question arises: What distinguishes the 
models that are describable in the long-wavelength limit by 
rational conformal theories? Our hypothesis is that the com- 
plete wave function of the ground state in such models is 
analytic in each variable on a certain finite-sheeted cover of 
the complex plane (possibly with an excluded point a ) . By 
making use of the results of Ref. 28 it is easy to check the 
validity of this hypothesis in the case of the Sutherland mod- 
eL3' 

Thus, we have shown that the correlation properties of 
boson spinless systems are described by the Gaussian model 
with a suitable "compactification radius" R. For the contin- 
uum Bose-gas model R is determined by Eq. ( 13 ), while for 
the Heisenberg antiferromagnet it is determined by Eq. 
(14). 

4. VACUUM EXPECTATION VALUES OF NONLOCAL 
OPERATORS 

In this section we shall study mainly the antiferromag- 
netic model. We consider the following nonlocal operators 
in this model: 
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where q(x,y) is the operator of the number of reversed spins 
on the sites from x toy, and 

where Pxy r 4 (  1 + ox .a, ) is the permutation operator that 
interchanges the spins at sites x and y. The operator Txy is 
the operator of cyclic permutation on the sites from x toy: 
x-x + 1, x + 1 +x + 2, ..., y - 1 -y, y-x. The determina- 
tion of the asymptotic forms of the expectation values 
(vaclSxy I vac), (vac 1 Txy ] vac), and (vaclSx,, Tx,, J vac) in the 
antiferromagnetic vacuum for Ix - ~ 1 %  1 is a component 
part of the problem of the correlation functions in a system 
of spin-4  particle^.^' In addition, these nonlocal expectation 
values are of interest from the point of view of the quantum 
method of the inverse problem.36 By virtue of the transla- 
tional invariance these expectation values depend only on 
Ix -vl. 

We shall show that these correlators have a power-law 
asymptotic form, and that the exponents can be found by a 
natural generalization of the method described in the Intro- 
duction. The idea is as follows. As shown in Ref. 21, in the 
Gaussian model there is another, nonlocal sector, the spec- 
trum of the primary operators of which is specified as before 
by Eq. (12), but now with half-integer n and m. The corre- 
sponding operators (e.g., #,, ) are the so-called disorder op- 
erators, which are expressed in a nonlocal manner in terms 
of the field e, appearing in the action ( 15). Application of the 
operator #,,, to the ground state of this extended Gaussian 
model with periodic boundary conditions carries it over into 
a certain state in the sector with antiperiodic boundary con- 
ditions. Therefore, the correlators of an even number of dis- 
order operators have meaning in the original Gaussian mod- 
el with periodic conditions. From the point of view of the 
original model, a pair of disorder operators at two points x 
and y looks like a nonlocal operator acting on the segment 
fromx to y. It is this circumstance that gives the possibility of 
finding the expectation values of the operators (24) and 
(25) by the methods of conformal field theory. 

We need to consider the Hilbert space that incorporates 
simultaneously all the states of the spin chain with different 
numbers of sites and different boundary conditions. We in- 
troduce the following operators, acting in this extended 
space: a,+, (a = f i ) ,  whcih creates a site with spin a be- 
tween sites of the original chain with the site labels x and 
x + I ,  and b,,. , which annihilates theith site (with spinBx ) 
in the case DX = a and gives zero when acting on states for 
which fix = - a. Thus, the operators a,+, act from the sec- 
tor with L sites into the sector with L + 1 sites, while the 
operators b,, , on the contrary, decrease the number of sites 
by unity. The operator b , , can be identified with the nonlo- 
cal operator 4, $,, in the extended Gaussian model. We in- 
troduce also the operator 

L 

I-x 

which, as is easily seen, relate the sectors with periodic and 
with antiperiodic boundary conditions. 

In fact, we shall consider the complete wave function 

$(x,, ..., x,) of the ground state of the magnet, the argu- 
ments of which are the coordinates of the reversed spins. For 
periodic boundary conditions we have $(x, ) = $(x, + L),  
where for brevity we have explicitly indicated only the de- 
pendenceonx,. ~ e s e t $ = ~ $ . ~ o f i n d $ ( x ,  + L)  wefixthe 
positions of all the reversed spins except the first. Suppose 
first that x ,  <x, and that to the right of the sitex there are k 
reversed spins. Then 

For x ,  > x we have the obvious chain of equalities 

i.e., $belongs to the sector with antiperiodic conditions. 
Obvious1 y, 

Tw = ax,+b.,, S,=S$,,. (27) 
L 

Thus, it is necessary to calculate the correlators 
(vacl Txy lvac) = 2(ad+ , ,by, + , ) (since (a:,, by, + ) 
= (ad- , by, - , ) and (vaclSxy Ivac) = (vacl SxSy Ivac) . We 

denote the vacuum of a chian of L sites with periodic (anti- 
periodic) boundary conditions by (L, + ) ( (L, - ) ) (in the 
thermodynamic limit these states coincide, but now the cor- 
rections in L -' are important to us). In the previous nota- 
tion, JL, + ) = Ivac). Working with the extended Hilbert 
space, we can (and shall) regard the ground states in sectors 
with another L and with antiperiodic conditions as excita- 
tions above the state Ivac). Informally speaking, the opera- 
tor a; creates an excitation with spin 4 ("hair' a magnon). 
For even L, only an even number of such excitations can 
exist, while for odd L only an odd number can exist, the 
ground state being doubly degenerate in the latter case. 

We have (L - 1, + Ib,, IL, + )#O, (L + 1, + la,+, 
I L, + ) # 0, and (L, - ISx I L, + ) #O in the thermodynamic 
limit; i.e., the states IL f 1, * ) satisfy the selection rule 
from Sec. 3. Therefore, to find the asymptotic forms of the 
expectation values of the operators (27) we can make use of 
formula (4),  finding the dimensions of the operators 
a,+, ,b,,, and Sx from (2).  For this it is necessary to calculate 
the shift of the energy of the states (L  + 1, + )and IL, - ) 
in comparison with IL, + ), and also their momenta. This 
can be done with the aid of the well-known exact solution 
(the Bethe an~atz).'~.: Here it is necessary to modify the 
Hamiltonian: Hxxz -+Hxxz - E", where E, is the mean ener- 
gy per site. Without giving these calculations here, we note 
only that the parameters v in (2) in the case of the magnet is 
expressed in terms of y as follows: v = n-y-' sin y (Ref. 14). 

The results have the form 

(vac I T, exp{inq (x, y) 11 vac) acos [n (3-y) /2] (x-y)-'-", 

where (30) 

and R is determined from ( 14). The complete spectrum of 
dimensions (with the nonlocal operators taken into ac- 
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count) is given by Eq. ( 12), with half-integer n and m. 
We note that in the isotropic case of the XXX magnet 

the operator Sx coincides with the spin field of Ref. 24 and 
has scaling dimension 1/8. 

To conclude this section we shall say a few words about 
nonlocal operators in the Bose-gas model. The analog of the 
operator Sx is given by the same formula 

where now q(x,y) is the operator of the number of particles 
on the segment from x toy. For Ix - yl $p-' we find, by 
means of the technique developed above, 

It is convenient to introduce also the analog of the operator 
s, : 

S,=exp Iinq ( x ,  L )  I ,  (33) 

which will be needed in the following section. 

5. CRITICAL INDICES IN FERMION SYSTEMS 

Up to now, when studying the model with the Hamilto- 
nian (5), we had in mind the case of boson statistics. It is 
known3' that the critical index of a fermion correlator 
SF (x) = ($: (x)  $F (0)  ) differs from that of a boson cor- 
relator S, (x)  = ($*, (x)$, (0)) .  We shall show how SF (x)  
can be found in the framework of the conformal approach. 

For this we can make use of the results of the preceding 
section. The operator S, (33) introduced there implements 
a Jordan-Wigner transformation from boson to fermion field 
operators: 

We thereby quickly find the leading term of the asymptotic 
form of SF (x)  : 

SF ( x )  cos ( n p x )  x-2'R'-R218. (35 

It is also easy to write out the entire asymptotic series for 
SF (x)  and to convince oneself that it agrees with the result 
of Ref. 30, obtained by other methods. 

Less formal arguments are as follows. In fermion sys- 
tems the momentum of the lowest states (with zero energy in 
the limit L - ), measured in units of ?rp, can be not only an 
even but also an odd number. This follows from single con- 
siderations based on symmetry properties of the wave func- 
tion. Let $(x,, ..., x, ) be the complete wave funGion of the 
system. We acion it with the shift operator exp (iPa), where 
a = L /Nand Pis the operator ofthe total momentum. Then, 
taking into account that $should be an eigenfunction of this 
operator with eigenvalue P, we have 

By setting x ,  = x, x, = x + a ,..., x, = x + ( N  - 1 )a, etc., 
and comparing these formulas, we see that the possible val- 
ues of the gap in the momentum spectrum depend on 
whether the number of particles in the system is even or odd: 

exp ( i P L / N )  = (-1)N-1. (37 

If we write P i n  the form P = 2?rpm, as in Sec. 2, we obtain 
the condition 

i.e., depending on the parity of N the value of m should be 
either an integer or a half-integer. In particular, we arrive at 
the conclusion that for even N the ground state is doubly 
degenerate (P = f n-p). Gapless excitations that conserve 
the number of particles can change Ponly by 2 ~ m p  (m is an 
integer). Therefore, the dimensions of the operators q50,, do 
not change and are given by the same formula (9).  To avoid 
confusion, we stress that we are speaking here only of the 
fact that in both cases the dimensions are expressed in terms 
of the sound velocity in the same way, but the sound velocity, 
generally speaking, is different for bosons and fermions. 

An important difference between the fermion and bo- 
son cases appears when a particle is added to the system. In 
Fermi systems the thermodynamic formula ( 10) is true only 
for even n. The addition of, say, one particle changes the 
parity ofN, and therefore, in accordance with (38), the ener- 
gy changes by the amount 

where we have made use of the notation from ( 12). 
In the general case, combining different types of excita- 

tions with allowance for the condition (38) we find that the 
spectrum of dimensions of the Fermi system is determined 
by the same formula ( 12) but with a different condition on n 
and m: 

1 ) If n is even, m is an integer; 
2) Ifn is odd, m is a half-integer (i.e., m = m' + 4, with 

m' an integer). 
In conclusion, the authors would like to express their 
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" Institute of Chemical Physics, USSR Academy of Sciences, Moscow. 
"Strictly speaking, in the expression (22)-(23) one should take into 

account correction terms that can arise because of irrelevant perturba- 
tions of the Hamilt~nian.'~ These corrections are numerically small, 
and, in addition, falloff with distance more rapidly than do the leading 
terms (they should be comparable with the contributions of the descen- 
dants). However, when marginal operators are encountered in the spec- 
trum of dimensions ( 12), these contributions have a logarithmic form 
and, in certain cases, give corrections to the leading asymptotic form 
(as, e.g., in an isotropic antiferr~magnet) .~~ 

"The authors are grateful to M. A. Ol'shanetskii and A. M. Perelomov 
for a discussion of this question. 

=exp ( i P a )  Y ( x i , .  . . , X N )  . (36) 

On the other hand, cyclic permutation xi -+xi  + , leads to the 
appearance of a sign factor: 
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