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A bosonic operator construction of bcPy theories (reparametrization and superconformal ghosts 
in superstring theories) on Riemann surfaces of arbitrary genus is proposed. Thefly theory is 
considered in the phase 11, in which differences from previously known results for the phase I on 
Riemann surfaces are uncovered. A global operator formalism is developed which takes into 
account the global holomorphic geometry in the structure of composite operators built from free 
fields (currents) on a Riemann surface. In particular, the "global" operators which break the 
supersymmetry of the world sheet are identified. An operator realization of "sewing" of two 
Riemann surfaces with bcoy theories defined on them is constructed. An explicit operator 
mechanism which leads to a rearrangement of the set of unphysical poles under sewing is 
constructed. 

1. INTRODUCTION 

The recent progress in multiloop calculations for su- 
perstrings (Refs. 1-7) and the attempts to derive explicit 
results for physical meaningful quantities (in particular, the 
cosmological constant) have demonstrated the significant 
complexity of a physical system like the superstring. It re- 
mains a hard problem to carry calculations to completion; 
the methods applicable to Riemann surfaces of lowest gen- 
era, ie., to the first loop diagrams of string theory will, as a 
rule stop working for surfaces of higher genus. 

It therefore seems desirable to carry out an analysis of 
multiloop amplitudes from the viewpoint of the structure of 
the more elementary objects which make it up. Such a "fun- 
damentalist" approach is possible within the operator for- 
malism for superstrings on Riemann surfaces of arbitrary 
genus (Ref. 8-20). In the sequel we shall mainly investigate 
the most nontrivial ingredient of the superstring: the super- 
conformal fly ghosts (Ref. 2 1 ), which form a system of bo- 
sonic fields of the first order. At first sight the existence of an 
operator formalism for thefly system on a Riemann surface 
seems problematical since such systems exhibit so-called 
"unphysical" (spurious) poles (Refs. 1-3): these poles arise 
from the position of any of the field insertions into the many- 
point amplitude not on account of a confluence of the given 
point and another insertion, but are a global effect, which is 
sensitive to the position of all the other insertions and to the 
global structure of the Riemann surface. 

An appropriate operator description of a fly system on 
Riemann surfaces nevertheless turns out to be possible with- 
in the framework of the formalism of global bosonization. '' 
This approach is a consequence of the development of a glo- 
bal operator formalism for the bc system (reparametrization 
ghosts) on Riemann surfaces (Refs. 16 and 17). We propose 
to treat the objects related to the o y  system as composite 
operators in a free bosonic theory, in such a manner that only 
operators are used which have controllable global features 
on the Riemann surface. The fundamental idea, applied first 
in the simpler bc-case (Refs. 16,17 ), consists in the use of the 
Baker-Akhiezer operator functions (Refs. 22-24), i.e., ex- 
pressions of the form 

where j is any (meromorphic) 1-differential (current) on 
the Riemann surface and $, j is the vector of its b-periods. " 
The expression ( 1.1 ) generalizes to the case of Riemann sur- 
faces the exponential 

z 

exp Ii. 
go 

which locally represents the normal-ordered product of the 
well-known operator exponentials: expd (z)exp ( - #(z,) ) :, 
obtained from the local representation of the current in the 
form j = d4, where 4 is a scalar field. In contrast to the 
"bare" exponential 

which depends on how the integration path winds itself onto 
the "homologies" (the basis cycles a,, b,, i = 1, ...,g of the 
homology), the expression ( 1.1 ) does not depend on the 
selection of the path from z,, to z if in the Abel map and the 8 
functions one always chooses the same path as in the expo- 
nential. 

Thus, in place of the scalar field 
I 

which is only locally defined and which effects "jumps 
around the homologies" (Refs. 25-27), we propose to con- 
sider the current j as a globally defined fundamental object. 
More precisely, in order to describe the&-theory one needs 
two currents, since the local bosonization formulas include 
two scalar fields 4 and x (Ref. 2 1 ) : 
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The presence of the "auxiliary" fermionic f v  system in 
the equations ( 1.2) represents a remarkable distinction be- 
tween the fly- and bc-system (i.e., a distinction between 
commuting first-order theories and anticommuting theo- 
ries). The fields { and 7 are anticommuting 0- and l-differ- 
entials on the Riemann surface, but they do not reduce to the 
ordinary bc-system with conformal spin 1, since bc-systems 
do not exhibit unphysical poles on Riemann surfaces, where- 
as the {v-system is exactly the carrier of unphysical poles in 
the fly-theory. It was noted recently (Refs. 28,29), that 
since the fields a( and 7 are both 1-differentials with a (lo- 
cal) operator product d{(x)l;l(y) = ( x  - y )  *, the substi- 
tution a{+q does not change (up to signs) the operator 
products, including thefl and y fields, and therefore an alter- 
native bosonization is possible, with permuted a l a n d  v. Fol- 
lowing Reference 30 we shall designate below this bosoniza- 
tion as the phase I1 of the fly theory. The phase I1 provides 
another splitting of the bcpy degrees of freedom into inde- 
pendent fields q@,$,$, compared topy-{v4, of which the 
first two are scalars and the other two fermions of spin +. 

The analysis of the bcfly theories in these new terms 
deserves attention in view of the importance of bch-systems 
both in applications to superstrings, and in a completely dif- 
ferent context (see Ref. 3 1 ). On Riemann surfaces of higher 
genera it is also not irrelevant which of the two l-differen- 
tials a{ and 77 is exact, since the permutation ~3tJ-v leads to a 
change of the global properties, and in particular of the posi- 
tion of the unphysical poles. The correlation function in the 
phase I1 are also different from the corresponding ones in 
phase I. However, the theory preserves its invariant mean- 
ing: indeed, multiloop calculations for superstrings include 
an analysis of the position of unphysical poles in the presence 
of picture-changing operators (Refs. 1-4, 7) .  The structure 
of the picture-changing operators (and of the BRST-opera- 
tors) in the phase I1 differs from that in the phase I (Ref. 
30), and it is this difference which needs to be compensated 
by a permutation of the unphysical poles. 

In Sec. 2 the bcpy theory is constructed in the phase 11. 
The global operator bosonization is developed, correspond- 
ing to a splitting of thefly system into the set of independent 
fields q~,@,$,$, and the correlation functions are determined. 

The phase I1 is related to an explicitly supersymmetric 
superfield bosonization of the combined bgpy system con- 
sisting of the reparametrization and superconformal ghosts, 
when the fields b,c,p,y are considered as the component 
fields of two chiral superfields (Ref. 2 1 ) : 

where 9 is the supercoordinate. The expression for the su- 
perfields in terms of two chiral scalar superfields leads, in 
terms of the component fields, exactly to the bosonization in 
the phase 11. 

On Riemann surfaces of higher genus one should not 
expect a realization of the global superfield formalism since 
the appropriate global Killing vectors are missing there. 
Therefore one does not succeed in giving a global meaning to 
the superfields (1.3) constructed in terms of the free fields 
p,@,$, $: the monodromies of the putative superpartners 
around homologically nontrivial cycles are essentially dif- 
ferent, preventing one from attributing a definite mono- 
dromy to the superfields B and C. 

We shall also see that the nearest global analogs of the 
component fields in Eqs. (1.3) turn out to be nonfree on 
account of global effects (properly those which spoil the 
monodromy). These fields will be expressed, as are all ob- 
jects in the bcpy theory, in terms of composite objects de- 
pending on the elementary fields p,p,$, and $ (more pre- 
cisely, their analogs in the global operator bosonization). 
The dressing of the fields p,@,$,$ occurring on account of 
the global effects (i.e., the transformation of fields into non- 
free fields) is another manifestation of the presence of un- 
physical poles in thefly system (and therefore in the p,@,$,$ 
~ y s t e m ) . ~ '  

One expects more from the operator formalism in string 
theory than a simple recovery of the correlation functions. 
In particular, one assumes that an operator formalism will 
turn out to be able to describe processes with a change of 
topology in string amplitudes, i.e., processes related to a 
change of genus of the Riemann surface. The two fundamen- 
tal operations which change the genus are the gluing on of a 
handle to a Riemann surface of genus g, leading to a surface 
of genus g + 1, and the sewing together of two Riemann 
surfaces of genera g ,  and g, into a single surface of genus 
g ,  + g,. The latter process is realized in the global operator 
formalism of Sec. 3 (the theory is again described in the 
phase 11). 

The global operator formalism turns out to be well. 
adapted to the description of the sewing process. The com- 
posite operators constructed from currents are subject to 
two kinds of changes in the transition from the Riemann 
surfaces C, and C, to the sewn Riemann surface C, a C,: first 
of all the currents themselves change (which is similar to the 
variation of the argument in a tensor transformation law); 
secondly, there occurs a form-variation of the composite op- 
erators. The latter is realized by means of multiplication by 
some composite operator, also expressed in terms of currents 
(an additional normal-ordering is required, see Sec. 3).  

A similar program was carried through for the anticom- 
muting bc-theories in Ref. 17: there the transformation of 
the currents was practically trivial and the sewing reduced in 
essence to a fusion of the operators (i.e., multiplication and 
normal reordering in the product). The complication which 
arises in the fly system is again related to the unphysical 
poles: the necessity to restructure the system of unphysical 
poles requires a nontrivial transformation law for the cur- 
rents. As a result of this the whole construction turns out to 
be less explicit than the bc-system. This represents, however, 
a manifestation of the nature of the f ly theory rather than a 
deficiency of the formalism; working with the bcpy theory 
we construct a unified formalism which generates not only a 
simpler sewing in the bc system, but also a more complex 
construction for the fly system. 

To conclude the Introduction we stress the fact that the 
global operator formalism is "invariant in the differential- 
geometric sense"; the formalism does not use any special 
parametrization of the Riemann surfaces and does not use 
distinguished coordinate systems in the neighborhood of dis- 
tinguished points (none of these exist). We do not appeal in 
general to a metric on the Riemann surfaces and deal exclu- 
sively only with analytic (holomorphic or meromorphic) 
objects. However, in the sewing process certain supplemen- 
tary information about each of the Riemann surfaces be- 
comes necessary. It consists of the coordinate systems fixed 
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near those points between which the sewing cylinder gets 
glued in (Refs. 32,33 ). This is a minimal set of requirements 
since the geometric process of sewing itself depends on these 
coordinates. We note that in Refs. 33 and 34 a systematic 
program is developed for removing the metric in favor of a 
coordinating system, including its application to sewing of 
Riemann surfaces. 

2.THE PHASE II OFTHE fly THEORY AND THE "SUPER" 
BOSONIZATION OF bcPy SYSTEMSON RIEMANN SURFACES 

Thus, let us consider a p y  system in which P and y are 
respectively 4 and - 3 differentials on a Riemann surface C 
of genus g(2. The standard bosonization formulasz1 have 
the form (1.2). As already noted in the Introduction, it is 
interesting to use an alternative bosonization of thefly theo- 
ry28,29 with the 1-differentials 6'f and 7 permuted relative to 
the formulas of Ref. 21. In this bosonization, which we call 
the phase 11,30 it is found to be possible to further split the 

tem formed by the three currents J ,  5 and H: 

<OIH(x)H(y) IO)=(O1J(x)J(y)IO>=o(x, y) .  (2.3) 

Here (010) = 1 and w ( ., . ) denotes the symmetric mer- 
omorphic bidifferential (see Eq. (A4) of the Appendix). In 
addition, we normalize the currents by the conditions 

01 01 a: 

and set (OIH 10) = (OIJ 10) = (015 10) = 0. 
The theory of the currents, J ,  5 and H is considered as 

free, which is expressed through the validity of the Wick rule 
for the calculation of correlation functions of higher mono- 
mials (see Appendix B) and the definition of the normal 
ordering of composite operators as a result of subtraction of 
all possible contractions which are simply defined by means 
of the correlation functions (2.3). Thus, in particular, 

H(x)H(y)=:H(x)H(y):+o(x, y).  
fields f and 7 into a pair of spin + fermions and an isotropic 

There are some delicate points related to this and other simi- 
scalar field. As a result of this the fields/? and yare (locally lar formulas: even on the ~i~~~~~ sphere ~ p 1  the left-hand 
expres%d in terms of the 'ystern of fermions $and and the side assumes not the ordinary product but the radial (time- 
scalars p and @ with the operator  product^:^' ordered) product (this is almost never explicit in the nota- 

1 tion). Similarly, in order to give a meaning to the left-hand 

$(x)$(Y)=-, T ( x ) T ( Y ) =  In(-Y) (2.1) side on a Riemann surface one must apply the procedure 
X-Y developed in Ref. 14, picking two points P + and P on C 

(and $$,$$,pp,@@ - 0)  by means of and the dipole differential @ p +  - p  which defines "equal- 
time lines" on C. 

B=eq, ~=e-~( -M+aq) .  (2.2a,b) We first consider the background operators which bo- 
sonizes the minimal set of insertions on the given Riemann 

In addition, the b- and c-fields (anticommuting reparametri- 
zation ghosts in string theory) are expressed in terms of the 

surface C. The number of these insertions is determined by 

same $&@: 
the Riemann-Roch theorem in the presence of unphysical 
poles (see Refs. 1 and 36 for bosonization in the phase I ) .  As 

The fields l a n d  7 are now "composite" and have the expres- 
sions 

Then the formulas fi = e - @ ~ ,  y = e 4 d l  (see Footnote 3) 
reproduce the equalities (2.2a,b) and are properly speaking 
the defining relations of the phase 11. 

The complete bosonization of the bcPy system requires 
the introduction of three bosonic objects. As noted in the 
Introduction, the scalar fields lose their single-valuedness on 
Riemann surfaces, and in their place the intrinsically defined 
objects are the currents. These currents, J, 7, and H corre- 
spond heuristically to the expressions dp, a@, and $$. Thus 
the fermions $and $ bosonize together with the other fields. 
This allows for an exhaustive description ofthe bcpy-system 
in operator language, and as a consequence, for a construc- 
tion of all the correlation functions in phase 11. Then, when 
we return to the discussion of supersymmetry and of super- 
fields, we represent the fields P, y in terms of JT, $ and ?. 

Being guided by the analogy with Eqs. (2.1) we define 
the following nonvanishing correlation functions in the sys- 

1 

will be seen below, the background operator describes the 
effects of the interactions of all other insertions with the glo- 
bal geometry of the surface C. We will not attempt to list the 
geometric motivation for the selection of a minimal set to be 
made below. The justification of the whole construction is 
the self-consistent correlation functions on the Riemann sur- 
face. 

The minimal set includes: 
1. g $-insertions, situated at the points x,,,NI ,..., N,-, 

on C; 
2. g - 1 exp p-insertions at M ,,..., M,- , ; 
3. 2g - 2 exp +-insertions at the points P ,,..., P, - , and 

one more exp p-insertion at x,,. 
For notational convenience we introduce the appropri- 

ate divisors JV = 2 N j ,  J? = Z M j ,  9 = BP, . Thus, we 
have the heuristic equality 

To give it a precise meaning in the bosonized theory one uses 
a construction whose basic ingredient, in addition to the op- 
erator 6 functions, is the operator insertions of the divisors 
[see Eq. (B 1 ) in the Appendix]. With their help we define 
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where Cis a normalized constant [it is explicitly given below 
in Eq. (2.8b) 1,  and where we have introduced the currents 

h ( u )  = H ( u ) - d ,  In E ( x 0 ,  u ) ,  (2.7a,b) 
j ( u )  = I ( u )  -2d, In E ( x o ,  u )  , 

which together with the current 

j ( u )  =J ( u )  -du In E  (x, ,  u )  ( 2 . 7 ~ )  

will be used below for the construction of the ghost currents. 
For generality we have also allowed the bc- and &theories 
to have different characteristics (respectively [t ] and [ f ] ). 

In the expression (2.6) normal ordering of the right- 
hand side as a whole has not yet been carried out. Reducing it 
to normal-ordered form according to Eq. (B5) of the Ap- 
pendix we obtain 

= : (d, J r ,  9 ,  xo) 
0 [ ]( 9 ' - 2 ~ +  $ 1 )  

b 

Making use of the explicit form of the D factors and choosing 
the normalization C we have 

Xexp 2 2 oi (u )  f ( H f l C Y )  
nz i-i a, a 

The normalizing c-number multipliers have been selected so 
that the structure of the zeros and poles should satisfy the 
formal correspondence with the naive expression (2.5). In 
addition, all the expressions are +-differentials with respect 
to each of the points M i ,  +-differentials with respect to the 
Pa and N , ,  and + - + = 0-differentials with respect to x,,. 

In Eqs. (2.8) A denotes the Riemann class and a is the 
Fay" g/2-differential: 

P 

( X  - y) in the argument of the Sfunction denotes the Abel 
map 

Comparing Eq. (2.8) with the equation (2.5) we see 

that at the heuristic level we have $(x)  -expJxH. In terms 
of the neutral $$-insertion this can be formulated precisely 
in the form4) 

1 
I ~ w I ~ ( Y ) = -  exp S a. (2.10) 

I 

The brace on top of the operator denotes that we do not insist 
on the existence of the individual factors in it. The anomaly 
of the ghost numbers is already saturated by the background 
operator, and for the construction of arbitrary correlation 
functions it now suffices to use operators which are neutral 
with respect to the ghost number, which can be thought of as 
insertions into the operator background (2.8). 

The expression (2.10) is a +-differential in each vari- 
able. Similarly we set 

Here, in distinction from Eq. (2.10) there exist zeros and 
poles at x = y in agreement with the local equalities 
( p p  ) = (@@ ) = 0. 

Now we can form the simplest of the composite neutral 
insertions, b(x)c(y).  The local formulas (2.2c,d) which ex- 
press b and c are applied to the neutral insertions listed 
above. As a result we obtain 

Cr_\ 

E(y7x0)3  :exp  [ ( J  + H ) :  . (2.13) ( x )  c { y ) =  E (x, y) E (x, xO)% 
(I 

However, the expressions of the fields B and y undergo 
changes compared to the local case, as soon as we have cho- 
sen the local $, 111 and exp( + p ) ,  and not the $*,$*, 
exp( e, *) (defined below; see footnote4). We obtain these 
by first constructing the bosonized representation for the {v 
insertion. One can give a meaning to the "global" modifica- 
tions of the fields {and 77 separately (and not only the "syn- 
thetic" expression {(x)v(y) ) . Operator 8 functions accom- 
pany each of the fields {and 77 on the Riemann surface5) 

These products are not assumed to be normal-ordered as a 
whole. Of, course, taken separately the fields $ and $ (and 
similarly e - @  and e@) are not neutral insertions, and the 
field @ has no unique definition on the Riemann surface. 
Equations (2.14) mean that every time one forms the neu- 
tral combination {(x)v(y),  the $and $entering into them, 
as well as e-@ and e@, must be combined pairwise into neu- 
tral combinations, and expressed in terms of currents ac- 
cording to Eqs. (2.10) and (2.12), after which the expres- 
sion has to be normal-ordered as a whole. 

Following this prescription we calculate the neutral in- 
sertion 
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- -- 
E (x ,  y )  E iy; xi) 

: 3 ( H  - J ,  ' .  . . 
u 

For future reference we write out the &current ob- 
tained from this (the square brackets [ - 1 denote the current, 
and the letters inside are the name of the current): 

[ g q ]  ( x )  =I?(.) - i ( x )  -d.ln e [ ] ( x-xo+$ ,). (2.16) 
h 

A similar procedure allows one to express the fl- and y- 
insertions in terms of 6 and q, namely: 

7 ( y )  = lim : $ ( x ) e x p [ t p ( x )  -9 ( x )  ] : : d,g ( y )  : 
S-CY 

Y X 

The prime-form E(x,y) at power + 1 appeared from 
the fusion of exp - p ( x )  with exp - +(x) .  Here a more seri- 
ous attitude toward the scalar fields on a Riemann surface is 
required than that adopted earlier: the fields q, and @ must be 
assumed to live on the universal cover of our Riemann sur- 
face and the correlation functions of q, (x )  and p(y)  must be 
set equal to lnE(x,y). (We remind the reader that the prime 
form is also defined on the universal cover!) 

The overall sign is not completely determined as long as 
we have not established conventions about the cocycle mul- 
tipliers in front of the exponentials in the scalar fields. We 
shall not do this, however. The minus sign was chosen in the 
last formula, following Ref. 29. One still needs to normal- 
order the expression we have obtained, i.e., introduce a 8 
function under the sign of the Wick product. This will shift 
the argument of the 8 function by x - y, after which it be- 
comes independent of y and can be taken out of the differen- 
tiation sign with respect toy. Finally, we obtain 

Similarly, 

I 
The meaning of the representations of the fields fl and y 
separately is the same as for the fields <and q (see above). It 
is, however, easy to obtain the neutral insertion fl(x) y(y) : 

where we have explicitly indicated the contractions required 
to bring the expressions into normal-ordered form. Thus, 

Here o, -, (y) = d,lnE(a,y)/E(b,y) is a dipole differ- 
ential (A7), and di differentiates the 8 function with respect 
to its ith argument. Thefly current obtained from (2.20) has 
the form 

We also indicate the expression of the third [in addition to 
(2.21 ) and (2.13) ] independent current-the ghost current 
of the bc-system: 

[bc] =j+h. (2.22) 

All the global bosonic representations we have obtained 
acquire a "physical" meaning when superposed on the oper- 
ator 97 of Eq. (2.8). We show how the fusion of each of the 
neutral pairs with the operator background occurs (the case 
of arbitrary, i.e., multiple and/or mixed fusions does not 
differ except in being more tedious). 

Applying the formulas of Appendix B, we easily find 
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where we have utilized the notation (B4).  We note that in 
Eq. (2.23) the antisymmetry between $(x) and the inser- 
tions $(N), N d ,  was asserted earlier ( x ,  enters asymmet- 
rically, as before, since in the background operator 
exp[ - @(x,)] still occurs. The poles and zeroes of the 
prime-forms in Eq. (2.23) coincide exactly with those of the 
operator monomial 

Similarly we find 

x[+Ia : [ exp J ( I+*) ]& 
Y 

Although we have not worried especially about including in 
the background operator the 3g - 3 b-insertions which pro- 
vide the 3g - 3 zeroes of the b field (and as many poles for 
the field c),  on the Riemann surface, nevertheless the re- 
quired zeros and poles have correctly appeared in Eq. (2.26) 

(the b-insertions are now effectively distributed over the 
points of the divisor JV + 9 ) . 

Slightly more care is required in introducing the 67- 
insertions into the operator back-ground. Procedures simi- 
lar to the ones carried out above lead to the following result: 

This expression is still to be multiplied by normalization fac- 
tors which do not depend on x, and y,, and follow from Eq. 
(2.8). Here 

( X ~ ) = X O ,  x i t . .  . r 5n; ( y i )  = y i t . .  - 9  yn. 

The formal vanishing of all operator currents in the normal- 
ordered expression (2.27) corresponds to taking the 
(01 ...I 0) expectation value and yields the correlation func- 
tion 

It is immediately obvious that the monodromy of the 67- 
insertions around the cycles b, is expressed by 

& 

so that single-valuedness in the 67 sector requires the choice 
d =A'". As a consequence g - 1 insertions of fields 
b = $ exp q, appear in the background operator. If one does 
not insist on considering the.& sector, and constructs the 
bcPy system directly in terms of the @$$ system, then the 
choiced  = X i s  not compulsory, as soon as thepy correla- 
tion functions will have the correct monodromy. The fields 
p y  do indeed exhibit good behavior on the operator back- 
ground (2.8), as follows from the fusion 
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- ( y 9  ' 0 )  ( x9  9, w,. ( y )  + l ( y )  - H ( y )  
E ( x , x o )  E ( Y , ~ )  

where overall normal ordering is implied in the right-hand 
side. Now the correlation function 

normalized to unit residue at the pole (x - y)  ' follows 
from Eq. (2.29) in the form 

The many-point p y  correlation functions are obtained 
analogous by fusion of the appropriate number of insertions 
(2.20) with the background operators (2.22). 

The results differ from those initially obtained on Ref. 1 
for the phase I. The structure of the background insertions in 
phase I1 is different (and turns out to be more delicate) than 
those in phase I. But the main distinction appears owing to 
the fact that in the phase I1 the field y (and not p, as in the 
phase I )  is expressed in terms of the differential df; this im- 
plies the differential structure of the square bracket in Eq. 
(2.30) [or, more generally, in Eq. (2.20) ]-the expression 
in the square brackets is a 1-differential with respect t o y  
rather than x. A similar "partial" [i.e., one which affects the 
extra 6' operator which originally come from Eq. (2.14)] 
permutation x t t y  in (2.20) and (2.29) could have been ex- 
pected, since it compensates the differences between the two 
phases (which are also caused by the permutation df-7) in 

the picture-changing operators and the BRST-operators. 
This "compensation," i.e., the reconstitution of identical re- 
sults in the two phases for the measure on the moduli space, 
occurs possibly only up to exact derivatives on the moduli 
space, a fact which needs additional investigation. 

Thus, the presence of in the neutral insertions (2.15), 
(2.20) of 6' functions which depend on the operator periods 
$, Jmakes the compositep-, y-, f-  and 7-operators nonfree. 
Correspondingly, the operator 6' functions lead to the ap- 
pearance of terms in the operator products, e.g., of the form 

which have no local poles, but are sensitive to the global 
structure of the Riemann surface. Also, during fusion with 
other operator insertions, namely those containing exp $7, 
they react to them by changes of the arguments of the 6' 
function. We stress the fact that in themselves the currents 
H, J ,  and 5 remain free during our whole consideration. 

Alternatively, the "global non-freedom" of the com- 
posite operatorsp, y, l a n d  7 can be described as a result of a 
"dressing" of the initial q,@$$ fields. Then the operators 0 ,  
y, f and 7 will be expressed in terms of the dressed fields by 
the same formulas (2.2) as in the local case. Indeed, as fol- 
lows from Eq. (2.20), the field operatorfican be tentatively 
identified with the exponential of the scalar field 

The c-number term 3 In E(x,,x) is not essential here, the 
most nontrivial part being the logarithm of the 0 function. 
The operator periods $,, J are identified with the jumps A, q, 
of the field q, around the b-cycles, and similarly for @. The 
monodromies of the field q, * are quite interesting: 

I 

akqW ( x )  =2 I wk-2niek, (2.32) 
UR' 

where u; is the initial point of the cycle b, and c, is the lower 
characteristic of the @-function. The operator terms in Eq. 
(2.32) have thus canceled out in (2.32), leaving behind a 
prescribed system of jumps dependent on the point x. 

Similarly we introduce 

and formally define the superfields 

cD'=cp'+6V, G'=qg+.BQ', (2.33) 

where 9 is the supercoordinate. Then the bosonization for- 
mulas (2.20), (2.30) can be formally rewritten in terms of 
the superfields ( 1.3) as follows 

B ( x ,  6 ) = p ( x ) + 6 b ( x ) = e x p  @'(x,  6 1 ,  (2.34a) 
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c (x ,  f t )  =C (5 )  + 6 y  ( 5 )  =Da' (5, f t )  exp (-0' (x ,  6 )  )', 

where D = a /a9 + 9a and a = a /ax. However, the fields 
<b* and m* are not globally defined on account of the differ- 
ent monodromy properties of their superpartners. Thus, for 
instance, if the point x winds around the cycle b, , the opera- 
tor $* (x)  acquires the factor 

Even if all the c-number factors which make this expression 
different from exph, q, * (x)  [see Eq. (2.32) ] are attributed 
to the behavior of the supercoordinate 9 around the cycle 6,  , 
there still remains a nonremovable difference on account of 
the operator terms. These nonremovable differences in mon- 
odromy are caused by the circumstance that the most natu- 
ral candidates for the role of component fields in the super- 
fields turn out not to be free owing to global effects on the 
Riemann surface. 

We have thus obtained what one might call a violation 
of global supersymmetry on the world sheet on account of 
the boundary conditions. We note that the whole N = 2 alge- 
bra of the supersymmetry of the bc& system is broken on 
the Riemann surface in a similar manner.2' The operators 
which generate the N = 2 supersymmetry in a local theory 
(the ghost current BC, the U( 1 )-current DB. C + 3/2B.DC 
and the super-energy momentum tensor) acquire "global 
additions" of the type d lnt9[,6 ] (... + $bj) in the operator 
products. This can be seen from the fundamental operator 
product 

s ( i ) c ( 2 ) = 5 +  ~ m * ( 2 ) + z , ,  a o * ( z ) n m 0 ( 2 )  
Z i z  

+ f t lz{D4'(2) Dm* (2 )  + d 4 * ( 2 )  -d In 8 (2)) 
+ ~ i r  [ i / ir6i+' /eftr]S+'/zQi~tz [ ( d  In 0 ( 2 )  In 0 ( 2 )  I 

+ 6,ftzD0'(2) d In 0 (2 )  + f t2z i z~ ,o ,a ,a ,  In 0 ( 2 ) ,  

where, as usual, z,, = z, - z, - $,if,, 9 ,, = 9, - 9,, 
@*(2) = @*(z2,a2) and dlnt9(2)=dz21nO[,6] 
x (2, - xo + $bj). The current which we already know 
from Eq. (2.16) is present in the last equation, which in fact 
violates the global supersymmetry on the world-sheet. 

3. SEWING OF bcpy-THEORIES ON RIEMANN SURFACES IN 
THE GLOBAL OPERATOR FORMALISM 

We first consider the geometric process of sewing to- 
gether two Riemann surfaces C, and C, of genera g, and g,, 
respectively (Refs. 32,33 ). For this we choose on each of the 
surfaces a point p, EC,. . Identification of p,  and p, leads to a 
surface C, with a necking-down. The opening of the neck is 
governed by a complex parameter t ,  as explained in Refs. 32, 
33. This process requires the introduction of local coordi- 
nates near these points, the removal of small disks around 
the points and subsequent gluing in of a cylinder). Thus one 
obtains a family {Ce, ) of Riemann surfaces of genus g, + g,. 
For a given sewing procedure ( C, ,C,) -* C, a C, = Ce, we 
assume known the expressions for the holomorphic and mer- 
omorphic differentials on Ce, in terms of the corresponding 
objects on C, and C,. Assuming an identification of the 

points on C, and C, (not too close top ,  and p,) with their 
images on the sewn surface, we obtain for the memorphic bi- 
differential on the "large" surface the expression 

where xi EC, . The right-hand sides of these equalities depend 
on the choice of the local coordinates in the neighborhood of 
the pointsp, and p,. 

A canonical homology basis on %' , is chosen in the form 

where i, = 1 ,..., g, ,  i, = 1 ,..., g,. Integrating R(x;) around 
the B-cycles we obtain the holomorphic differentials R, ( x ) .  
Thus, for example, 

and similarly for a,. Yet another integration yields the ma- 
trix of periods for the surface %, : 

where all the quantities which depend on t have order of at 
least t (and are written explicitly mod t in Ref. 32). 

With the period matrix (3.3) is associated a "large" 19 
function O [2 t; 1. In order to distinguish the Abel maps 
for different Riemann surfaces, we introduce the notation 

where x - x,, as before denotes 

and a similar expression for C,. 
For the restrictions to C ,  and C2 of the prime form 

@?(.,.) on C e ,  we have 

1 

In e ( ~ 1 1 ~ 1 )  = - I/,t [ ~ ~ l - ,  (P1) l2  + 0 ( tZ) .  
1 

(3.5) 
a 

We note that In e(x,x) = 0. Finally, a' ( . ), d?(. ) and 8 ( . ) 
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denote the Fay differentials (2.9) respectively on C,, C,, and 
% I .  

We now ask how to carry out at the operator level the 
sewing process we just described. Imagine that the equations 
(2.6)-(2.20) are written down three times, for the surfaces 
C,, C,, and C e ,  . How can one relate these three sets of opera- 
tors by means of operator manipulations? 

First of all, on the big surface there is its own back- 
ground operator, constructed according to the same rules as 
the operator 9Zl in Eqs. (2.5), (2.8), but in terms intrinsic to 
the surface Ce , : 

where R is a positive divisor, this time of degree 
Q ( g ,  + g, - 1). The currents Z,f ,  7 and the normal 
product f f can be introduced on the surface Ce,  without any 
reference to the sewing process, in complete analogy with the 
currents H, ~ , 7 a n d  the normal ordering ::, introduced on the 
surfaces C, and C,. Thus, [cf. Eq. (B2) 1, 

and in the other cases 

These equations assume the existence of a new "free vacu- 
um" It ) associated with the surface Ce,  such that 
( t  J Z ( x ) Z ( y )  It ) = n(x,y),etc. Wenotethat It = 0) coin- 
cides with the vacuum 10) of Sec. 2. We also assume that [cf. 
Eq. (2.4) 1 

If, however, the surface Ce, is really sewn together from 
two others C, and C,, then the currents denoted in script 
letters must somehow be related with those currents which 
we had earlier on C ,  and C,. In order to establish this corre- 
spondence we recall the expressions for the ghost currents 
derived in Sec. 2: 

[bc] =J-H-3d ln E(x,, .), [By] =P-H-J+Bd In E(xo, .), 

Similar expressions must hold on each of the Riemann sur- 
faces C,, C, and C e , .  Thus, for the sewn surface the last 
equation takes the form 

where, by analogy to Eq. (2.7b) 

By analogy with the construction of gluing on a handle 
and sewing together with Riemann surfaces in the bc-case 
(Refs. 16,17) we require that the ghost points should remain 
"the same" in the transition to the big Riemann surface. 
Thus, the left-hand side of the equation ( 3 . 9 ~ )  at x d ,  (re- 
spectively C,) must coincide with the restriction of (3 .9~ ' )  
to the image of C, (respectively C, in the surface C G ,  , and 
similarly for all the other currents. We are thus led to the 
following equations for the substitution of the currents: 

- 3dx1 In e (xo, x,), (3.1 la)  

We note that in the right-hand sides of the equations 
(3.1 la,c) neither the ::-, nor the 2 f normal ordering is re- 
quired, since the 0 functions entering these equations depend 
on isotropic currents and are therefore insensitive to normal 
ordering. Similar relations hold on the "C,-half" of the sur- 
face C e , .  For example, the corresponding analog of Eq. 
(3.1 la )  is 

(3.1 la') 

where x. plays the role of the point x, on the surface C,. The 
two Riemann surfaces are considered somewhat asymmetri- 
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cally from here onwards, since we intend to preserve x, as 
the position of the "redundant" {-insertion into Ce,; at the 
same timex, will play a different role on the sewn surface, as 
will be seen below. 

The transformations for the currents J and Hare  quite 
nontrivial, owing to the presence of the operator 6 func- 
t i o n ~ . ~ '  We note that the B-periods of the current f turn 
out to be independent of $, J ' and $,,? J 2 ,  since the integra- 
tion of the equalities (3. l la,al) around the b :,-cycles yields 
0 = 0. The periods of $,f must therefore be defined axio- 
matically, by giving the fusion rules for them, similar to the 
following 

- 
%(x) $ ?!=Q,(x) -I- :@(x)$ y : .  

B!J 

One should remember that the new currents generally 
do not have simple contractions relative to the ::-ordering. 
Only some combinations of these currents have simple ::- 
contractions: from the above formulas it follows that 

where x and y are assumed to be situated in the same "half' 
of the surface V ,  and w = w' or w = w2, respectively. 

These relations will be quite important below for the 
normal reordering of the ingredients of the bosonized theo- 
ries on C, and C2 from the corresponding (::) , and ( ::), or- 
dering~ to the :: ordering. The fact that the normal ordering 
leads to the appearance of only c-number w- and a-pairings 
means that we are dealing with free fields. Then the t t order- 
ing reduces to a subtltaction of all possible contractions, but 
since the ::-contractions have already been taken into ac- 
count by the ::-ordering of the expression, there remains only 
to take into account the B ( t )  part in each contraction [see 
Eq. (3.1)]. 

In order to see how the normal reordering really takes 
place we first consider the neutral insertions (2.13), (2.15), 
(2.20). The transformation of Eq. (2.13) turns out to be the 
simplest and it follows easily from Eqs. (3.1 1 ) and (3.12) 
that 

The right-hand side is exactly the bc-insertion on the Cl-half 
of the surface V, ,  expressed in terms intrinsic to Ce, . Simi- 
larly the substitution of (3.11 ) for the currents on C, into the 
expression for b (x, )c(y,) yields identities similar to ( 3.13) 
[but with the same x, in the right-hand side, see Eq. 
(3.11a1)]. 

Finally, before the sewing the neutral insertion 
b(xl)c(y2) and did not exist on C , ~ C , .  It is reconstructed 

by considering on Ce, insertions of the form 
b(x, )c(y,)b(x,)c(y,) ClIIC2; from these the C, C2-inser- 
tion is extracted self-consistently, since both b(x, )c(y,) and 
b(x,)c(y2) were expressed in terms intrinsic to the surface 

% I .  

Further, it is convenient to split the lr]-insertion (2.15) 
into two normal-ordered factors: 

(the characteristics of the 6 functions have not been indicat- 
ed). Making use of Eq. (3.1 1 ), we obtain 

Now the application of the appropriate formulas (3.12) to 
each of the ::-ordered factors yields 

1 8 ( ~ 1 ,  xo) 
( ~ 1 )  = 8 (x,, y,) 8 (y1, xo) 

which is the % , -analog of the second line in eq. (2.15). It is 
now obvious that the 2 :-ordering in Eq. (3.15) yields exact- 
ly the %, -analog of Eq. (2.15) in its definitive form. Similar 
considerations are applicable to the C,-part of the surface 
Ce, and to the "mixed" insertions. 

Finally, the analysis of thefly-insertion (2.20) requires 
a representation in terms of its limit for y; +y, of the follow- 
ing expression with separated points and "split" normal or- 
dering: 

As a result of the substitution (3.1 1) and the normal reor- 
dering in each factor, the equation (3.16) takes the form 
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The total 2: ordering leads to an expression in which one can 
set y; equal t oy ,  (recall that In e(y,,y,) = 0).  As a result 
one obtains an expression for the &-insertion in terms in- 
trinsic to the surface %, . 

Now the problem of transformation of the background 
operator for the surface C, into the background operator for 
the surface %, [see Eqs. (3,6), (3.7) 1 can be reformulated 
in more symmetric manner: we describe the sewing of bcPy 
theoriesasabi l inearmap{9[ . ] )~{9 [.])-+{9 [.]),re- 
alized by operator multiplication (together with normal 
reordering) of the product 9 [C, 1.37 [C,] by some com- 
posite operator. The structure of the product of the back- 
ground operators 9 [C, ]  and 9 [C,] which underlies the 
transformation in 9 [ V , I ,  is the following: 

1 1  2 2  1 2  1 
%[[C]-~[C2]=:DlD,::DlD,::0::0:---, (3.18) 

0'0' 
(here 8 denotes the isotropic 6 function and the normal or- 
dering on C, and C2 are denoted in the same manner). 

Thus our target is now the transformation of (3.18) 
into (3.6), the background operator for the surface %, . We 
first consider the 6 function in the numerator of Eq. (3.18). 
It turns out to be sufficient simply to fuse them into one :: 
normal-ordered expression. As was shown in Ref. 17, this 
fusion occurs in the following manner 

Here the period matrices have been explicitly indicated [see 
Eq. (3.3) 1. The right-hand side of (3.19) is indeed the re- 
quired ingredient of the operator (3.6). 

We further consider the product of D-factors in (3.18 ) . 
In distinction from the preceding case, here it does not suf- 
fice to do a simple normal reordering and two types of cor- 
rections become necessary. 

First, the deformation of the holomorphic differentials 
wi, and mi. into the differentials a,, on the big surface re- 
quires the following factors: 

6~ = exp - - I  23x2 {t$ 6 a i 1 ( u ) S ( ~ + ~ + 2 $ )  
il=l O i l  

where the integrals do not depend on the lower limits. Here 

Sw = Cl - rc) are the variations of the holomorphic differen- 
tials mi, and w, [see Eq. (3.2) I .  

The different c-number factors which come from var- 
ious sources-the transformation of the D-factors under the 
substitution (3.11 ), the normal ordering and the fusion with 
(3.20)-are successfully absorbed almost completely into a 
redefinition of the c-number normalization factors. Thus, 
for instance 

up to a numerical factor which does not depend on x,, JY' 
and 9 I .  Here Z) is given by Eq. (B1 ) with mi, replaced by 
ail ,  i, = 1. . .g,. The notations ~ ( J V )  and Z?(N,x) are 
analogous to (B4);  further 

(1) - 1  g; Z (x) = exp $ ad. (u) ln 8 (u, 2) 
f,=l as1 

is the "C,-contribution" to the (g, + g2)/2 Fay differential 
Z on %, . Similar relations hold for the quantities defined on 
c2. 

Secondly, in summing the powers of the divisors of the 
insertions in C, and C, we do not obtain the required power 
of the divisor on %, . Indeed, similar to Eq. (2.5), the "big" 
background operator effectively bosonizes the following in- 
sertions 

whereg = g, + g,. In addition to the presence of the naively 
obtained two 6 = $e -'f'-insertions, the operator 
37 [C,] 3' [C,] misses the insertions ep$ and e*e@ at some 
points. Fortunately, the bosonizing background operator is 
not literally the expression (3.21 ), so that there does not 
arise a problem with the two 6. One must just complete the 
divisors JY' + ,/p and 9 + 9 with some points N ', P ' 
and P ". The choice of the latter is arbitrary, but the simplest 
formalism results when all three points coincide with x. - 
the position of the g-insertion on C,. In this case no further 
operator multipliers are required because the product of the 
expression (3.20) with the D-factors in (3.18) already de- 
pends on x, , since 

exp ( 8  + g + 2 ~ )  - 9 (x,) e-vlx*) e ~ ( ~ * ) .  

Finally, when the "isotropic" denominator in (3.18) is 
replaced by the one which is defined on Ce , no complications 
arise in the normal ordering and the desired changes can be 
realized simply by multiplication. 
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Thus, the expression (3.20), multiplied by the appro- 
priate isotropic 0 functions, represents the sewing operator 
up to normalization. Collecting all the numerical factors and 
taking into account the difference in normalization on 
c,UC, and %, , we introduce the sewing operator G 

- 1 
6=: exp - 

2ni 
p=1 ap 

where the constant c depends only on the three surfaces 
C,,C2 and 5 f , ,  but not on the chosen divisors, etc. In the 
right-hand side of Eq. (3.22) an overall 2: normal ordering 
is not assumed (otherwise the arguments of the 8 functions 
would change). 

In the presence of the relation (3.11 ) between the three 
sets of currents (on C,, C2 and V ,  ) the sewing operator 
satisfies the equality 

The background operators in the left-hand-side are given by 
Eqs. (3.1 l ) ,  rewritten respectively for C, and C2. Similarly, 
in the right-hand side, the expression 93' [C,  a C2] is defined 
in Eqs. (3.6) and (3.7), where one must set 

[the prime forms E(x, ,  x, ) for coinciding arguments are 
removed from the normalization factors]. 

Thus the global operator formalism for the bcpy theo- 
ries on the sewn surface are reproduced as some bilinear 
combination of analogous operator constructs on the sur- 
faces being sewn together. It should be noted that we have 
never really used either the explicit expressions for the varia- 
tions of the differentials on C, and C2 into such on 
C, a CZ = '3' (, or any expansions in powers oft .  The equa- 
tion (3.23) is thus exact, including the agreement of normal- 
izations. 

The operator (6% [C2] ) in Eq. (3.23) can also be in- 
terpreted asymmetrically, as the gluing of C, to C,. In this 
manner one can in principle achieve arbitrary Riemann sur- 
faces, starting from a given one C = C,, for which one many 
choose the Riemann sphere (the previously assumed restric- 
tion to g,,g,<2 was technical and is easily removed). How- 
ever, the effectiveness of the whole construction suffers from 
the essential nonlinearity in the transformations of the cur- 
rents; see Eq. (3. l l ). This nonlinearity arises on account of 
the d In B term in the bosonized 67 current (3.9c), which in 
turn comes from the B operators in Eqs. (2.14)-(2.15). 

APPENDIX A 

The prime form and the formulas related to it 

The prime form E(x,y) is a 1/2-differential in p c h  of 
the variables x and y belonging to the universal cover Cof the 
Riemann surface C. The prime-form E(x,y) is skew-sym- 

metric under a permutation of the arguments and has the 
local expansion 

where Q,, = Q,, . It can be seen from (A1 ), in particular, 
that the prime form has a first-order zero at x = y. When the 
point y traverses the cycles a i  and bi,  the prime-form be- 
haves respectively as 

where wi is the ith holomorphic differential. 
The meromorphic differentials on C with a pole at the 

single point a are defined as 

These are objects globally defined on C; the multivaluedness 
in (A2) disappears from (A3 ). Most important is the differ- 
ential wL1'(x) with a second-order pole; in the main text it 
manifests itself as the bidifferential w (x,a) which is symmet- 
ric with respect to x and a: 

(1) o ( x ,  a )  =a4 ( x )  da=d,d, ln E ( x ,  a )  

We now obtain from Eqs. (A2) that 

$a (., a )  =o, $61 (., a )  =ad ( a ) .  (ASa,b) 
ac b~ 

The "diagonal" of the regular part of the expansion (A4) 
defines a projective connection S o n  C (Ref. 32) : 

m , n S i  

One more important object is the so-called dipole mero- 
morphic differential with simple poles at two selected points 
a and b with residues respectively equal to - 1 and + 1: 

Obviously 

and similar to Eqs. (A5), 
b 

9 ob-4=o, $ oh-. = j Oi. 

01 b~ a 

APPENDIX B 

The operator insertions of the divisors 

We consider the Riemann surface C of genus g. For an 
additional divisor X of degree Q(g - 1 ) we define the fol- 
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lowing composite operator, depending on the operator cur- 
rent I with zero a-periods: 

(B1) 

Then if the current I * is conjugate in the sense 

z(x)r(y)=c.d~x, y)+:Z(x)r(y): (B2) 

(and the II * theory is free, i.e., the Wick rule holds), then 

where we have introduced the notation 

E ( x , Y ) = I I  E(x,K) (B4) 
KEW 

(we remind the reader that the divisor X is positive). Simi- 
larly, 

which is established by a direct calculation. The term 2aQ in 
(B4) is added to each component of the argument of the 0 
function. On account of the quasi-periodicity it can be taken 
out as the common factor 

which we neglected in the main text, in order to simplify the 
writing (it is not hard to include it, but is manifestly unnec- 
essary for even Q) . 

I '  We adhere to the invariant notation for the integrals: all integrands are 
considered 1-differentials, i.e., in one (and therefore in any) coordinate 
system they contain the differential of the integration variable. 

2'The topological (more correctly, holomorphic) nonfreedom of the 
fields in the_& theory does not contradict the presence of the free La- 
grangianbdy, and in the language of functional integrals it is related to 
nontrivial "boundary conditions," i.e., to the fact that the soliton sec- 
tors (Refs. 25-27) for each of the two scalars which bosonize the fly 
system are not independent. " In this section q denotes a scalar field which is isotropic in the sense of 
operator products, whereas the field 4 in Eq. ( 1.2) is expressed in terms 
of the new variables as follows: 

4'Equations (2.10)-(2.12) involve the free fields $, $,exp( + q )  and 
exp( + @). The difference between the B- and y-fields and the free 
fields, occurring on account of global effects, is then associated with the 
additional factors which modify the local expressions (2.2a,b). Alterna- 
tively, one may preserve the expressions forpand y in the form (22a,b), 
but in terms of modified nonfree fields $*, $*, e, * and @ * (cf. below). 

"We note that Eq. (2.14a) agrees with the assertion that the background 
operator (2.8) describes, among other things, the insertion ((x,,). 

"We note that in terms of the multivalued scalar fields of Sec. 2 the 
equation (3.11) can be interpeted as the-conservation of the "super- 
fields" @* = e, * + a$* and @ = 2+ + 9p in the sewing process. 
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