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A compact expression is proposed for the polarization operator in a constant electromagnetic 
field. We derive the asymptotic behavior of the polarization operator in weak and strong electric 
fields, and appropriate applicability conditions are found for the crossed-field approximation. We 
show that in an electric field, the imaginary part of the polarization operator never vanishes. In 
the subthreshold domain it is exponentially small if the field is weak, while above threshold it 
oscillates as a result of interference among the individual components of the electron wave 
function. We go on to examine the effective charge ofthe electron determined by the polarization 
operator. A modest generalization of the effective-charge concept enables one to extend to the 
crossed-field case the analogy between the field dependence and the virtual photon momentum- 
transfer dependence for effective charges. 

INTRODUCTION E = [  (F2+32) %-9]%, 

The properties of the photon polarization operator in a q = 9 / e = &  [ ( F 2 + B z )  'l2+T] Ih, 

constant magnetic field have been studied in detail,'-' as 
have its properties in a constant crossed field.'-' Thus far, where 
however, the electric-field case has received scant attention; 1 1 
the latter therefore constitutes the main thrust of the present 5 = - F,$',, = - ( H z - E Z )  , 

4 2 
paper. We consider all three cases-magnetic, electric, and 
crossed fields-in only one section, where we deal with the 1 

B  = - F,$',,'=EH. 
effective charge of the electron. 4 

The paper is as Section is 'On- We also make use of the invariant dimensionless parameters 
cerned with general questions bearing upon the tensor struc- 
ture of the photon polarization operator in an arbitrary con- h=-k2 /mZ,  % = I  el m-3[  (F,,k,)2] '". 

stant field. We introduce a compact expression for the 
polarization operator, an expansion in terms of four tensors 
in standard form. The coefficients of that expansion are 
functions of four invariant parameters derived from the elec- 
tromagnetic field tensor F,, and the photon momentum k, . 
In Section 2, we calculate the corrections that distinguish the 
polarization operator in a weak electric field from the polar- 

All invariant quantities in the present paper are functions of 
the four invariants E ,  7, f t ,  and A. Noninvariant expressions 
are always rendered in a reference system in which E and H 
are parallel, and point along axis 3. The parameters E and q 
in that system have a simple physical meaning: E = [El, 
7 = * I H I, and the expression for x takes the form 

izat i~n operator in a crossed field; those corrections estab- ~ = = l e I  m-3 [ q 2 k , z + ~ 2 ( k 1 2 - k Z ) ]  % 
lish the limits of applicability of the crossed-field approxi- 
mation. The asymptotic behavior of the polarization 
operator at a material surface is also studied in Sec. 2 for a 1. GENERAL EXPRESS~ON FORTHE PHOTON 
strong electric field. In Sec. 3, we study the effect of an elec- POLARIZATIONOPERATOR 
tric field on pair creation by a virtual photon. We derive the In an arbitrary constant field, the photon polarization 
dependence of the imaginary part of one of the polarization- operator is a function of the operators 
operator expansion components on the momentum transfer 
of the virtual photon. Finally, Sec. 4 is concerned with the -ia,, -iFwv&, -iF,;av, -iF,$vdk, (1) 
fundamentally important question of the effective charge of which commute with the momentum operator - id,, . The 
an electron immersed in an external field. 

In this paper we employ a system of units with 
polarization operator is therefore diagonal in the momen- 
tum representation: fi = c = 1. Electromagnetic quantities are measured in 

Heaviside units, so that the fine structure constant is lI,,(k, Iz' ,  F )  = ( 2 ~ ) ~ 6  ( k 2 k r )  III , (k ,  F ) .  (2 )  
a = e/4.7r -, 1/137. Four-dimensional quantities may be 
written in Pauli notation, The polarization vector of a photon with momentum k,, can 

be expanded in terms of four independent vectors 
a ,=(a , ,  a,, a,, ia,), az=a,z+a,,2, 

k,, L,=F,,k,, L,'=F,,'k,, 
where a: = at + a: and a: = a: - a:. We make use of the k2 
tensor invariants F,,,. and F:,. = i~ ,,,, A ,  F,,/2; G, = LZ FwPvikA+k,.  ( 3  
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The symmetry, transversality, and C and P invariance 
of the operator II,, (k,F ) imply that it can be expanded in 
terms of four tensors (see (Refs. 7, 8), 

L,L, L,'L,' L,L,'+LvL,' G,G, -- 
~2 t L.2 r ' G2 ' (4)  

LL' 

where 

ns=-- 2am2h j as asf [ B.B, exp (-im20) 
0 

ssl -- exp ( - i m ' ~ ~ ) ]  + no. 
(s+sl) The vectors L, , L ,T, and G, are orthogonal to k, , and the 

vector G,, is also orthogonal to L, and L z .  On the other 
hand, the latter two vectors are only orthogonal if at least 
one of the invariants E, 7 vanishes, i.e., for purely magnetic, 
purely electric, or crossed fields. 

In general, if instead of L we use the vector 

where 

we obtain a set of mutually orthogonal vector k, , L, , E,, , 
and G,, . We therefore have 

where sin eqs . sin eqs' sh ees . sh ees' 
A ,  = A ,  = (11.7) 

eq sin[eq (s+sl) ] ' ee sh[ee  (s+s') ] ' 

Making use of Eqs. (6),  (8 ), and (9),  we can express the 
tensor G,, G,./G in terms of the tensors 

sin eqs-sin ells'-ch [ee (s+sl) ] 
B, = 

sin2[eq (s+sl) ] 7 

Thus, in addition to (4), one could also take these four ten- 
sors as a basis for the expansion of II,,, (k,F ). 

The general expression for the polarization operator in 
the one-loop approximation has been derived by Batalin and 
Shabad.9,'o In a previous paper," the present author de- 
scribed in detail the procedure for expanding n,,,. (k,F ) in 
terms of the tensors ( 10); here we cite only the final result: 

cos[eq (s+sl) 1. sh ees . sh ees' B, = sh2[ee (s+sl) ] , 

sin 2eqs . sh 2ees' 
B, = 

4 s in[eq  (s+sl) ] . sh[ee  (s+sl) ] 

sin2 eqs . shZ ees' BI =, 
eq  sin[eq (s+s') 1. sh[ee  (s+sl) ] ' 

The function q, in (1 1.4) defines the photon polarization 
operator in vacuum: 

where 
It is not hard to see that the functions A,  ( i  = 1,2) and 

Bi ( i  = 0, ..., 4)  are scalars. It is also immediately clear from 
Eqs. (11.1)-(11.8) that thefunctionsri(i = 1,2,3) aresca- 
lars, while r4 is a pseudoscalar. The latter property is related 
to the fact that (L,, L + L,.L )/LL * is a pseudotensor, 
while II,,, ( k , F )  must be a true tensor. The function r4 will 
vanish if either E of 7 is zero, a result we can demonstrate 
explicitly by expanding .rr, in powers of E and 7, retaining 
only the first nonvanishing term, and replacing s and s' with X exp (--im20), 
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(s+sl)  v = -  (ssl  ) YI 
5=m2X% -------- 

ss' ' (s+sf ) '" ' 

We then obtain 
m 

where 

and 
m 

is related to the Airy function. 
To conclude this section, we point out that in the special 

case of a magnetic field, our result is identical to the result 
previously obtained by Tsai (see Ref. 2 ) ,  and for crossed 
fields, it is the same as a result first obtained by Narozhnyi.' 

2. ASYMPTOTIC BEHAVIOR OF THE POLARIZATION 
OPERATOR AT A MATERIALSURFACE IN WEAK 
AND STRONG ELECTRIC FIELDS 

In a purely electric field (7 = 0, E # 0 ) ,  the function .rr, 
goes to zero, and the vectors L,, and L ,T become orthogonal. 

Let us first consider a weak electric field (we shall iden- 
tify the criteria for weakness below). Assuming 71 = 0 in 
Eqs. ( 11.2)-( 11.8), expanding the integrands in powers of 
E ,  and transforming to the variables ( 12), we obtain 

where 
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is a function which was introduced and investigated in Ref. 
7. Instead of E in Eqs. (15.1)-(15.3), we make use of the 
dimensionless parameter 

If we put p= 0 in (15.1)-(15.3), we obtain the result 
quoted above for the polarization operator in a crossed field 
(see Refs. 6-81. Terms proportional to P 2  in ( 15.1 1-( 15.3) 
are corrections to the cross fields, and an ellipsis represents 
terms that are small compared to P as p- 0. 

At a material surface we have A = 0, the quantity a, 
vanishes, and n,,, take the form 

rn 

2am2 
n l , ~  = - { ( 2 v + 1 ~ 3 ) j '  ( 2 )  

1  
+5 ( v - 1 ) )  f l" ( 1 )  - (2U2+5Uf 2 F 3 ( ~ + 2 )  ) f ( ' )  ( Z ) ]  +. . .} , 

with z = ( V / N ) ~ ' ~  ; the upper sign in ( 17) corresponds to a , ,  
and the lower to a,. 

For x < 1, the most important contribution to the inte- 
gral in ( 17) comes from u- 1, so that we have z> 1. Taking 
advantage of the well known asymptotic behavior off (z) as 
z- w (see Refs. 7, 8), we obtain 

where the ellipses in parentheses represent terms small com- 
pared to unity as x-0. The approximation (17) therefore 
holds for the real part of the functions a,,, when we have 

and for the imaginary part when we have 

Interestingly enough, the right-hand side of ( 19) makes no 
reference to x; in other words, in calculating Re a,,, , we can 
assume that we are dealing with crossed fields regardless of 
the relationship betweenfl and x, as long as the field is much 
weaker than the characteristic quantum electrodynamic val- 
ue 

m2c3 
Fo = - fi: 4.4. lo i3  Oe, 

efi (21) 

which is far stronger than fields currently attainable in the 
laboratory. Normally, in calculations such as these, one can 
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assume crossed fields as long as the parameter f l  is small 
compared to x. 

The imaginary part of the polarization operator yields 
the probability of pair creation by a polarized photon. Spe- 
cifically, the total relative probability for pair creation by a 
photon with polarization e,, is (see Refs. 7, 8)  

where 

Substituting the expressions in (18) for Im a,,, into (22) 
and averaging over the photon polarization (note that we 
have (ee, )' = 1/2), we obtain for the probability ofpair cre- 
ation by an unpolarized photon 

For x % 1, we may use the Taylor expansion of the func- 
tion f ( z ) ,  

m 

As a result, we obtain 

1 B" +T- (If.. .)I +... , 
3 x %  

In the present case, the prerequisite for the approximation 
( 17) to hold for the real part of a,,, is 

and for the imaginary part, it is 

Note that NarozhnyiI2 calculated the probability of 
pair creation by a photon in a weak electric field in a different 
way. The conditions (20) and (28) for the imaginary part of 

are the same as the corresponding conditions obtained 
in Ref. 12, but Narozhnyi obtained twice as large a value for 
the coefficient of p '/x"n Eq. (23 ) . The reason for the dis- 
crepancy is not yet known. We also point out that a general 
expression for the probability of pair creation by a photon in 
an arbitrarily strong electric field was first obtained by Niki- 
shov. I "  

Let us now consider the case of a strong electric field. 
Assuming v = O  and /Z=O in Eqs. (11.2), (11.3), and 
( 1 1.6 )-( 1 1.8 ), and transforming to variables 

we obtain 

where 

x2 sh x . sh ( y - x )  
p=y +(;I2[ x-F- 

sh Y 

We assume x Sfl. The main contribution to I ,  comes at 
x -y -  1, so we can put f l  = m. The main contribution to I,  
comes at x,, -ye, -8) 1, which facilitates a significant 
simplification of the integrand. The net result is then 

In the latter two equations we have made use of the scale- 
invariant parameter 

As noted above, (34) and (35) yield the asymptotic behav- 
ior for f l )  1 and a 5 1. If a 4 1, the expression for a, simpli- 
fies considerably: 

An interesting result can be obtained by assuming a & 1 from 
the very outset. We can then put x = 0 in (33) and integrate 
I ,  and I,  over x.  

Integrating by parts, we can reduce the remaining inte- 
grals over y to integrals of meromorphic functions. There is a 
theorem on the series expansion of meromorphic functions 
in elementary fractionsI4 which makes it possible to calcu- 
late the imaginary parts of the integrals I ,  and I? exactly. The 
results are 
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where the ellipses denote terms that vanish as x-0. Equa- 
tions (38) and (39) apply to both strong and weak fields. As 
B- m,  Eq. (39) goes into (37), while Im a, vanishes in 
accordance with (34). 

Substituting (38) and (39) into (22) and averaging 
over photon polarization, we obtain for the pair-creation 
probability 

OI 

This series resembles the expansion obtained by Schwinger I s  
for the imaginary part of the Lagrangian of a constant elec- 
tric field in the one-loop approximation: 

co 

Both series contain powers of the quasiclassical exponential 
e-"/*.  NikishovIh has shown that up to a constant factor, 
the quantity P 2m4e - "'"s precisely the probability of pair 
creation by an electric field per unit four-volume. Based on 
that result, Ritusl' has carried out a detailed analysis of the 
expansion (41 ) ; in particular, he proved that the nth term of 
the series (41) corresponds to the coherent production of n 
pairs within the very same pair-creation four-volume. Con- 
sequently, by analogy with Ref. 17, we may interpret the nth 
term of the series (40) to be the probability of the coherent 
production of n pairs by a real photon in an external field. 

3. EFFECT OF AN ELECTRIC FIELD ON THE THRESHOLD 
BEHAVIOR OF THE POLARIZATION OPERATOR 

In vacuum, the functions R,, a2, and r4 are equal to 
zero, and the function R, reduces to q,. The imaginary part 
of the latter is'given by the well known formula 

where B ( x )  is the Heaviside step function. Near threshold 
(A = 4), the behavior of tht function Im .rr, is nontrivial. 
Corrections to Im TO that appear when an electric field is 
turned on are therefore of substantial interest. To calculate 
these corrections, we make use of Eq. ( 15.3). Instead of u, we 
use the variable z defined by Eq. ( 14); then 

where 

The latter two equations contain the parameter 

b= ( 4 4 )  % / x .  (44) 

For the sake of definiteness, we assume that arg b  = - a 
when A 3.4. This is consistent with the correct sign for Im a,, 
in Eq. (42). The parameter x may be expressed in terms ofp  
and A as 

x=$ (h+kLz/mz) '". (45 

For simplicity, we takeA)O from here on. Then x will be real 
and nonnegative, so that the integration contour for J,, and 
J, will lie on the real axis. 

Consider first the case 1 b  I $ 1. If we have arg b  = 0, then 
z% 1 holds over theentire domain ofintegration for Jo and J , .  
If, on the other hand, we have arg b  = - a ,  the integration 
path can be rotated by - ~ / 2 ,  yielding 121 $ 1. For I b  ( $1, 
then, one can take advantage of the known asymptotic func- 
tionsf, (2) and f ( z )  as JzJ  - cc, (see Refs. 7, 8).  

Assume now that the opposite is true, and ( b  I < 1 holds. 
In that event we may put A = 4 in the expression for a,. 
Furthermore, we shall assume x 4 1. In the integrals for Jo 
and J l ,  we may then put u = 4, since we have z,, - 1 there. 
The net result for either case is 

where 

2 lbl 
cos -+ . . . , I b 1 ~ l ,  arg b=-n, 

3 

( be-"'+. . . , 1 b I ,  arg b=O, 

For (46.1 )-(46.3) to hold, it is necessary that the term pro- 
portional to /3, be small compared to the leading term. Far 
from threshold, therefore, the parameter b  must satisfy 

The two-sided inequality (47) will hold for any A f 4 if 
the field is weak enough and k : is large enough. Notice that 
the field correction to Im P, oscillates rapidly for A > 4, but 
that the sign of the function Im P, remains unchanged as A 
varies, since in the present approximation the second term in 
(46.1) is much smaller than the first. Thus, Im T ,  is always 
negative, as it must be by unitarity. Sufficient conditions for 
the validity of (46.1 )-(46.3) near threshold are 
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Note that ( 4 8 )  contains no condition P2/x4" & 1 ,  since for 
A =  4 we have x>,2fl, SO that in a weak field that condition is 
satisfied automatically. 

Equations (46.1 )-(46.3) provide a clear-cut demon- 
stration of the effect of an electric field on pair production by 
a virtual photon. Clearly, when a field is turned on, the pair- 
production threshold is "smeared out." In the subthreshold 
regime, the magnitude of Im n-,-i.e., the probability of pair 
creation by a photon-is exponentially small if the field is 
weak, behavior that is typical of processes that are forbidden 
in the absence of a field.' 

Above threshold, low-level oscillations contribute to 
the vacuum function Im q,, the explanation being that when 
a pair is created the electron wave function leaving the cre- 
ation region, where the process is unperturbed by the field, is 
nevertheless distorted by the field; thereupon, components 
of the wave function whose wave vectors point in different 
directions will interfere with one another. A detailed study 
of such interference effects appears in the last section of Ref. 
19. The electric field exerts a particularly strong influence 
near threshold: there, the magnitude of Im T, is proportion- 
al to the cube root of the field strength. 

4. EFFECTIVE CHARGE OFTHE ELECTRON 
IN AN EXTERNAL FIELD 

The photon Green's function in a field satisfies the Dy- 
son equation 

The most convenient method of solving this equation in- 
volves expanding 7 ~ * ,  (k,F ) in tensors constructed from the - 
mutually orthogonal vector kt,, L,, , L, , and G, : 

where 

The transverse part of the Green's function shares the same 
tensor structure as the polarization operator: 

Substituting the expansions (50.1 ) and ( 5 1 )  into Eq. ( 4 9 )  
and equating coefficients of like tensors on the two sides of 
the equation, we obtain 

The photon Green's function in a constant electromag- 
netic field was first derived by Batalin and Shabad."' The 
new representation derived here, however, is more compact 
suited to an investigation of the effective charge of the elec- 
tron in an external field, upon which we now embark. 

The asymptotic form of the transverse part of the 
Green's function as k ' -. 0 is 

where we have written T; = d ~ , / d k  '. We introduce the no- 
tation 

Then as k 2 - 0 ,  the asymptotic form of the expression 
e2G::,. (k,F ) formally acquires the vacuum form describing 
a new "charge" 2. The Green's function g!,,. (k ,F ) and po- 
larization operator R,,,. (k ,F ), which are obtained by re- 
placing e2 with Z2, satisfy Eq. ( 4 9 )  and have the same tensor 
structure as G,,. (k ,F ) and KI,,,. (k,F ), so the equations ( 5 2 )  
still apply. Substituting those relations into the identity 

we easily obtain the relationship between K I i  and f i t  (we 
mark the "new" quantities with a tilde to distinguish them 
from the "old" ) : 

Z 2  n, = -, ( k z + H i )  -kZ ( i = l ,  2,3) ,  
e 

Z Z  
if, = - HI. 

e2 

The identity ( 5 5 ) ,  viewed as an equation in the unknown 
quantities T i i ,  therefore has a unique solution. The nontri- 
vial fact is related to the renormalizability of quantum elec- 
trodynamics in the presence of an external field, and makes it 
possible to use the quantity Z as a new electrodynamic cou- 
pling constant. 

Let us clarify the physical meaning of this quantity Z. 
Consider the interaction between two well-separated elec- 
trons situated in an external field. The field potential due to 
an electron at rest at  the point x = 0 is given by 

d3k 
A. (x) =ie Goo ( k ,  F )  1 k ~ = o ~ ~ ~ ~ -  

The large separation between the electrons corresponds to 
the exchange of virtual photons with k2-+0. Making use the 
asymptotic behavior of the Green's function for k,, = 0 and 
k ,+  0 ,  we obtain an expression for the Fourier component of 
the interaction energy of the two electrons: 

If we employ the notation 
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Eq. (58) becomes identical to the Coulomb expression. it is 
therefore quite natural to call the quantity e,, the effective 
charge of the electron in the field. Equating (54) and (59), 
we see that the effective charge is the same as the quantity Z 
taken at the point k,, = 0. Thus, I is the generalization of the 
concept of the effective charge of the electron in a field, so we 
refer to it from here on as the generalized charge. 

We now proceed to calculate Z3 in strong electric, mag- 
netic, and crossed fields. For the electric field, we obtain 
from (11.4) 

Y 

2a j dy j [ah 2 (Y-X) e - i w ~ ~  
nsr l r=o=-  - ~ X X  - 

n 0 y20 2shZ y 

In this equation we have used the variables defined in (29); 
and g, are given by ( 16) and (33), respectively. The 

asymptotic behavior of T;,, =, for@% 1 and x/@5 1 may be 
calculated with no particular difficulty. The result for z2 is 
then 

For the magnetic field case, we again use the variables 
(29) but with E replaced by q. The analytic properties of the 
integrand enable us to rotate the integration contour with 
respect to x and y by - ~ / 2 .  The resulting expression for 
a; 1, = , differs from (60) in the replacementa- ia, where in 
the present case 

For a> 1 and x/p 5 1, the expression for Z2 thus takes the 
form 

In a crossed field, we obtain the expression for n; 1, =, 

from Eq. ( 15.3) by putting = 0: 

For x %  1 we have z g  1, so we may take advantage of the 
known asymptotic behavior off, ( z )  as 2-0 (see Refs. 7,8).  
The end result is 

The asymptotic form of Z2 for the electric and magnetic 
fields is independent of the photon momentum k, ; it is there- 
fore the same as the asymptotic form of the square of the 
effective charge. In the crossed-field case, on the other hand, 
fork = 0 and k, = 0 the invariant x vanishes, so the polar- 
ization operator does not depend on the field. Therefore, for 
crossed fields, the effective charge-in contrast to the gener- 
alized charge-is the same as the physical charge. 

Equations (61 ), (63), and (65) demonstrate that the 
dependence of the generalized charge of the electron on the 
field (or more precisely, on e&, eq, or rn2x2" for electric, 
magnetic, and crossed fields, respectively) is similar to the 

dependence of the renormalization-invariant charge Z2- 
which is given by the exact photon Green's function in vacu- 
um-on k for k 2 %  m2: 

This remarkable property was previously known to apply to 
the effective charge determined by the exact Lagrangian of a 
strong field.2os2' The asymptotic behavior of the effective 
charge derived in Refs. 20 and 2 1 is the same as given by (61 ) 
and (63). We thus have yet another confirmation of the fact 
that the leading terms of such asymptotic expansions do not 
depend on how the effective charge is determined. The result 
(65) for crossed fields supplements the picture sketched out 
in Refs. 20 and 2 1; it could not have been derived there, since 
the Lagrangian of crossed fields is identically zero. 

It is quite interesting to compare the present results 
with the expression for the physical charge in terms of the 
bare charge of the electron e,, and the square of the cutoff 
momentum A2 (see Ref. 18) : 

where a,, = e;/4n. Notice that the sign of the logarithmic 
term is the opposite of that in (67) for the generalized 
charge. This suggests that when an electron is located in a 
strong field, the charge screening due to the interaction of 
the electron with virtual photons having I k ' 1  5 eE, eq, or 
rn2x2l3 in an electric, magnetic, or crossed fields, respective- 
ly, will disappear. 

This stripping of an electron in a strong electric field has 
also be exhibited by a calculation of the mass shift." Specifi- 
cally, an electron accelerated by a strong electric field loses 
that part of its radiative mass produced by its interaction 
with virtual photons that have I k 2 1  5 eE. It remains unclear 
why there is no similar effect for the mass shift in strong 
magnetic or crossed fields. 

The author is indebted to V. I. Ritus for his attention 
and support, and to A. I. Nikishov and A. E. Shabad for 
discussions and valuable comments. 
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