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An investigation is made of the resistance of ballistic microstructures formed in the two- 
dimensional electron gas of a GaAs/AIGaAs heterojunction representing combinations of long 
channels. It is shown that the nonlocal nature of the resistance (dependence on the measurement 
method) is unrelated to the quantum nature of the electron behavior, but is solely due to the 
ballistic nature of microstructures and does not disappear in the classical limit. An analog of the 
Landauer equation is obtained for the resistance measured by the four-probe method allowing for 
the geometry of the measuring probes. 

INTRODUCTION 

The lateral transport in microstructures formed in a 
two-dimensional electron gas (2DEG) of GaAs/AlGaAs 
heterojunctions has been attracting intense interest in the 
last few years. The lateral transport in microstructures char- 
acterized by a high mobility of 2DEG electrons ( p  CL 106cm2 
.V - ' .s ' ) receiving special attention. In this case the trans- 
port may be ballistic (if the "dimensional" size of a structure 

measured value of R ,,, for a scatterer in a single-mode chan- 
nel depends strongly on the degree of interference of electron 
waves reflected from a scatterer and potential probes. We 
shall investigate the question of determining R ,,, in a classi- 
cal system ( N S  1)  where there is no interference and we 
shall show that in this case the measured value of R ,,, still 
depends on the nature of the probes (even when the probes 
perturb the current-conducting channel only slightly). 

is less than the momentum mean free path I, which in such 
structures is of the order of 10 p m )  or even quantum (if AND CLASS'CAL 

there is a "constriction" of size of the order of the Fermi MATRIX 

wavelength A, =: 50 nm in the path of electrons in a struc- 
ture). The interest in the ballistic transport has increased 
strongly since the discovery of the conductivity quantization 
effect. 

Various experiments have revealed that the resistance 
of ballistic microstructures has a number of unusual proper- 
ties which can be labeled "nonlocal behavior of the resis- 
tance." For example, the resistance of two resistors connect- 
ed in series is not equal to the sum of the resistances but to the 
larger of the two resistances.%nother type of nonlocal be- 
havior is exhibited by structures in which the conducting 
region of the 2DEG is a network of long channels with the 
"end" channels spreading into large contact areas 
(banks) .,-' In systems of this kind the resistance between 
two nodes of a network depends on the path along which the 
current enters one node and emerges from another node in 
the n e t ~ o r k . ~  

The experimental results show that the nonlocal behav- 
ior of the resistance in a network of long channels becomes 
weaker as the mobility decreases and the number of the con- 
ducting modes increases (i.e., as the number of filled trans- 
verse quantization levels in a channel increases). An impres- 
sion may therefore arise that the nonlocal behavior is a 
quantum effect. We shall show that this is not true, i.e., that 
the nonlocal behavior is associated entirely with the ballistic 
nature of the transport and does not disappear when the 
number of the conducting modes (equal to the integral part 
of the fraction N = 2d /A,, where d is the channel width) 
rises without limit. 

The nonlocal behavior is closely linked to the relation- 
ship between the resistances R,,, and R,,, measured by the 
two- and four-probe methods. It is shown in Ref. 7 that the 

Multipole systems are describedX by a matrix of conduc- 
tances G,, governing the currents J, emerging from contact 
areas due to the potentials p, of these areas: 

The conductance matrix has the following properties: 

These properties ensure invariance of the currents J, with 
respect to the reference point from which the potentials p, 
are measured and also satisfy the obvious requirement that 
the sum of all the currents should be zero. 

In a semiclassical description of the ballistic transport a 
calculation of the matrix G reduces to a study of the classical 
trajectories of electrons emerging from one bank and enter- 
ing the The problem is in principle elementary, but 
extremely messy. It becomes particularly involved when the 
system contains long channels because then-due to the 
large number of reflections from the channel walls-a small 
shift of the point at which an electron enters may strongly 
distort its path. However, this circumstance can be turned to 
advantage and a simpler method can be developed for calcu- 
lating the resistance in the case of long channels. 

The matrix G,,. can be calculated for ballistic devices 
with long end channels if we know the scattering matrix 
S,,,,,.,,. for a waveguide junction with cutoff banks and the 
coefficients of reflection R,,, of waves in the end waveguides 
from the point ofjunctidn with the contact area.'Here, n and 
n' are the numbers of the waveguide modes in the end chan- 
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nels s and s'. We shall be interested in the situation when the 
end channels are semiclassical. This means that the number 
of modes in such channels is large: N, = 2d, /A, % 1 (here, 
d ,  is the width of the sth channel). In the semiclassical situa- 
tion we have R,,, = 0, and we can use the expression ob- 
tained in Ref. 1 1 : 

This expression applies when the electron temperature is 
T = 0; the scattering matrix S is calculated for an electron 
energy E equal to the Fermi energy E,. 

The matrix S governs the amplitudes of the outgoing 
waves b,, via the amplitudes of the incoming waves a,,, : 

ban = ~ ~ ~ ~ , ~ , ~ ~ a ~ ~ ~ ~ .  
s ' n '  

The normalization of the amplitudes in Eq. (3 )  is selected so 
that the incoming and outgoing fluxes due to a mode n in a 
channel s are la,,, 1 and /b, ,  1 2 .  In this case the matrix S is 
symmetric and unitary. 

In the semiclassical situation it is convenient to replace 
the mode number n with an angle 8 defined by the condition 

sin O=kJkp, k,=nn/d (O<O<n/2). ( 5 )  

Here, fik, is the Fermi momentum in a 2DEG. Two plane 
waves propagate at an angle 8 to the waveguide axis and 
interference between them creates a guided wave. The num- 
ber of modes within the angular interval A8 is 

An=N cos 0A0, N=k,dln, ( 6 )  

where N i s  the total number of modes. 
Transforming from summation over n to integration 

with respect to 0 in Eq. (3) ,  we obtain 

where n = N, sin 6, n' = N,. sin 8 ', and N, and N, are the 
numbers of modes in the channels s and s'. 

The next step involves attribution of a classical meaning 
to the quantity /S,,,,.,. 1' considered as a function of the an- 
gles 8 and 8 '. We do this by considering a point source of 
classical particles in an infinitely long channel of width d 
emitting particles at an angle 8 to the channel axis within a 
certain interval A8. These particles are reflected specularly 
from the channel walls and conserve the angle which their 
velocity makes with the channel axis 8 as well as the angular 
interval A@. However, away from the source the distribution 
of particles over the channel cross section becomes equal- 
ized. At distances from a source z$d/AB the distribution 
over the channel cross section can be regarded as uniform. 
Hence it is clear that in long channels far from inhomogene- 
ities (scatterers, points where these channels join other 
channels and contact areas) the particle distribution is de- 
scribed by two functions u ( 8 )  and u ( 8 )  which represent the 
angular distribution of the particles moving to the right and 
to the left. 

If we know the distributions u, (8) of the particles en- 
tering the end channels, then the distribution of the outgoing 
particles u, (8 )  can be expressed linearly in terms of it: 

The kernel T can be called a classical scattering matrix. 
We shall normalize the distributions u (8 )  and v(8) so 

that the flux along the channel axis due to the particles mov- 
ing at an angle 8 to this axis within the interval A6 is u ( 8 )  A8 
and u(8)AB. It is then obvious that 

Let us now find the relationship between IS I and T. We 
assume that a flux u,, ( 8  ')A$' enters a channel s' within an 
angular interval A8 '. The flux leaving a channels within an 
interval A8 is, according to Eq. ( a ) ,  

On the other hand, the same flux is described by 

Here, the sums over n and n'  cover the modes lying within 
the intervals Aeand A8 '. Comparing the two expressions for 
the flux, we obtain 

TSrs(0',  0 ) = N ,  cos OIS., ,,,- 1'. (12) 

This is the required relationship between Tand S. The prin- 
ciple of detailed equilibrium follows from the symmetry of 
the matrix: 

N, ,  cos 0'T,,. (0',  0 )  = N ,  cos BT,,. (0 ,  O ' ) ,  (13) 

and the unitarity of S implies conservation of the flux: 

Using Eq. ( 12), we obtain (for s#s l )  the expression 
z /2  x / 2  

This expression allows us to find the conductance matrix if 
we know the classical scattering matrix. 

2. CONDUCTANCE MATRIX OF SOME OF THE SIMPLEST 
SYSTEMS 

We now consider several examples in which the matri- 
ces T and G can be calculated. 

1. The trivial example of a rectilinear channel connect- 
ing banks 1 and 2. In this case we obviously have 

According to Eq. ( 151, we obtain 
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2. The series connection of two channels of equal width 
(Fig. 1 ). In this case if we assume that a flux is incident from 
the left, we obviously have 

If we assume that a flux distributed uniformly over the cross 
section enters from the right, then 

dl dz-dl 
T~~ (8 ,  8') = - 6 ( 8 - 0 7 ,  TZ?(O, 9')  = - s (8-0') .  

d2 dz 

(18) 

We can readily see that the conditions ( 13) and ( 14) are 
satisfied. Using Eq. ( 15), we find that 

2ez kadi 
G 1 2 = - N i ,  N i = - ,  

n 
(19) 

h 

i.e., the conductance is governed only by the width of the 
narrow channel, as is indeed found experimentally.' 

3. Four-armed cross (Fig. 2).  We can calculate the ma- 
trix T by assuming that the flux of particles traveling at an 
angle 8 and distributed uniformly over the cross section is 
incident from far on the right and it enters a channel 1. This 
flux reaches the cross section AA ' without perturbation. We 
introduce an angle 8, such that tan B,, = d,/d2. For 8 > 8,, 
then half the flux emitted by the section AA ' escapes to a 
channel 2 and another half to a channel 2'. However, for 
8 < O,, then the channel 2 receives only half the particles 
from the area AB. All the particles from the area A 'B escape 
to channel 1'. No particles return to the channel 1 irrespec- 
tive of the angle of incidence 8. The result is then 

where 

8<00: trz(0) = (dz/2di) tg 8, tit ( 8 )  =I- (dzldi) tg 0,  
(21) 

0>0o: tiz(8) ='/z, t ir(0) =0. 

The remaining elements of the matrix T can be obtained 
from the principle of detailed equilibrium ( 13) by transpos- 
ing the indices 1 and 2. For example, we find that 

The conductance matrix of the cross (in units of 2e2/h) js 

The other elements of the matrix are obtained by transposi- 
tion of the indices 1 and 2. F o r d ,  = d 2  = d, then in units of 
(2e2/h) k,d /a ,  we have 

FIG. 2. 

4. Six-armed cross (Fig. 3). The simplest system in 
which one can study the nonlocal behavior of the type found 
experimentally and reported in Ref. 6 is the six-pole system 
in Fig. 3. If not only are the end channelsA 1, A 3, A 4, B 2, B 5, 
and B 6 long, but this also applies to an intermediate channel 
AB, the matrix T of the whole six-pole can be expressed in 
terms of the matrices T of two quadripoles which are crosses 
obtained by cutting the channel AB. The problem is greatly 
simplified because there are no reflections in the cross. We 
shall assume that a flux u ( 8 )  enters a channel 1. When this 
flux branches at a node A, then channels 3 and 4 receive the 
fluxes 

whereas a channel AB receives 

a ( @ )  = u ( e )  t i ,  ( 0 )  

(here, 3 = a /2  - 8) .  The flux a ( 8 )  branches at a node B, so 
that channels 5 and 6 receive fluxes 

~ , ( 0 ) = ~ e ( 0 ) = a ( B ) t l z ( 8 ) ,  

whereas channel 2 is reached by the flux 

~ ~ ( 0 )  =a (0 ) t l l (O) .  

The result is then 

T12(0 .  0') =6(8-8') t , i 2 (8 ) ,  
T i , (€) .  0 ' )  =T1,(O, 8')  =6(8+8'-n/2)t12(0) ,  (25) 

T i , ( @ .  0') =T1,(O. 0') =6(0+0' -42)  t t 2 ( 0 ) t l i ( 0 ) .  

The other matrix elements are found similarly: 

The conductance matrix of such a six-armed cross will 

FIG. 1 .  
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be given here only for the case when d l  = d ,  = d .  In units of 
(2e2/h ) k,d /IT, we have 

G,,=-I, s=I , .  . . ,6 ,  
1 ' 2'"+1 n 

G12=2'"-2+A=0,296, A = -In - = In ctg- , 2 2'.:-1 8 

Gi,=Gie=Gz3=Gz&=i/Z (I-A) e0.059, 
Gs,=Gse=2"-1 =0.414, 

Gss=G3e=G4s=Ghe=1/4 (1-2Ih+ Aj =O. 117. 

3. NONLOCAL BEHAVIOR OFTHE RESISTANCE 

The dependence of the resistance on the current path 
can be demonstrated using just the example of the four- 
armed cross. If the current flows along the "straight line" 
(i.e., for J2 = J,. = O), the resistance is 

However, if the current turns (i.e., if J,. = J,. = O), the re- 
sistance is higher: 

To compare with the experimental results of Ref. 6, let 
us calculate the "resistance" of the central channel AB of the 
six-armed cross for different current paths, i.e., let us find 
quantities of the type 

where J,. is the current entering an end channels and leav- 
ing to reach an end channel s'; all the other currents are 
assumed to vanish. Using the matrix G of Eq. ( 27), we find 
that 

Riz,,s=0.49, Ris,46=0,57; R,,.,,=0.65. 

The ratio of these quantities are 

The first quantity corresponds to a straigh. -u:rent path, the 
second corresponds to turning at one of the potential probes, 
and the third represents the effect of turning at both poten- 
tial probes. The larger the number of turns of the current, the 
greater the resistance. This is in full agreement with the ex- 
perimental results of Ref. 6, although the ratios reported 
there are larger, amounting approximately to 1:2:3 (for 
channels with the mode number N z  5).  It is therefore possi- 
ble that as the number of modes N increases the nonlocal 
behavior becomes weaker but does not disappear in the limit 
N-, co. 

The resistance of a six-pole R  (in the quantum case 
N(3) was calculated earlierI2 from the resistance of the qua- 
drupole R ,  ,.,, ,, using the relationship 

which is valid (as shown in Ref. 12) if during the propaga- 
tion in the channel AB: 1) the mutual coherence of the 
modes is lost; 2) the populations of all the modes become 
equal, The condition 1 is the criterion for a semiclassical 

L 

FIG. 4. 

description, whereas the condition 2 means that u(8)  and 
u(8) in the channel AB are independent of 8. Obviously, the 
condition 2 is more stringent than the condition 1. Our cal- 
culations do not postulate leveling of the populations, so that 
the resistances [in units of ( h  /2e2)N -I] will have found 

do not satisfy the relationship (3  1 ) . 

4. DETERMINATION OF THE RESISTANCE BY THE FOUR- 
PROBE METHOD 

We consider a channel (of width dl ) carrying a current 
(Fig. 4). This channel contains a scatterer, which for the 
sake of simplicity is assumed to be symmetric, described by a 
transmission coefficient T(8,8 ') and a reflection coefficient 
R  (8,8 '). The resistance of this scatterer is determined using 
symmetrically located potential probes in the form of chan- 
nels of width d ,  coupled weakly to the current channel. This 
coupling is described by the coefficient t(8,8 ') of transmis- 
sion from the channel to the probe, where t4  1. The mea- 
sured resistance is 

i.e., it is equal to the difference between the potentials on the 
contact areas adjoining the probe channels, divided by the 
current in the current channel when the currents in the 
probe channels vanish. 

In the case of a weak coupling with the probes in a sym- 
metric system,' we have 

Then, GI, can be calculated in the absence of both probes, 
whereas G,, and G2, can be found in the absence of the probe 
4. Obviously, G, ' is the resistance of the scatterer measured 
by the two-probe method. It follows from Eq. ( 15) that 

2ea kpd, 
Gi3 = -- 

h n 
.f d0 cos 0 i do' T (0+0'). 

If we use the law of conservation (14) and introduce the 
total probability of reflection through an angle 8, i.e., 

we have 
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We now find T, ,  and T,, required for the calculation of 
G,, and G,, . Since the probes perturb weakly the current 
channel, the scattering of the fluxes by the probes can be 
ignored in this channel. We then readily find that 

~,,(e, el) = t (0, of) + j aeff ~ ( e .  eft) t (eff, e), 
(37) 

Then, using the conservation law ( 14) we can calculate 

The quantity 

J de/ t (e,e/) = t (el 

occurring here is the total probability of escape from a chan- 
nel to a probe at an angle 8. Using this quantity, we can 
rewrite Eq. (38) in the form 

The notation ( R  ) , stresses that the ratio given by Eq. (40) is 
the average of R with the weight t (8)  cos 8, in contrast to the 
average (R ) occurring in Eq. (36) where the averaging is 
carried out using the weight cos 8. We finally obtain 

It is clear from the above expression that the measured value 
R,,, is independent of the absolute coupling of the current 
channel to the potential probes. However, R ,,, depends on 
which modes of the channel are coupled more strongly to the 
probe and which less strongly. In the case of (R ), a major 
contribution is made by those channel modes which are cou- 
pled more strongly to the probe. If all the modes reflected by 
the scatterer are not coupled to the probe (i.e., if Rt = O), 

then we naturally have R,,, = 0, since in this case the probes 
are not affected by the scatterer. 

The result given by Eq. (41 ) resembles the Landauer 
expression. The only differences are the presence of a factor 
N, and the different nature of the averaging in the numera- 
tor and denominator, and the nature of the averaging in the 
numerator depends on the probe geometry. This is the basic 
difference between the result given by Eq. (41) and the ex- 
pressions of the Landauer type with the denominator repre- 
senting multimode channels.",I4 If summation is replaced 
with integration in Eq. (4.1 1 ) of Ref. 14, we can show that 
the resistance is described by an expression similar to Eq. 
(41), but instead of an average ( R  ), with the weight 
t(8)cos Owe have an average with the weight 1. 
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