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The example of a 2-D two-phase system and a comb structure is used to show that charge 
relaxation in inhomogeneous media has a non-Maxwellian character. Under quantum Hall effect 
conditions, the charge relaxes in a complicated oscillatory manner only due to the inhomogeneity 
of the system. The effect of the frequency on the quantum Hall effect is studied. The frequency 
results in destruction ofthe ox,, plateau (ofconstant magnitude). 

1. INTRODUCTION 

As is well known, the relaxation of excess charge den- 
sity in a homogeneous isotropic conducting medium has an 
exponential character: 

P (r, t)  =p (r, 0) exp (+It,). (1) 

here t ,  = 1/4n-a is the Maxwellian relaxation time, and a is 
the conductivity of the medium. It has been shown recently 
that in a 3-D anisotropic case and in systems of reduced 
dimensionality, the charge relaxes in a quantitatively differ- 
ent manner. 

The purpose of the present work is to study charge re- 
laxation in inhomogeneous media. Using the example of a 2- 
D two-phase system and a comb structure, we will show that 
the inhomogeneity of the medium also appreciably changes 
the nature of charge relaxation. Inclusion of inhomogeneity 
is fundamentally necessary for the spreading of charge under 
quantum Hall effect (QHE) conditions, when we have 
uxx = 0, uxy = const. Another cause of charge spreading 
under QHE conditions-because of retardation-was dis- 
cussed in Ref. 3. 

A general approach to the study of the properties of a 2- 
D two-phase system was developed in Refs. 4 and 5. We will 
apply this method to the study of charge relaxation in a 2-D 
medium at the flow threshold (at  equal concentrations of the 
phases), and as a result, a generalization of the law ( 1 ) to the 
two-phase case will be obtained. We will show that the relax- 
ation time in an homogeneous medium is determined by the 
conductivity of the poorly conducting phase. In a metal- 
dielectric mixture, the charge relaxes according to a power 
law: 

Charge spreading under QHE conditions has a more com- 
plex oscillatory character. In addition to charge relaxation, 
this approach makes it possible to study the influence of the 
frequency on the destruction of the a,, plateau (of constant 

u2 (u,  > u2) .  This model was studied in detail in Refs. 4 and 
5, where the effective characteristics of a highly inhomogen- 
eous medium at the flow threshold were determined. Exact 
solutions were obtained as a result of the invariance of the 2- 
D equations of electrostatics 

div j=O,curl e=O ( 3  ) 

and of Ohm's law 

relative to the linear transformations 

j=aj'+b [ne'] , e=ce1+d[nj'] , (5  ) 

where j is the current density, e is the electric field, a is the 
conductivity, and n is the unit normal to the plane. 

In addition to the equations 

and Ohm's law, charge spreading in a conducting medium is 
also described by the Poisson equation 

div e=4np. (7 )  

Similar equations also hold for the averaged quantities 
E = (e),  J = (j).  We carry out a Fourier transformation 
with respect to time and, using the Poisson equation (7 ) ,  
transform Eqs. (6)  to the form ( 3  ) 

div [ (io+4no),e] =O,curl e=O. ( 8 )  

We repeat the familiar arguments of Ref. 4. We choose 
the coefficients in the transformations ( 5 )  in the form 

Then for a fixed value of the frequency w, the primed system 
will differ from the initial one in the fact that the phase ex- 
change places: 

magnitude) uxy . 
A comb-structure model was proposed in Ref. 6 for Macroscopically, these systems are equivalent. Hence, at the 

studying anomalous diffusion in highly inhomogeneous me- flow threshold, the effective conductivity is 

dia. The properties of a random walk on a comb structure a,, ( 0 )  = [(io+4noI) (io+4n02)] '". ( 9 )  
were studied in detail in Ref. 7. The present work examines 
charge spreading on this structure. This spreading also turns Using Eq. (9 )  for the effective conductivity at a fixed 
out to be non-Maxwellian. frequency and the Poisson equation for average quantities, 

we obtain an equation for the averaged concentration 
2. CHARGE RELAXATION IN A 2-0 TWO-PHASE MEDIUM 

d i v [ ~ , ,  (o )E]  =4n[ (io+4nai) (io+4n02)]'"(p>=0. ( 10) 
Let us consider a 2-D inhomogeneous medium obtained 

by random mixing of two phases with conductivities u ,  and Correspondingly, we have an expression for the Green's 
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function averaged over a random arrangement of the phases 
at the flow threshold 

G ( o )  = l /  [ (io+4noi) (io+4na2)l ". (11) 

From Eq. (1  1)  it is easy to find the expression for the 
Green's function in the t representation: 

G (t) =Io (2n(ol-ap) t )  esp (-2n (ol+oz) t) , (12) 

where Io(x)  is a modified Bessel function. Using the known 
asymptotic expression for Io(x) ,  we obtain for long times 

G ( t )  -exp (-4na2t) / [ (al-az) t] '". (13) 

The result ( 13 ) has a clear meaning. In a randomly inhomo- 
geneous two-phase medium, relaxation at late times is limit- 
ed by inclusions of the poorly conducting phase: 
t ,  = 1/4aa1 (in the well-conducting phase, the charge 
spreads quickly). The power-law behavior in the metal-di- 
electric mixture is also easy to understand. At the flow 
threshold, the correlation radius is infinite, and therefore, 
metallic phase inclusions of all sizes are possible. The ab- 
sence of characteristic scales from the problem leads to the 
power-law relaxation (2) .  

Let us note that the frequency dependence of the effec- 
tive conductivity was also obtained in Ref. 8; charge relaxa- 
tion was not studied in that work. 

3. CHARGE SPREADING AND DESTRUCTION OFTHE ow, 
PLATEAU AT A FIXED FREQUENCY UNDER QUANTUMHALL 
EFFECT CONDITIONS 

Let us consider the charge relaxation in a two-phase 
medium placed in a magnetic field H. This relaxation is de- 
scribed by the same equations (6)  and (7  1, except that in- 
stead of Eq. (4) ,  it is necessary to use the generalized Ohm's 
law: 

j=a,e+o, [ne] , (14) 

where a,, = a / ( 1  + P 2 ) ,  a,, = a P / ( 1  + P 2 ) ,  P = e H r /  
mc is the Hall factor. When Eqs. (7)  and ( 14) are taken into 
account, Eqs. (8 )  assume the form 

div ( (io+4na,)e+4noW [ne] ) =0, curl e=O. (15) 

Repeating the reasoning given above, we find an expression 
for the averaged Green's function in a magnetic field: 

G ((1)) = 1 (io + 47sok2) (io + 4nojc2?) 
J [  

Let us consider the limit of the ideal quantum Hall ef- 
fect a,, = 0, a,, = const. In this case we have 

G (o )  =l/['/, (a:;' -a::') 2-oZ]i12. (17) 

Correspondingly, in the t representation we obtain 

where Jo is a Bessel function. Thus, under quantum Hall 
effect conditions, charge relaxation has an oscillatory char- 
acter and is possible only in an inhomogeneous medium. 

Let us clarify the result obtained. As follows from the 
continuity equation ( 6 )  and Ohm's law ( 14), the charge in a 

Hall system spreads along the phase boundaries owing to 
surface currents. Oscillations of charge density are obtained 
as a result of the superposition of surface currents moving at 
different velocities in different phases. At the flow threshold, 
the conditions of the two phases are equivalent, and there- 
fore, the change in charge density is described only by the 
conductivities of the phases. 

We will study the influence of frequency on a:y. (It  was 
shown earlier that the effective characteristics of a medium 
consisting of a metallic and Hall mixture are constant and 
equal to the values in the Hall phase as long as flow in the 
Hall phase takes place.') For this purpose, we shall use the 
general Dykhne relation between the quantities azx and uz, 
at any concentrations:' 

(a,") 2+a,'(a/d-clb) -ac/bd+ (a,') '=0. (19) 

Here a = - c = 1, b = - a"' d = - a:;'. This rela- 
XY ' 

tion was obtained as the result of the symmetry of the 2-D 
system relative to the direction of the magnetic field. In the 
QHE limit at a fixed frequency we also have 

c i )  (2) a a n ( ~ ) = [ ' / r ( ~ + v  -axY )2-~21'11. (20) 

Then from Eq. ( 19) we obtain the following dependence of 
a:y on the frequency w :  

4. CHARGE RELAXATION ON A COMB STRUCTURE 

The comb structure (see Fig. 1 ) is arranged so that the 
charge transfer on this structure in the x direction is possible 
only along its axis (for y = 0), i.e., ax, 
= uIS(y) ( jx = axx ex ) . The conductivity along the edges 

is conventional: ayy = a,. Thus, the conductivity of the 
comb structure is described by the tensor (see also Ref. 7)  

From the continuity equation with the conductivity tensor 
(22) and the Poisson equation (7) ,  we obtain an equation 
for the electric potential p: 

We perform a Laplace transformation with respect to time 
and a Fourier transformation with respect to the x coordi- 
nate. The Green's function in the mixed (p, k, y )  representa- 
tion is described by the equation 

FIG. 1 .  Comb structure: ribs going off to infinity are fastened to the con- 
ducting axis ( y  = 0).  
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We seek the solution of Eq. (24) in the form 

Substituting Eq. (25) into Eq. (24), we find the parameter 
A : 

Integrating over the circle y = 0 (discontinuity of the deriv- 
ative), we obtain an expression for the function f ( k , p )  

f (k, p )  =1/[2h(p+4n02) +4no,k21. (27) 

Knowing the expression (25), one can readily set up the 
corresponding Green's function of the equation for the con- 
centration: 

As an example, we find the expression for the Green's func- 
tion averaged over y: 

In the ( x , t )  representation, the latter is 

vt v'c 
~ ( x ,  t )  = erp (-2nort) {-- x2+v2t2 + 

Here we have written u = 2 ~ a , ,  and I,,(x) and I, ( x )  are 
modified Bessel functions. For a, = 0, the Green's function 
has the simple form 

A similar expression is obtained when the charges are 
located in a plane, and the field has all three spatial compo- 
n e n t ~ . ~  

The author thanks E. M. Baskin, E. G. Batyev, A. 0. 
Govorov, A. M. Dykhne, and A. V. Chaplik for a helpful 
discussion of the results. 
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