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We investigate the properties of layered superconductors with Josephson interactions between 
the layers as the transition temperature is approached, assuming that the coupling between layers 
is so weak that the transition from two-dimensional to three-dimensional fluctuations comes 
about in the strong-fluctuation regime. Precisely this situation is realized in high-temperature 
superconductors made with Bi, TI, and Pb. We obtain the temperature dependences of the 
penetration depths and critical currents in various crystallographic directions. 

1. INTRODUCTION 

Recently, there has been renewed interest in the phys- 
ical properties of layered superconductors with Josephson 
interactions between the layers, in connection with the dis- 
covery of high-temperature super-conductivity (HTSC). It 
is well-known that the fluctuation properties of layered su- 
perconductors are subject to the phenomenon known as di- 
mensional crossover: fluctuations far from the transition 
temperature have a two-dimensional character, while near it 
they are three-dimensional. Layered superconductors there- 
fore have several characteristic values of temperature, each 
of which can be experimentally estimated: a "mean-field" 
transition temperature T,,,, the true transition tempera- 
ture T, (at which the resistivity reduces to zero), the cross- 
over temperature T,,, and the boundary of the fluctuation 
region Tf (i.e., for T <  T, the fluctuations of the order pa- 
rameter are considerably smaller than its average value). In 
what follows, we will measure all temperatures in relative 
units, i.e., r = ( T - T,, )/TBcs. 

We can identify two different characteristic situations, 
depending on the ratio of the relative crossover temperature 
r,., to the fluctuation-induced width of the transition r,.. For 

IT,., / $ 1, the crossover from three-dimensional to two-di- 
mensional behavior takes place in the region where mean- 
field theory is applicable, and occurs when the temperature 
decreases to a point where the coherence length perpendicu- 
lar to the layers g, ( r )  -(,,, / I T  ' '"ecomes comparable to 
the interlayer spacing d, i.e., for r,, = - ((,,/d).' This 
case is discussed in detail in Ref. 1. 

In the opposite limit (T,., 1 < lrl 1 ,  the crossover takes 
place in the fluctuation region; this is the case that will be 
treated in the following section of this paper. For these su- 
perconductors, there is a range of temperatures for which 
the temperature dependence of the superconducting param- 
eters is determined by strong quasi-two-dimensional fluctu- 
ations. We will discuss the behavior of the critical current 
and the London penetration depth. In order to obtain the 
temperature dependence we will use the scaling analysis first 
applied to quasi-two-dimensional systems by Pokrovski and 
Uimin in their paper' (see also Ref. 3 ) . 

It is noteworthy that until the discovery of the HTSC, 
all the known layered superconducting compounds appar- 
ently belonged to the first class ( /r,, 9 IT/ I ); this is because 
the fluctuation region in a typical superconductor is unusu- 
ally narrow. In the HTSC, because of their high transition 

temperature and small concentration of conduction elec- 
trons, the fluctuation region is found to be several orders of 
magnitude wider (rf - lo-') .4  Nevertheless, in compounds 
with the 123 structure, the crossover takes place in the mean- 
field region, since the electron anisotropy of these com- 
pounds is insufficiently high (according to the estimate of 
Ref. 5, T,, -0.1). However, in the new recently-synthesized 
classes of superconductors Tl,Ba,Ca,, Cu,, 0, + ,,, (Ref. 61, 
Bi,Sr,Ca,, Cu,, 0, + ,,, (Refs. 7-9), and Pb2Sr2ACu,0, , ,, 
(where A is a lanthanide, a mixture of La and Sr, or Ca; see 
Ref. I ) ,  the electron anisotropy is much higher; these mate- 
rials apparently belong to the second class ( IT,, 1 < irl I ) .  Re- 
cent experiments which favor this assumption are studies of 
the temperature dependence of the resistivity for T >  T, 
(Ref. 11; these experiments are analyzed in Ref. 12) and the 
nonlinear behavior of the IV characteristics for T <  T, (Ref. 
13) of the compound Bi,Sr,CaCu,O,. 

2. SETTING UP THE PROBLEM: CHARACTERISTIC VALUES 
OFTHE TEMPERATURE IN A QUASI-TWO-DIMENSIONAL 
SUPERCONDUCTOR 

Let us discuss a layered superconductor with weak in- 
teractions between its layers. It is known that in a two-di- 
mensional system the fluctuations of the phase of the order 
parameter for r < r, are much stronger than fluctuations in 
its amplitude. Fluctuation effects in a quasi-two-dimension- 
a1 superconductor also involve fluctuations of the phase in 
an essential way;I4 therefore we will neglect the amplitude 
fluctuations of the order parameter from the beginning and 
write the energy of the superconductor in the following 
form: 

where J = @ ; d / ~ & ( 4 7 ~ / i  )' is the "rigidity" which charac- 
terizes the fluctuations in the plane ( A  is the London pene- 
tration depth and E 2 1 is the effective "dielectric constant" 
which describes the decrease in the rigidity of the fluctuation 
vortex pairs'5), and E, is the energy of the Josephson inter- 
action between layers. The anisotropy parameter y = J /  
E,d' is assumed to be large, i.e., y>> 1. Near the mean-field 
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temperature for the superconducting transition T,, the fol- 
lowing relation obtains 

[J,,/T,, -&,/T,, % 1; the parameters Jf), Ej, have a weak 
dependence on temperature due to E ( T )  1. 

If the Josephson coupling between layers were absent, 
then for r = r,,. z - 2T,,,/(?rJf,) a Berezin-Kosterlitz- 
Thouless transition should occur. ''.I7 Because of the Joseph- 
son coupling between layers the super-conducting transition 
temperature 7,  lies in the interval rK, < r, < 0. 

In order to estimate the shift in r ,  relative to T,, for 
small values of EJ we will investigate the influence of inter- 
layer Josephson coupling on the interaction between vortex 
excitations in a single layer. For the case EJ = 0 the interac- 
tion energy of a "vortex-antivortex" pair equals 

EZ = 2nJ ln (r/E,,) 

(where 5 = // r/  I / '  is the coherence length). When the 
spacing between vortices and antivortices is less than a cer- 
tain characteristic value r, = (J/EJ ) "', we can neglect the 
perturbation of the phases in the other layers, and the contri- 
bution to the interaction energy caused by the Josephson 
coupling between layers has the form 

In the case r >  r,, the uniform distribution of the phase is 
broken up into many layers consisting of vortices and anti- 
vortices. The region over which this new phase distribution 
varies is equivalent to a line defect with tension - ( J  / E j  ) I"; 
therefore we have E;,, - (J/Ej ) "'T. From the condition 
E;,, -E,',:' we find that the vortex pair "senses" the other 
layers for r < r, ln(r,./{ ). 

The fluctuation properties of a purely two-dimensional 
system are characterized by a correlation radius [, whose 
t e m p e ~ a t u ~ e n d e n c e  for 1 r - r,,. 1 4 1 r,,. / has the form 

C=Elle.p {[b l  T K T ~ / ( T - T K T )  1'"). 
The constant b  is not universal; however, it has a definite 
value within the Ginzburg-Landau theory. Experiments on 
superconducting films" give the estimate 6 - 2  - 9. The 
"two-dimensional" character of the transition is destroyed 
when the correlation radius 5 becomes of order r,. . From this 
we obtain the following estimate for 7,. : 

For two-dimensional spin systems analogous estimates were 
given in Refs. 19,20 (in the case of a layered superconductor 
an important difference arises as a consequence of the strong 
temperature dependence of the parameters of the Hamilto- 
nian). The Josephson coupling between layers is character- 
ized by the dimensionless parameter EOJ {;,, /Jf,lrK7 / & 1. 
The three-dimensional fluctuation region around the transi- 
tion rjD can be estimated from the relation r 3 ~  I ( d l /  
ar)(r=r,) l  = r ,  (seeRef. 19): 

strong 
weak two- strong two- super- 
dimensional dimensional conducting 
fluctuations fluctuations fluctuations 

In the temperature region r < r,,. the fluctuations of 
the order parameter have a two-dimensional character. In 
purely two-dimensional systems the long-wavelength phase 
fluctuations lead to the absence of long-range order over the 
entire temperature range. In the quasi-two-dimensional su- 
perconductors the interaction between layers leads to the 
suppression of the phase fluctuations with wave vectors 
smaller than l/r,. This leads to the suppression of the finite 
fluctuation-induced width of the transition 

In the region of temperatures, r,. < r < rK7. the phase fluctu- 
ations strongly influence a number of superconducting pa- 
rameters, while for 7 < r/. they lead only to a small correc- 
tion. From this we see that certain characteristic values of 
temperature are distinguished in the fluctuation region of a 
layered superconductor. The temperature intervals corre- 
sponding to qualitatively different fluctuation behaviors are 
illustrated in the figure. Let us emphasize that Fig. 1 refers to 
the special case we are discussing, i.e., extremely weak inter- 
layer coupling, when the 20-30 crossover takes place in the 
region of strong fluctuations. 

3. TEMPERATURE DEPENDENCE OF THE PENETRATION 
DEPTHS h ,h, 

The quantity A ' ( T )  is proportional to the density of 
pure superfluid."n a purely two-dimensional system the 
superfluid density undergoes a Kosterlitz-Nelson discontin- 
uity, changing at the transition point from zero to a finite 
value.'' In a layered superconductor the jump is smeared out 
into a step with width 

7 8 ~ ~ 2  1 ZKT I bllns (10 I 'KT I ~ E O J ~ O ~ ? ) .  

For T < rK1. the vortex excitations decrease the superfluid 
density by the factor E(T)  compared to its mean-field value. 
The maximum value of the "dielectric constant" E, 

= &(rK7.) was experimentally estimated in Ref. 18: E,, - 1.2 - 1.8. Thus, as the temperature decreases the quantity 
A , -  changes in the vicinity of 7 ,  from zero to the value 
E,. ' [ A  F(r, ) ] -'.in an interval of width r,, . 

In the absence of Josephson coupling between the layers 
a magnetic field applied parallel to the layers is not screened. 
The Josephson coupling leads to the appearance of a finite 
value of the transverse penetration depth A, ,  which in mean- 
field theory is determined by the relation 

The phase fluctuations cause an increase in the penetration 
depth A ,  compared to A fCs. In order to determine the tem- 
perature dependence A,  we can make use of the scaling rela- 

FIG. 1. Hierarchy ofcharacteristic values of the temperature for 
a layered superconductor with weak interlayer coupling: T,,,, is 
the mean-field transition temperature, T,, is the transition tem- 
perature in an individual layer, and T, is the true transition tem- - perature; the cross-hatched region corresponds to the tempera- 

z ture interval of three-dimensional fluctuations. 
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tions. In Ref. 2 it is shown that for a purely two-dimensional 
degenerate system the scale invariance occurs over the entire 
region of temperatures below the transition temperature. 
The scaling dimension"' of the order parameter Y = 
exp(ip) in this case equals 

A ( Y )  = T / h J .  ( 5 )  

Let us estimate the scaling dimension of the other param- 
eters. The correction to the Hamiltonian connected with the 
Josephson interaction between layers has the form 

From scale invariance of the Hamiltonian it follows that the 
dimension of Ej equals 

A ( E l )  =2,-2A ( Y )  . (6 )  

From the expression for the transverse supercurrent 

jl=2eEJ Im (Y ,Yj) 

we obtain the scaling dimension ofj ,  : 

A ( 1 1 )  =2. ( 7 )  

The quantity R , is proportional to the ratio of j, to the 
corresponding component of the superfluid density, whose 
scaling dimension equals zero. Therefore the dimensions of 
the quantities R , * and j, coincide, i.e., 

A ( A l )  =-I.  ( 8 )  

The requirement of scale invariance leads to the following 
dependence of R , on EJ : 

hL-Z cc ( E J )  - ~ A ( L L ) / A I E J ) ,  i / I i - A ( W 1  ( E J )  ? ( 9 )  
or, in dimensional units, 

The result (10) can be carried over to variational meth- 
o d ~ . ' . ~  

In the temperature range rJ < T < rK7 the fluctuations 
lead to a considerable increase in A,  compared to its mean- 
field value R and to the appearance of a temperature de- 
pendence of the anisotropy of the penetration depth. 

At low temperatures T <  rJ the fluctuation-induced cor- 
rection to [ A  rCS] ' can be obtained by direct calculation: 

For T < rJ the result ( 11 ) matches with Eq. ( 10). Let us note 
that at the point T = T,,. the equation A(*) = 1/8 is satis- 
fied; therefore the exponent in Eq. ( 10) at this point is ap- 
proximately equal to 1/7. 

4. CRITICAL CURRENT 

Analogous considerations can be used to estimate the 
temperature dependence of the critical current density in 
various crystallographic directions. In a purely two-dimen- 
sional system the critical current equals zero, since under the 
action of an arbitrarily small current a dissociation into vor- 
tex pairs occurs. This leads to a finite magnetic intensity, 
which depends on the magnitude of the current as a power 
law U a j, wherea = n J / T  (Refs. 22,23). I t  should be not- 

in the three-dimensional case at small currents and finite 
temperatures due to the generation of vortex ring  current^.'^ 
However, this intensity is exponentially small (i.e., U 
a exp( - j/jO), where the quantity j,, considerably exceeds 
the value of the depairing current density) and therefore is 
unobservable. 

In quasi-two-dimensional superconductors the mini- 
mum characteristic current is that for which exponential be- 
havior of the intensity shifts to power-law behavior. In the 
region r < rJ an estimate of this critical current can be ob- 
tained from simple considerations. The current "drags 
apart" the vortex-antivortex pairs in the layer with a force 
J; = d@,, jll /c; on the other hand, for r > r, there is an attrac- 
tive force between vortex and antivortex equal to A,,, 
-- (JEj ) " I .  For this reason, the current is capable of break- 
ing the pairs for jll > j L I 1 ,  with 

iell=jllBCs (TI ( E J E I I ~ / J )  "', (12) 

where j ~ - ~ @ ~ ) / n ( 4 7 7 A  )2f is the depairing current den- 
sity. In order to obtain the temperature dependence of the 
critical current density jell which is valid over the entire tem- 
perature range T < rK7., we will determine the scaling dimen- 
sion of the current. From the expression jI - J Im (Y*VY) 
we obtain A( jll ) = A(J)  + 2A(Y) + 1. The relation A ( J )  
+ 2A(Y) = 0 follows from the invariance of the Hamilto- 

nian relative to scale transformations. From this we see 

Using the value of the scaling dimension A (E, ), see (5 )  and 
( 6 ) ,  we obtain the following estimate of the renormalized 
fluctuations of the critical current: 

It should be noted that fo r j ,  > jClI the resistivity R does 
not immediately rise to its normal value. Over a wide inter- 
val of values of the current density jell q'll 4 j F a  character- 
istic "two-dimensional" behavior of the resistivity is ob- 
served: R a ( jll 1." Only for jll -j/cs does the resistivity 
reach its normal value. 

Now let us estimate the critical current density jc, in a 
direction perpendicular to the layers. In the region 7 , .  

< T < rKT the phase fluctuations strongly decrease the criti- 
cal current density compared to the Josephson critical cur- 
rent density jJ ( T )  = 2eEJ ( T ) .  In this region scaling analy- 
sis leads to the following estimate: 

For T 5 rJ the difference between the critical current and jJ 
becomes small. In this region we should include the fact that 
a transverse current decreases the effective energy of the Jo- 
sephson coupling: 

thereby increasing the intensity of the phase fluctuations. 
Repeating the analysis given previously with the replace- 
ment Ej - Ej ( j, ), we obtain in place of Eq. ( 15) a tran- 
scendental equation for determining j,., : 

{ Ell2 
A ( Y ) / [ i - A ( Y ) l  

j C l = j J  -[E,' - ( j c L / ~ e ) z ] ~ / 2 }  
J 

(17) 

ed that, strictly speaking, a finite intensity also appears even In particular, for low temperatures T<T, we can obtain from 
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Eq. ( 17) the fluctuation correction to the transverse critical 
current: 

5. SUPPRESSION OF THREE-DIMENSIONAL FLUCTUATIONS 
BY A MAGNETIC FIELD PARALLEL TO THE LAYERS 

It is well-known that in "ordinary" layered supercon- 
ductors (in which rCr %T,.) there exists a crossover in the 
temperature dependence of the upper critical field Hy, at 
T = T,,. It reveals itself as a shift from the dependence 
H ?, cc 1~1, which is observed for T > T,, (and coincides with 
the dependence characteristic of bulk material) to a differ- 
ent dependence H ?, (T)  which corresponds to an individual 
layer and is observed for T < T,, . The field corresponding to 
this crossover is 

Physically, this crossover is due to suppression of the Jo- 
sephson interaction between layers by fields H > Hc, . 

In the case we are discussing, i.e., a strongly layered 
superconductor ( 17, ) 1 % I T , ,  I ), a parallel magnetic field sig- 
nificantly affects the fluctuation-related properties only in a 
small portion of the fluctuation region 

IT-T, 1 GTO-T~T. (20) 

For H >  Hcr , the decrease in the Josephson interaction ener- 
gy mentioned above leads to a compression of the region of 
three-dimensional fluctuations r,, (H) and the approxima- 
tion ofthe transition temperature r, ( H )  by the temperature 
T,, which does not depend on H. In order to calculate the 
function T ,  (H)  we must determine the H-dependence of the 
effective interaction energy of the "vortex-antivortex" pairs 
E;,, (see Section 2) .  In the presence of a field H%H,, the 
equilibrium value of the phase difference between adjacent 
layers 

H d x  
,+I-,. - 5 (5) ' sin (an _) 

I dH  

oscillates rapidly in space and is small in magnitude. There- 
fore, in order to determine the effective interaction energy 
E ;", of a vortex-antivortex pair of size r$cP,,/Hd we must 
replace Ej by its effective value E i , ,  determined from Eq. 
(1)  by using Eq. (21): 

Repeating the discussion of Section 2, we find 

Equation (23) describes the shift of the transition tempera- 
ture under the action of a magnetic field H%Hc,. In fields 
H(<H,, this shift is negligibly small. Note that we have in- 
cluded the effect of H on the orbital motion of the electrons 
and neglected the spin effects. 

CONCLUSION 

An analysis of the temperature dependences of the re- 
sistivity ' '," and the IV characteristics '"f the compound 

Bi2Sr2CaCu,0, reveals a similarity between the fluctuation 
behavior of these compounds and that of thin superconduct- 
ing films. In particular, in Ref. 13 there is observed a Koster- 
litz-Nelson discontinuity characteristic of a two-dimension- 
al system near the transition temperature." The parameters 
of this compound are estimated to be as follows: T,, z 82 
K ,  T,, - T, ~ 3 . 2  K ,  d = 12 A; the anisotropy parameter 
y introduced in Section 2 is found to be -- lo4 (obtained from 
measuring the conductivity anisotropy at T = 300 K) ,  and 
loll -20 A (from resistance measurements in a magnetic 
field25,26) 

Using these values of the parameters, we can estimate 
the values of the characteristic temperatures. The shift in the 
transition temperature Tc relative to the Kosterlitz-Thou- 
less temperature T,, comes to Tc - T,, - 1 K ,  and the 
three-dimensional width of the transition equals T, - T,, 
-0.4 K. The fluctuation in the phase of the order parameter 
is found to be significant in the temperature interval T, 
- T f ,  amounting to several degrees. The characteristic val- 

ues of the critical currents come to 

We emphasize that the current density jcl, corresponds to a 
transition from the exponential (three-dimensional) por- 
tion of the IV characteristic to a power-law (two-dimension- 
al) portion (see Section 4).  In fact this crossover is observ- 
able only near the transition point. The value of the critical 
current density jell for T-  T,,. comes to lo4 A/cm2, which 
agrees with the value obtained in experiments.?' However, it 
is noteworthy that power-law IV characteristics were ob- 
served at these current densities in Ref. 13 although they 
should appear only in the region j>jcll . The reason for this 
discrepancy is unclear. 

The authors are grateful to V. B. Geshkenbein, P. 
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