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The theory of analytic functions is used to develop a method of qualitative and quantitative study 
of the Hall effect in nonuniform thin films that actually amounts to extending the properties of the 
film to the empty space surrounding the latter. The method is applicable to infinite, semi-infinite 
and striplike films, for which appropriate sets of stationary solutions have been obtained. 

INTRODUCTION 

In the last few years, studies of various effects associat- 
ed with the flow of electric current through thin films have 
been highly popular. This is due to the practical importance 
as well as the purely physical attractiveness of the item stud- 
ied, i.e., a 2 - 0  medium in 3 - 0  space.' However, most of the 
work in this area has dealt with the local properties of thin 
films, whereas because of the free interaction of charges and 
currents via the electromagnetic field through a vacuum, 
films are a curious example of a nonlocal medium.' The pres- 
ent article investigates the influence of this nonlocality on 
the ordinary Hall effect in nonuniform films of various con- 
figurations (in uniform films, as will be shown below, the 
corresponding term drops out of the equation, and the Hall 
effect does not affect the distribution of current in the film). 
I t  turns out that despite the complex form (nonlinear be- 
cause of the influence of the self-field and integrodifferential 
because of nonlocality) of the equation describing this phe- 
nomenon, one can nevertheless make substantial progress in 
its solution with the aid of methods of the theory of analytic 
functions. 

Let a film of small thickness 6-0 be located in the xy 
plane (see Fig. l a ) ,  and let its properties be characterized by 
surface conductivity 2,  carrier concentration N, and current 
density J. Then the Hall effect in the film is described by the 
following system of equations:' 

1 J 
E =-lJ,e,(Bo+Bz) 

Nec 

dB, -=- e,c curl E, 
a t  

where B,,e, is the external constant magnetic field, and B, is 
the z component of the intrinsic field. The first equation 
holds in the presence of only one type of carriers (specifical- 
ly, electrons); for a solid-state plasma, this signifies compen- 
sation of their charge by the lattice (not by holes) and for a 
gaseous plasma-rapidity of the processes, leaving the mas- 
sive ions unaffected..' 

If the current flows in the direction of nonuniformity of 
thefilm: Jlle,, i.e., B = (B,,B,), a n d N  = N(y)  (Z  = const; 
for (JVN) = 0, the Hall effect is manifested only in the pres- 
ence of carrier vortex flows2), there follows from Eq. ( 1 ) a 
single 1-D equation which holds for z = 0: 

dB, a c dJ 
-= -(L) (Bo+Bz)J---, 

d t  dy Ne z ax 

in which in the case d /dx 9 d /dy one can set 

The nonlocality of the medium is manifested in an integral 
relationship between J and B,, i.e., Ampere's law (the dis- 
placement current being neglected) : 

+ m 

For the treatment below, it is convenient, after using the 
relation 

to replace J in Eq. ( 2 )  by the x component of the magnetic 
field and rewrite this equation in the dimensionless form 

The choice of the signs of B,,, B, and dN/dy made here is 
entirely immaterial, since all the cases can be obtained by 
means of the substitutions B- - B, x-  - x,  t -  - t. Equa- 
tion (3 )  is the basic equation studied in this work. 

Thus, the constraint (3 )  is imposed on the magnetic 
field B for z = + 0. On the other hand, outside the film the 
field satisfies the usual vacuum relations 

curl B=O, div B=O, (4 )  

which suggests the consideration of the complex function 
w = B, + iB,, which is analytic outside the film in the com- 
plex < = x + iz plane (see Fig. l b ) ,  since, as is well known, 
the condition of its analyticity dw/dz=0 is identical to Eqs. 
(4 ) .  If one can now write the relationship (3 )  between the 
real and imaginary parts of w in the form of an equation for 
the function itself, then this equation, according to the ana- 
lytic continuation theorem, can thereby be extended to the 
entire region of analyticity of w. The resulting local differen- 
tial equation will now be comparatively simple to solve. I t  
should be emphasized here that from a physical standpoint, 
there is no local relationship between the components of B in 
a vacuum except ( 4 )  ( the Hall effect is absent in a vacuum), 
but the magnetic field is so strictly specified by its sources in 
the film (the analytic function in the region is completely 
defined by its value at the boundary) that such a relationship 
actually appears. Below, the indicated program is carried 
out in three cases. 
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FIG. 1. Geometry of the problem of an infinite film in physical 
space ( a )  and on the complex {plane (b) .  

1. INFINITE FlLM 

The basic results in this geometry were obtained in Ref. 
2. Here they are given a somewhat different treatment, con- 
venient for subsequent generalizations. 

In an infinite film, the components of the magnetic field 
in Eqs. (3)  are related nonlocally (integrally) to each other 
by Ampere's law and its converse, which can be found by 
means of a Fourier transformation: 

m 

as in the case of the real and imaginary parts of generalized 
susceptibility ( Kramers-Kronig relations). Thus in this 
case, the functions w, analytic in the upper halfplane 9, are 
the objects of study. For them, the relationship (5 )  can be 
obtained from the relation 

where the contour Cis  indicated in Fig. 1 (b) .  
From a physical standpoint, the change from the vector 

field B to the complex function win this problem signifies the 
replacement of the sources in the film by the sources in the 
lower halfplane 5; such sources are the singular points of w 
[the simplest examples are w = i / ( c  + i )  and 
w = 1/ (c  + i) ,  which correspond to the magnetic field in 
the regionz > 0, respectively, produced by the linear magnet- 
ic charge and current which are located at the point 
(0, - 111. 

The contour integral in Eq. (6)  has the remarkable 
property that, being applied to any function w that has no 
singular points on the contour C, it converts this function 
into an analytic one when Im c >  0 holds. This makes it the 
tool best suited for carrying out the indicated program-the 
extension of (3)  to the entire upper halfplane {. Actually, 
this property results in two methods of converting the arbi- 
trary function u ( x )  specified on the x axis to a function of 
the class studied, namely, applying to this function the linear 
operators 

LReu=- J - '(') dx, 
nc-_ x-5 

1 
L,,. = - j "0 ax, 

n x-5 

the first of which makes it the real part, and the second, the 
imaginary part of a function analytic in the upper halfplane 
when Im = 0. In this geometry, the simple relationship 
L,, = iL,, exists between these operators. It is evident from 
the above that 

If the operator L , ,  is now applied to Eq. (3) ,  it follows 
that since the square and the derivative of an analytic func- 
tion are analytic in the same region, then, as can readily be 
verified, it is transformed into the equation 

a a w - LlmBZ (x ,  0) = w+ w2 - - , 
at a S 

which is integrated completely because of the indicated sim- 
ple relationship between L , ,  and L,, . (In principle, the op- 
erator L,, could also be applied to Eq. ( 3  ), in which case w 
would appear on the left-hand side of the equation obtained, 
but the present notation is convenient for subsequent gener- 
alizations.) Apparently, this method was first proposed in 
Ref. 4 for an equation completely analogous to Eq. (2 ) ,  but 
in somewhat different terms applicable to a vortex in an ideal 
fluid (see also Ref. 2) .  

An interesting property of Eq. (9)-the nonlocal Hall 
effect on an infinite nonuniform film-is the presence of a 
specific stationary solution. This property exists only in the 
absence of an external magnetic field-the first linear term 
on the right-hand side of Eq. (9)  (here and below, by solu- 
tions are meant those analytic in the proper region)-and is 
written in the form 

where a is a complex constant. This corresponds to a current 
with a Lorentzian profile of arbitrary width (Im a ) ,  which 
transfers the carriers to the region where their concentration 
increases, and with a fixed integral 

Such a current is in a state of neutral equilibrium. because of 
the balance of the two terms in the equation. In the case of 
smaller total current in Eq. (9 ) ,  dissipation (the term with 
the derivative) predominates, and the profile J spreads out 
with time, and in the case of a larger current, the nonlinear- 
ity predominates, and J contracts in a finite time.' 

2. SEMI-INFINITE FlLM 

For semi-infinite films (see Fig. 2 ) ,  the components of 
B on the film are, as before, nonlocally related to each other 
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by Ampere's law and its converse, which now is obtained by 
means of a Mellin transformation [cf. Eqs. 5 1  : 

1 B,(x',+O) 
B ~ ( X . O ) = -  I dx', 

@ 5'-x 

in which, after the substitution x-x2, one can again recog- 
nize Kramers-Kronig relations for the even real and odd 
imaginary parts of generalized susceptibility. This means 
that here the object of study becomes functions w analytic in 
the plane with a cut along the real semiaxis (see Fig. 2 ) ,  
and on this cut Re w is continuous and Im w changes sign 
[i.e., on the film B, (x, + 0 )  = - B,  (x, - 0 )  1. The sim- 
plest example of such a function is w = i/([ + i)-in this 
geometry, the singular points (sources of the field) are locat- 
ed on the second sheet of a Riemannian surface. For such 
functions, the relation ( 10) follows from [see Eq. (6) 1 

Here the contour C i s  indicated in Fig. 2, and the function 
< 'I2 takes real positive values at  the upper edge of the cut. 

Now the arbitrary function u ( x )  is changed into a func- 
tion belonging to the class under investigation by means of 
the operators 

LC 

(the operator L,,, makes it the imaginary part of the analytic 
function at the upper edge of the section), between which 
there is no longer the simple relationship that existed in the 
first case. From a mathematical standpoint, this is the 
"price" for the symmetry of the functions, and from a phys- 
ical standpoint, for access to the film on both sides. Never- 
theless, Eqs. (8 )  and (9 )  remain valid, and the term 

- BZ(0, +O) 
5.4 

is added only to the right-hand side of Eq. (9 ) .  The temporal 

. Geometry of the problem 
the {complex plane ( b )  . 

infinite film physical space 

equation is not integrated here, since it remains nonlocal in 
the f plane as well, but the stationary Hall effect in the semi- 
infinite nonuniform film is studied just as simply as in the 
infinite film. The stationary Hall effect is described by the 
Riccati equation 

The set of its solutions is substantially richer than for a film 
without boundaries-any additional limitation promotes a 
variety of stationary states. In this case, equilibrium is possi- 
ble even without allowing for the self-field [the nonlinear 
term in Eq. ( 13) 1, although with a different sign of either the 
external field or dN/dy, or when the film is located in the 
region x < 0 [after the substitution x-  - x in Eq. ( 13) 1 .  In 
the latter case Ja exp x. For J ( 0 )  #O, the self-field on the 
boundary is logarithmically large (In S), and its inclusion 
may prove necessary. In the absence of the external field and 
for J ( 0 )  m a  = 0 we obtain from Eq. (13) 

1 
We----- , Ima=O, K e a X  

c-a 

is a 6-shaped current with the integral I = 1/2 (cf. the infi- 
nite film). Without the external field and for J ( 0 )  #0, the 
solution exists only for a > 0, i.e., at such a current at the 
boundary that transfers the carriers to where their concen- 
tration decreases. For this direction of the current in the 
infinite film, nonlinearity and dissipation are acting in the 
same direction, and the profile of the current spreads and 
can be "supported" against the edge of the film. In this case, 
on substitution w = - uf/v, ( 13) changes into 

/ a* v + - = 0 ,  
t 

whence 

Here H ' ' corresponds to a Hankel function of the first kind 
on the upper edge of the cut and of the second kind on the 
lower edge, J, is a Bessel function, and A is a positive (other- 
wise, on the negative semiaxis Im < = 0, where u, naturally, 
is real, a zero of the function u will appear, and hence, a pole 
of W )  real constant. For A = 0, a = 1, this corresponds to 

where N ,  is a Neumann function. 
In general, by substituting w = - uf /u  - 1/2, Eq. ( 13) 

can be converted into the Laplace equation 
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for the solution of which the following integral representa- 
tion is obtained by means of the Laplace 

v - J ( t - 1 / 2 ) a - t ( t + 1 / 2 )  -.-I exp  ( ~ t ) d t ,  

where the following condition is imposed on the contour K in 
the complex plane t: 

For integer values of a ,  as the contours for two independent 
solutions, one can select the contour going around the pole 
of the integrand, and the contour going from its zero to infin- 
ity, where exp({t) -0, and the solution is written in quadra- 
tures; for example, for a = 1 we have 

v = (I  dt t-' exp f + A ) 6  e x p ( - f / 2 ) ,  

where A is a positive real constant, and the constant in 

is chosen so that the function u is real on the semiaxis x < 0. 
In concluding this section, we note that Eq. ( 13) can be 

generalized to the case of a nonuniform external field B,, 
produced by a source located on the semiaxis x < 0. For ex- 
ample, for a conductor with a current at x = - 1, the term 
- w changes into 

- u ( t ) +  w ( - I )  

f + l  

[w(x,O) for x < 0 is a purely real function !] 

3. BAND 

For the band located at - 1 <x< 1 (see Fig. 3 1, Am- 
pere's law is written in the form 

1 

By analogy with the above, it is easy to see that the 
object ofstudy here should be the functions w, analytic in the 
lp lane with acut from - 1 to + 1, on which Re w is contin- 
uous, and Im w changes sign. For these functions, instead of 
Eqs. ( 6 )  and ( 11 ), one can write 

The contour C is indicated in Fig. 3, and the function 
( 1 - f ') "* takes positive real values on the upper bank of 
the cut. The simplest example of such a function is 

although for this function, since the integrand decreases at 
an insufficient rate as Ic'I - a,, it is necessary to add to the 
right-hand side of Eq. ( 14) the residue at infinity, equal to 
w ( m )  = 1/2. 

The conversion operators assume the form 

FIG. 3. Geometry of the problem of a band in physical space ( a )  and on 
the complex < plane ( b ) .  

and for them, Eqs. (8)  and (9)  remain in force again, and 
the terms 

are added to the right-hand side of Eq. (9) ,  i.e., for a steady 
state in this geometry, instead of Eq. (13), one can write a 
somewhat different Riccati equation 

with a natural definition of a + and a - . This equation is 
also convenient to use by converting it to a second-order 
linear equation. Thus, in the absence of an external field, for 
a symmetric distribution of current in the band, 
( a  + = a - = a)  the following equation is obtained for 
u(w= - -u f /u ) :  

its solutions are expressed in terms of associated Legendre 
functions. If a = 1, then 

where the logarithm is defined so that u is purely real on the 
real axis outside the cut, and to prevent u from becoming 
zero in this region, the constant A should be set equal to zero; 
such a requirement (cf. preceding case) is a consequence of 
the formation of a second edge. This expression for u corre- 
sponds to a current 

The transformation from w to v is convenient to use not 
only for finding the profile of a stationary current in a non- 
uniform film, but also for calculating its integral. Actually, a 
consequence of the physical behavior and properties of anal- 
yticity and symmetry of the function w is the following chain 
of inequalities: 
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where R is a circle of infinite radius, traveled counterclock- 
wise. By virtue of the argument principle, the latter integral 
is equal to A,,, u/4n-, where A,,, u is the increment of the 
argument u for a single revolution with respect to R. For Eq. 
(171, as I f  1 -  co, we have vz4/3f and A,,.,u = - 2n-, i.e., 
I = - 1/2. Incidentally, the residue of w at infinity can also 
be used for these purposes. 

CONCLUSION 

It should be noted in conclusion that the results ob- 
tained in this work are generalized without any particular 
difficulty to the case of infinite films of any shape with one or 
two edges: bent once, crimped, spiral, etc. However, the cor- 
responding formulas are represented in a visible form only in 
the case of a simply described conformal transformation of 
the regions discussed in this paper to new ones. Concerning 
the transition from the case of an infinite planar film to a 
cylindrical one, see Ref. 7. 

Thus, use of methods of the theory of analytic functions 
permits a complete study of stationary Hall flow of current 
in nonuniform thin films, despite the nonlinear integrodif- 

ferential form of the initial equation. A very similar equation 
(with a single dissipative term) also describes the process of 
Maxwellian relaxation of charge in a filmX where a nonlocal 
interaction takes place via an electric, not a magnetic, field in 
a vacuum, but the authors of this work,' having used the 
linearity of their problem, very quickly performed a Fourier 
transformation, depriving themselves of the opportunity of 
working with an integral equation. 
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