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Superconducting phases in a magnetic field are investigated in crystals of various symmetries 
using symmetry-based and analytic approaches to the Landau-Ginzburg expansion. The 
distinguishing property of uniaxial systems with threefold and sixfold axes is a competition 
between two superconducting phases with different symmetries to become the state of the system 
at H = H,, . One phase arises for field orientations along the principal crystal axes, while the other 
arises for the perpendicular orientation. This leads to an unusual anisotropy in H,, ( 8 )  in planes 
passing through the principal axis. Also investigated are Abrikosov vortex lattices in the new 
phases. 

1. INTRODUCTION 

Ever since the appearance of the first experimental and 
theoretical papers devoted to unusual superconductivity in 
certain compounds, primarily in heavy-fermion systems 
(see the review Ref. I ) ,  the attention of investigators has 
been drawn to the various magnetic properties of these su- 
perconductors. 

A general symmetry analysis of the possible types of 
pairing which can arise in exotic superconductors by way of 
second-order phase transitions from the normal state gives 
rise to a selection of one of the representations of the full 
symmetry group G,, corresponding to a transition to the su- 
perconducting phase at T = T, (Ref. 2) .  The group Go 
should include the crystal symmetry of the medium in which 
the Cooper pairs move as well as a strong spin-orbit coupling 
which arises in the pair due to the presence in the medium of 
atoms of the heavy elements ( U  and Ce for heavy fermions). 
In all, this gives 

G,=GXRXU(I) ,  

where G is the point group of the crystal symmetry, R is the 
time reversal operator, and U( 1 ) is the group of gauge trans- 
formations. Then the transition to a superconducting phase, 
which corresponds to some representation of G alone (repre- 
sentations of other symmetry elements from Go give rise to 
complex coefficients when expanded in terms of a basis of a 
representation of G) must be accompanied by breaking of 
various types of symmetries from G,,. 

First of all, the very nature of the superconducting or- 
der parameter 

is bound up with the breaking of U( 1 ) symmetry, i.e., with 
the choice of a definite phase of the wave function of the 
electrons which form the Cooper pair. Therefore, the corre- 
sponding symmetry group for the superconductor cannot 
include a pure gauge transformation. It is also possible to 
have other kinds of symmetry breaking involving the spatial 
and magnetic (i.e., time-reversal) symmetries. 

The symmetry of the superconducting phase plays an 
important role in the determination of properties such as the 
spin and orbital moments of the Cooper pairs and the types 

and locations of zeroes of the superconducting gap a1 the 
Fermi surface. The presence of zeros, in turn, determines the 
low-T temperature dependence ofthe thermodynamic quan- 
tities, e.g., the electron heat capacity, and also the various 
transport characteristics. Corresponding measurements for 
UPt,, UBe,, , CeCu,Si, and several other materials show 
that for these materials the thermodynamic quantities exhib- 
it power-law dependence on T rather than the usual expon- 
ent ia l~ .  However, it is impossible to identify unambiguously 
the symmetry classes of these superconductors on the basis 
of this data, because measurements of thermodynamic and 
transport properties do not allow us to discern easily the 
difference between experimental functions of the form T2 
(corresponding to lines of zeroes in the gap spectrum) and of 
the form T (isolated point zeroes), let alone to identify the 
distribution of zeroes on the Fermi surfaces. 

As was noted in Ref. 3, another and probably more ef- 
fective method of determining the original representation 
corresponding to the transition at  T, would be a measure- 
ment of the anisotropy of the upper critical field H,, in these 
materials. The authors of Ref. 3 and the later Ref. 4treat the 
anisotropy of H,, which appears in the basal plane of a crys- 
tal with a high-order axis of symmetry. In these papers, it is 
found that for non-one-dimensional representation of the 
point groups an additional anisotropy is possible which can- 
not be included in a simple model with a tensor effective 
mass. 

Certain other directions taken by investigators of the 
upper critical field and the phases corresponding to them 
have stimulated a considerable number of experiments5-' 
based on the application of a variety of techniques, from 
measuring the absorption of ultrasound and jumps in the 
heat capacity to attenuation of torsional vibrations of pendu- 
lum. On the basis of these experiments, certain conclusions 
were arrived at regarding the complex phase diagram of the 
typical heavy-fermion superconductor UPt, ( G  = D,,  ) in 
the H - T plane. In this compound the symmetries of the 
phases for H - 0  and H-H,, are found to be different.' I n  
Ref. 9 it was shown that when a magnetic field is applied to 
this compound along the sixfold symmetry axis, which 
thereby preserves the hexagonal symmetry of the system, a 
superconducting phase with broken translational symmetry 
can exist in addition to the usual hexagonal phase, in which 

760 Sov. Phys. JETP 70 (4), April 1990 0038-5646/90/040760-09$03.00 @ 1990 American Institute of Physics 760 



FIG. 1. Anisotropy of the upper critical field in the (210) plane plotted in 
polar coordinates. The data was obtained from Ref. 1 1  by measuring T, in 
a constant field H = 13.9 kG and determining from it (using the known 
value of dH,, / d T )  the anisotropy of H,, . Atoms of Mo are represented by 
small circles. 

case the sixfold axis becomes a twofold axis. A further prob- 
lem of interest is to trace the way this state changes as the 
magnetic field deviates from the crystallographic axis. 

There is interest in this type of problem in connection 
with recent experiments in which the anisotropy of H,, was 
measured in Cu,,, Mo,S, (a  material which belongs to the 
class of compounds with a Chevrel phase'0." ). In these pa- 
pers, the dependence of H,, on angle was measured in a 
plane passing through a threefold inversion axis (almost all 
compounds with a Chevrel phase have the rhombohedra1 
structure). The form of this dependence (see Fig. 1 ), which 
looks like the envelope of two perpendicularly overlapping 
ellipses, cannot be reconciled with any description in terms 
ofa tensor mass, which would give an ellipsoidal dependence 
of the upper critical field on angle in any crystal plane. The 
idea of connecting this type of angular dependence of the 
anisotropy with nontrivial pairing was proposed in Ref. 12, 
where, based on a numerical investigation of the Ginzburg- 
Landau (GL) functional for a two-component order param- 
eters, parameter of this functional were found which led to a 
form of H,, ( 8 )  which agreed with experiment. 

The goal of this paper will be to give a systematic analy- 
sis of the superconducting phases which arise in uniaxial 
crystals, and to show their relation to the various anisotro- 
pies ofH,, . In Sec. 2 we will carry out a symmetry analysis of 
the possible phases, some of which have already been ob- 
tained previo~sly.~ In Sec. 3 we will develop a method for 
solving certain linear homogeneous differences equations; 
this will allow us to construct a perturbation theory which 
will enable us to investigate the anisotropy of the upper criti- 
cal field. In Sec. 4 we generalize expressions obtained earlier 
for vortex lattices in the new phases. 

2. NONTRIVIAL SUPERCONDUCTIVITY IN A STRONG 
MAGNETIC FIELD (THE MOST SYMMETRIC PHASES) 

The influence of a magnetic field on the symmetry of a 
superconducting state for systems with nontrivial pairing is 

well known from the example of the superfluid phase of 3He. 
In this case the magnetic field, which reduces the full sym- 
metry group of the system, stabilizes the A, phase over the 
entire range of thep - T diagram near T, compared to the 
A- and B-phases, which are energetically more favorable in 
the absence of a field. Two types of interaction are responsi- 
ble for the change in the symmetry group of 3He in a magnet- 
ic field-an interaction which orients the action of the field 
along the spontaneous local moments, and one which inter- 
acts with the induced paramagnetic moments in the system 
of atomic spins. As a result of these interactions, the critical 
temperature for the spin projection s, = + 1 is increased, 
i.e., the degeneracy ins, is lifted. This implies that the lower- 
ing of the symmetry must be treated as a splitting of the 
original representation into several components. 

A different picture applies to the exotic superconduc- 
tors. In this case the particles which form the pairs have 
nonzero charge, so that at the first level of interactions of the 
system with a magnetic field we propose supercurrents gen- 
erated by this very field, which are described by the gradient 
terms in the energy functional. On the other hand, both types 
of interaction mentioned above for 3He become unimportant 
by virtue of the fact that the spins are "frozen" onto the 
lattice. Therefore the inclusion of a magnetic field (i.e., de- 
struction of time-reversal symmetry) will not give rise to a 
splitting of the original representation into several compo- 
nents which transform into one another by complex conju- 
gation. 

Let us now turn to a direct description of the exotic 
superconductors in a magnetic field based on the GL func- 
tional. For this it is necessary to choose some irreducible 
representation of the point group of crystal rotations (differ- 
ent representations for space inversion and reflection will 
correspond to the cases of singlet and triplet pairing). The 
order parameter is decomposed according to the basis of this 
irreducible representation: 

a (k )=X q.m,(k). 

The GL functional is obtained, in turn, by expanding 
the energy near T, in powers of 7, in the form of combina- 
tions of quantities which are invariant with respect to all the 
symmetry operators of the system. Thus, for hexagonal sym- 
metry D,, i.e., the case that is most popular in the literature 
(this corresponds to the compound UPt,) there exist two 
two-dimensional representations E, and E2; this case is also 
the primary subject of our investigation. The basis functions 
from El transform as components of a two-dimensional vec- 
tor perpendicular to the sixfold symmetry axis i. The invar- 
iant form of the energy density, to within terms of second 
order, can be written in the following way: 

The basis functions of the E, representation [these are 
(X + iy),, (X - iy),] correspond to those projections of the 
moment of rne pa s which equal + 2. This should be con- 
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trasted with El ,  where the projections of the moment equal 
+ 1; the different projections determine the similarities and 

differences for these two cases. Because the results are found 
to be the same, we will omit the contributions for E,. 

Finding the exact form of the superconducting phases 
near H,, requires direct minimization of ( 1 ) . However, be- 
fore doing this it is interesting to find all the possible remain- 
ing symmetries of the corresponding solutions independent- 
ly, as was done, e.g., for 3He in connection with the 
impossibility of an exact minimization of the terms of fourth 
order which determine the symmetry of the superfluid 
phases.13 The symmetry group of the superconductor (i.e., 
of the gradient terms in ( 1 ) ) including a field along the I axis 
has the form 

The remaining symmetries are determined by its subgroups 
(see also Ref. 2)  : 

and also D,(E), D,(E), D,(C,), which are subgroups of 
those mentioned above. It is easy to convince oneself that by 
virtue of the properties of the basis functions, states with the 
symmetries D6(E) and D,(E) can appear which generate 
the representation El,  while those with D6(C2) and D,(C,) 
symmetry generate E,. The state D,(E) cannot appear in a 
hexagonal crystal. 

Varying ( 1 ) with respect to 7: leads to the GL equa- 
tions: 

Introducing 

[a ,  a f ] = l  

and settingp, = 0 (because H I li), we are led to the eigenval- 
ue problem 

where \V is represented by the column 

In solving ( 3 )  we seek 7 + , v  in the form of a series based 
on eigenfunctions p, of the operator a + a corresponding to 
the nth Landau level. Possible solutions to (1)  will be: 
( ~ o , 0 ) ,  (p1,0), (pn p,, + , ,qn ,pn ). In determining the mini- 
mum eigenvalue A, which is connected with H,, by the rela- 
tion 

(here 4, is the flux quantum), we must take into account the 
requirement that the uniform state be stable; this is ensured 
by positive definiteness of the quadratic form made up of 
px vl ,  py v,, px 77,, and p,, 77,. It leads to the condition 

or, if presented through C and D, it will look like 

Then for all the permissible regions of values of the param- 
eters the minimum A is attained for one of the two solutions: 

h2=3 (I+C) - (8C2+ (2+2C.-D) ') '", o = 
4C 

hz- (l+C+D) ' 

Comparing A ,  and A,, we see that for D > C '/( 1 + C) seeds 
of the phase (5)  can appear near H,, with symmetry D6(E). 
For the opposite sign of the inequality seeds of phase (6)  can 
appear with the broken spatial symmetry D,(E) (see Fig. 2 
of Ref. 9) .  Solutions analogous to (5 )  and (6)  were found in 
Ref. 14, where superconductors were investigated with p- 
pairing in the weak-coupling approximation and in the ab- 
sence of spin-orbit interaction. However, these do not play 
an important role, since the maximum H,, corresponds in 
this case to a solution for the polar type of phase. 

In addition to the completely general condition (4)  on 
the coefficients of the GL functional, there exists still an- 
other limitation on them, connected with particle-hole sym- 
metry near the Fermi surface. This symmetry relates the 
solutions of the Bogolyubov equations for quasiparticles 
with positive and negative energies, and must be treated in 
our case as a symmetry relative to the operation q-q*. If 
this symmetry is exact, then we obtain D = 0. The breaking 
of this symmetry occurs as a consequence of the curvature of 
the Fermi surface, and the corresponding value of D is found 
to be of order ( T, /cF ) The physical meaning of this asser- 
tion is also explainable by the fact that terms with the coeffi- 
cient D in ( 1) can be transformed to the form 
DH,i(r],*v2 - vlr],) and in this way can describe the inter- 
action of the field with the dynamic orbital moment of the 
Cooper pair. As in the case of 3He, this moment is small as a 
consequence of the large size of the pairs compared to the 
spacing between quasiparticles.I5 The majority of materials 
satisfy T , / E ~  < 0.1, and consequently it is possible to assume 
D = 0 to good accuracy. This leads to the conclusion that a 
state with the broken spatial symmetry D,(E) will always 
arise in a magnetic field. 

Let us now turn to the case where the magnetic field is 
applied perpendicular to the 2 axis. If the field is directed 
along one of the crystallographic axes which is simulta- 
neously a second-order rotation axis, e.g., x, then the sym- 
metry group reduces to D,(C,, ) with elements E, C,,, 
C,, R, and C,, R. For all the remaining directions of the field 
D, x R reduces to C,, (E) .  Thus, the isotropy of the upper 
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critical field in the basal plane of the crystal is absent, gener- 
ally speaking, and H,, (0)  repeats the hexagonal symmetry 
of the sample. However, near T, at H = 0 the second-order 
terms in the free energy (both uniform and gradient terms) 
have an additional symmetry: D, X R  in place of D,x R,  
i.e., the sixfold axis induces an additional continuous sym- 
metry. As a result, we can obtain an equivalence of all the 
axis in the plane and isotropy of Hc, ., In this case the sym- 
metry group for all H l i  becomes D,(C,, ). The remaining 
possible symmetries of solutions which minimize the energy 
functional are also easy to find (the x-axis is chosen along 
the direction of H )  : 

D,' ( E )  = ( E ,  C,,ein, CzuR, CzZe""R), 
D,' (C2%) = ( E ,  Czrr Cz,,e'"R, CzZeinR). 

In order to find the solution in analytic form, we set 
p, = 0 and rewrite (2)  in the form 

where K = K,/K,. The solutions we require will be 

Nonzero values of 7, and vy are described by wave func- 
tions for anisotropic Landau levels (p, andp, enter into (7 )  
asymmetrically). The solution (8a) corresponds to the sym- 
metry D;  (C,, ), while (8b) corresponds to D ;  (E) .  As for 
the condition p, = 0, which we imposed in order to reach 
the minimum A, we now can no longer prove analytically, by 
finding A (p, ) , that this should be the case, as we did in find- 
ing Hc2 for superconductors with single-component order 
parameters or in the case ( 3 ) .  In Ref. 4 this supposition was 
verified numerically. Nevertheless, there are considerations 
which lead to just this condition on A,,, . They are presented 
in the Appendix. 

Including the pure continuous symmetry of the energy 
functional near Tc also changes the symmetry of the state 
(5).  It becomes D, (E) and is continuous; in addition, the 
form of this phase does not depend on the specific values of 
the parameters in the GL expansion ( 1 ). In the terms used to 
describe the superfluid phase of 3He, phase (5)  is "inert." 
The symmetry of phase (6) ,  as before, remains discrete- 
D,(E)-and its form depends directly on these parameters. 
It is not "inert," and in contrast to %e it is just this noninert 
phase which apparently corresponds to the physically real- 
ized situation. 

In concluding this section, we should pause briefly to 
discuss other types of crystal symmetries. In the case of 
rhombohedral symmetry D, there is one two-dimensional 
vector representation of interest to us. It is fully analogous to 
the representation E l  of the group D, we discussed earlier. In 
particular, the GL expansion up to terms of second order 
will be the same as in ( 1 ), and all the conclusions arrived at 
earlier remain exactly valid for this representation as well. In 
the presence of a fourfold axis for the tetragonal symmetry 
D,, the energy functional near T, ceases to possess an addi- 
tional continuous symmetry for its two-dimensional repre- 
sentation E. Thus, an invariant K, (p:~yp, 7, + p,*~Tp,, v2 ) ,  
is added to Eq. ( 1 ) which is independent of the fourfold axis, 
ar,d which is preserved only for rotations around the z axis 
by an angle of ~ / 2 .  From this we can immediately draw the 

conclusion that the only possible symmetry of the solutions 
in this case is D,(E) (HI 1.2). The symmetry D,(E) could 
correspond only to a single-component solution of type (5); 
however, its full symmetry is D ,  (E) ,  and therefore it can- 
not arise for arbitrary values ofK, which breaks this symme- 
try. 

3. ANISOTROPIES OFTHE UPPER CRITICAL FIELD IN 
EXOTIC SUPERCONDUCTORS 

For terms up to second order in the GL functional it 
follows from the same symmetry D, that H,, must necessar- 
ily be anisotropic in the basal plane of a tetragonal crystal. 
The situation is analogous for a cubic crystal. For the two- 
dimensional and any of the three-dimensional representa- 
tions of the group 0, there already appear invariants in the 
second-order gradient terms which break the symmetry rel- 
ative to arbitrary rotations. The invariant of this type for the 
three-dimensional representation Fl has the form 

which leads to an unusual angular dependence of Hc2 (8) in 
the form of a r o ~ e t t s . ~ ' ~  For the exotic superconductors 
made from hexagonal and rhombohedral systems, this char- 
acteristic feature is absent, and near T, the isotropy of H,, is 
retained in a plane perpendicular to the principal axis. How- 
ever, the continuous symmetry of the energy functional can 
lead to other interesting features. In the previous section we 
found that for symmetric orientations of the field along a 
sixfold (threefold) axis in a hexagonal (rhombohedral) 
crystal, the superconducting state arising from the two-di- 
mensional representation is determined by one of the phases 
(5)  and (6).  These two phases differ from each other by the 
spatial symmetries both of the Copper pairs [this follows 
from (5)  and (6) 1, and the vortex lattices which correspond 
to them (see Sec. 4 below). As the field deviates from the 
special direction, the symmetry of the system changes dis- 
continuously from D, X  R to (E,C,, R  ), where the axis 3 l H  
and lies on the basal plane. Correspondingly, the symmetries 
of the superconducting phases also become different. The 
behavior of these phases as the magnetic field goes off-axis 
will also be a goal of our investigations. 

Let us discuss the energy functional ( 1) in the case 
where the field H is rotated by a definite angle 0 in the (z,y) 
plane: H = (0, H sin 0, H cos 0) .  Let us pass to a new coor- 
dinate system, retaining the 2 axis as before, directing the 2, 
axis parallel to H, and letting they, axis be perpendicular to 
it: 

sin0 cos 0 

-sin 0 cos 0 

If we now express py and p, in terms ofp,, and p,, and 
take into account that in order to determine H,, it is neces- 
sary to setp,, = 0 (see Appendix), then we can obtain a GL 
equation of the following form: 
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Here and in what follows, p,,, will be denoted by p, for bre- 
vity, [p, ,p,, ] = - 2iefiH/c, and ui are the Pauli matrices, 
chosen as a basis for the space of 2 X 2 dimensional matrices. 
Let us introduce 

a =  (L) '~{ [  I"' pX-i 
4eAH (I+C) cosz 0+K sinz 0 

(1+C) cosZ 0+K sin2 0 1" P.}. 
[a ,  a+]=l 

and use a unitary transformation to pass from q to 
\I/ = ( v +  , v  _ ); in this case u3+uI,  u ,  + - u2, 0,- - u3, 
and Eq. (9)  can be written in the form 

where 

cos 0 
'b ' 

f = (  cosze+-- sin2 0 ) 
l+C 

For 0 = 0, f = 1, Eq. ( 10) goes to ( 3 ) . In contrast to all the 
solutions found earlier, there is no change in the operators a 
and a + which will reduce the eigenfunctions of Eq. ( 10) to 
a form such that the components of the order parameter are 
expressible in terms of a finite number of wave functions of 
new Landau levels. The reason for this is the same as in the 
case of tetragonal symmetry D,, where solutions with sym- 
metry D,(E) (see Sec. 2) are also obtained only in the form 
of infinite series. If the corresponding solutions could be ex- 
pressed in terms of a finite number of Landau levels, then 
there would necessarily exist a solution with a still smaller 
number of levels, and ultimately we would be left with a 
solution consisting of a single zero-order Landau level, i.e., 
to a solution of type (5 )  with symmetry which does not ad- 
mit the overall group of identity transformations of the sys- 
tem. Analogous considerations are verified in this case. 

Substituting 

(taking into account a + ap, = np, ) into (10) and com- 
paring coefficients ofp, on the left and right sides, we obtain 
a system of two second-order difference equations. The up- 
per critical field, as in the usual case, will be that field for 
which there first appear normalizable solutions to Eq. ( lo),  
i.e., superconducting seeds appear. This implies that the se- 
ries formed from the sequences {x, ) and b, ), Blx, 1' and 

Zly, 1 2 ,  must converge. To decide this, it is necessary for us 
to know the behavior of x, and y, for large n. To do this, let 
us use the first equation to express y, in terms of the ele- 
ments of {x, ); then by substituting the latter into the second 
equation, we obtain a linear homogeneous difference of 
fourth order: 

bn, n-'5%-h+bn, n-zxn-r+bn, n~n+bn, n+l~n+a+bn, n+rxn+r=O, 
C2 ( 1 - f )  '[ (n+ I )  (n+ 2 )  (n+3) (n+4) ] " 

bn+r,n=bn,n+b = -. 
4 [  (1+C) (2n+ 5 )  +Df-A] 

The upper critical field is connected with A by the following 
relation: 

We can find the value of A for which there exists a de- 
creasing sequence {x, ) in the following way. The general 
theory of difference equations (see, e.g., Ref. 16) establishes 
the following facts which we need: 

1. Any linear combination of solutions of a linear homo- 
geneous difference equation is also a solution to this equa- 
tion. Any solution to an n-th order equation is uniquely de- 
termined by specifying its initial conditions - x,, ..., x, - , . 
Correspondingly, all solutions form an n-dimensional linear 
space. Note that, because x, appears in ( 1 1 ) only with the 
specific parity of n, the order of the equation is decreased by 
a factor of two. The sought-after Amin corresponds to the 
sequence x,,x ,,.... 

2. The asymptotic form of the solutions of an arbitrary 
linear difference equations with variable coefficients coin- 
cides with the solution of an equation with constant coeffi- 
cients which is obtained from the original equation by re- 
placing all the coefficients b,,, by their limits as n + a~ 

(the PoincarC theorem). The solutions to the latter can be 
found exactly-they are geometric progressions and linear 
combinations of the latter. 

3. If the coefficient b , ,  - with the largest k does not go 
to zero as n varies, then by choosing the initial conditions we 
can obtain a solution to the difference equation having any 
asymptotic form admitted by the limiting equation (the gen- 
eralized PoincarC theorem). 

Because a geometric progression is easily summed, our 
normalizable solutions must correspond to any decreasing 
solution to the difference equation. In the case of Eq. ( 11 ) , 
the initial conditions are specified in a somewhat different 
fashion. For arbitrary x, and x, we find x, and x, from the 
first two recursion relations, and then all the subsequent x, 
will be determined in terms of the four previous x,, since 
b , ,  _ , # 0 for all n>4. This implies that our decreasing solu- 
tion does not exist for all A. 

The characteristic equation which describes the geo- 
metric progressions which satisfy the limiting equation for 
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( 11 ) hi . ds is easy to verify, four real and distinct roots, and 
because 

two of them will have absolute value smaller, two larger than 
one. Corresponding to this, we can choose four independent 
solutions to ( 11 ). Let 1,) = (xO,x,,x,,x,) be an initial condi- 
tion such that 1,: are the initial conditions for the four inde- 
pendent solutions; then 1, = ZCk 1; and C, are certain con- 
stants. If we now start with the third equation and iterate up 
to the equation with subscript N/2 + 3 and obtain a new 
quadruple 1, (x, ,xN + , ,xN + , ,x, + , ) , then we find 
1, = BCkl;, where 1; is the same quadruple that was ob- 
tained from the initial conditions 1:. For large N we have 1; 
-qflk , where qk is the base of the geometric progression we 
are looking for. Then, as an initial condition for finding the 
rest of the infinite sequence, the contribution to 1, from the 
solution with maximum Jqk 1 is much larger than the contri- 
bution to the initial 1,: 1, = 22, Ik , where lk are the initial 
conditions for the four independent solutions for large N, 
and 2, = Ck q z  I 2, / for the largest qk is much larger than 

/ ei 1 for the remaining qi . 
Conversely, if we specify any 1, assuming 1, = 0 for 

p > N  + 8, and from the equation with subscript N / 2  + 3 we 
iterate backward in the direction of smaller subscripts, then, 
once we reach l,, we obtain a larger contribution to it from 1: 
with Iqk I < 1 than with /qk I > 1. The condition that such a 1, 
is possible for a certain A is that the determinant of the ma- 
trix of the first N/2 + 3 homogeneous linear equations re- 
duced to zero. From this it is obvious how the exact condi- 
tion must appear for the existence of a decreasing series for a 
given A. It will consist of the vanishing of the following infi- 
nite determinant: 

In this notation, this determinant diverges in general. 
However, by dividing each row by the nonzero coefficient 
b,,, -, which is of no interest to us, we can achieve conver- 
gence of the entire infinite determinant. This approach is 
suitable for difference equations of any order. When the or- 
der of the difference equation equals two, the determinant of 
the matrix, which will have nonzero terms on the diagonal 
and two adjacent subdiagonals, reduces to a continued frac- 
tion: 

boo b,, bO4 0 0 . . . 
b,o b,, b2, 62, 0 . . . 
64" b42 b44 b46 b48 . - -  
0 b62 b64 bfifi b6S - . 
. . . . . . . . . . . . . . . . . . 

bozbzo 
boo - =o. 

bz,b,, b,, - ------- oh&-. . . 

= 0. (12) 

This equation, which is well-known in the theory of 
continued fractions, was first used in Ref. 14. It usually 
arises in problems where the transition temperature of the 
original representation is subject to a small splitting either as 
a result of weak spin-orbit interaction or because of interac- 
tions with an antiferromagnetic order parameter. 

Equation (12) cannot be solved in the general case; 
however, it allows the perturbation theory we require to be 

developed rather simply. In what follows, we will set D = 0. 
Correspondingly, it follows from (4)  that - 1/3 < C <  1. 
This allows us to consider C as a certain small parameter in 
the problem, and to attempt to write the required expres- 
sions in the form of a series in powers of C. 

According to ( 1 I ) ,  all the off-diagonal elements ( 12) 
disappear for 8 = 0. Then A ,  and A,, which coincide in this 
case with A, and A,, are the roots of the two equations 
boo = 0 and b,, = 0. For 8 # 0 the nondiagonal elements are 
nonzero; however, ifwe take into account that they appear in 
( 12) only in the form b,,, - b, - ,,, - C4sin48, then they can 
be neglected to first approximation in C. After this, the root 
( 12) as before will be found from the equations b,,, = 0, 
b,, = 0, etc. This allows us to find the angular dependence: 

Thus, for 8 = 0 (corresponding to f = 1) we have es- 
tablished a direct correspondence between the solutions of 
(13) and phases (5 )  and (6) we found earlier: 
A2(0) < A ,  (0) .  For 8 = r / 2  (i.e., f = 0),  which corre- 
sponds to the case where the magnetic field is perpendicular 
to the principle axis, A, ( r / 2 )  corresponds to the smallest 
solution to (8) ,  depending on the sign of C (again taking into 
account the smallness of C) . In addition, A, (77/2) is much 
larger than A2(r /2) .  Consequently, in the range of angles 
0 < 8 < r / 2  there must be an intersection of the curves A, (8) 
and A, (8) .  Then the curve Amin (8) will have a kink for 

However, this kink disappears if we "include" the nondia- 
gonal elements. Limiting ourselves in first approximation 
only by the condition 

boo boz 1 b,, ' b2, (=o,  

we obtain 

From this we see that the kink is smoothed out into a 
point of inflection. The considerations applied here are very 
similar to those used to deal with intersection of electronic 
terms in diatomic molecules, Superconducting states with 
initially different symmetries acquire the same symmetry as 
the field deviates from the symmetry axis. Therefore the cor- 
responding curves A, (8) and A, (8) cannot intersect, i.e., 
they repel each other. 

The perturbation theory we are using is automatically 
obtained from Eq. ( 12). In contrast, an attempt to obtain it 
directly from (10) would be very inconvenient, because we 
cannot isolate the perturbation operator we require in ex- 
plicit form. 

For values of C which are not small compared to unity, 
it is necessary to include higher-order terms ofthe expansion 
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in powers of C. However, if we keep in mind that Eq. ( 13) in 
the form we have written it gives an error in determining the 
eigenvalues (even for C = 1 ) of less than lo%, we can use it 
qualitatively together with (14) over the entire region 
- 1 / 3 < C < l .  

The picture developed here accords well with the ex- 
perimental shape of the curves given in Refs. 10, 11 (see Fig. 
1 ). Furthermore, while the weak rhombohedra1 distortion 
in the Chevrel phases (the cluster Mo,S, forms an easily- 
deformed cube) should introduce an anisotropy of only 1 % 
into the effective mass and correspondingly into Hc2,  the 
anisotropy for the two-dimensional representation which se- 
lects the axis perpendicular to the order parameter also ap- 
pears even if the mass is isotropic [i.e., equal K ,  and K, in 
( 1 ) ] because Cis  nonzero. This can lead to the anisotropy of 
about 30% which is observed in experiment. 

4. LATTICES OF VORTICES IN EXOTIC SUPERCONDUCTORS 

In the previous sections we sought the upper critical 
fields in the new Type I1 superconductors as those magnetic 
fields for which the appearance of superconducting seeds in 
a thin normal sample becomes energetically favorable. The 
superconductivity in this case is found in a suppressed state 
which finds expression in the linearity of the of the equations 
which describe the superconducting seeds. The concrete de- 
finition ofthe gauge, which we have not been interested in up 
to now in general, leads to seeds which are localized in space. 
By virtue of the linearly of the equations from which these 
seeds are obtained, at  H,, they are formed independently 
throughout the entire volume. By shifting to the region of 
smaller fields and thereby causing the superconducting or- 
der parameter to develop up to some nonzero value, and by 
taking into account nonlinear terms in the G L  equations, we 
obtain an interaction (specifically a repulsion) between the 
seeds, which packs them into a regular structure. 

In contrast to the situation which arises when the super- 
conducting sample is permeated with vortices for H 2 Hc, , 
in which case there is a physical quantity-the magnetic 
field B-which fixes the spacing between vortices, in our 
case it is meaningless to discuss two superconducting seeds. 
For any H < Hc2 it is necessary to construct a planar lattice 
out of them at the outset. In our treatment of this question 
for multicomponent superconductors we will base ourselves 
on the standard approach discussed in Refs. 17, 18. 

The inclusion of nonlinear terms proceeds as follows: in 
Eq. (4 )  for the energy, which is quadratic in the absolute 
value of q, we include terms of fourth order in 11, and also the 
energy of screening currents. In a hexagonal (rhombohe- 
dral) system only two fourth-order invariants are possible 
for the vector invariant: p, ( 17, l 2  + / q 2  / 2 ) 2  and 
p2 (7: + 7: ) (7T2 + v:~). The requirement of positive defi- 
niteness gives Dl > 0 and p2 > - 0 , .  For further calcula- 
tions it will be convenient to pass to dimensionless units by 
settinga(T, - T) = 1 , p ,  = 1/2, and K, = 1. Then 

where K is the Landau-Ginzburg parameter for the material 
in question, while the dimensionless parameter il is connect- 
ed with the upper critical field by the relation il = x/H. In 
these dimensionless units the energy functional for a super- 
conductor in a magnetic field has the form 

F = - q q + i / ( q q ) + i / 2 2  q i 2 + - h - 2  ( 15) 

Here k, is the effective Hamiltonian in Eq. (2 )  [the pas- 
sage from ( 1 ) to ( 15) is mediated by our neglect of the spe- 
cific form of the boundary conditions], h is the magnetic 
field in the sample averaged over the atomic structure but 
not over the system of supercurrents, and H is the magnetic 
field intensity induced by an external source. 

Out of all these phases, the most interesting is a lattice of 
Abrikosov vortices for phase ( 6 ) .  Lattices of vortices of the 
remaining phases, for which the components of the order 
parameter depend in the same way on coordinates, are anal- 
ogous to lattices of the usual superconductors. The lattice of 
phase (5 )  is hexagonal, while that of (8 )  is distorted because 
of the anisotropy of the mass tensor. 

According to Ref. 17, the first stage in determining the 
structure of the mixed state near H,, is the determination of 
the field h, caused by the supercurrents, h = H + h, . This is 
necessary not only for a correct determination of the energy 
density F obtained by using the order parameter equation 
(the angular brackets denote averaging over the inhomo- 
geneities of the superconducting state, while q ,  is expressed 
in t e rmsofq ,  a n d 7 -  ): 

but also for determining the absolute value of the order pa- 
rameter. The simplest way to find it is to require that the 
energy functional be stationary with respect to the transfor- 
mation 171 - ( 1 + E) 17 1, where E is a small number. l 7  This 
leads to the following condition: 

The difficulty in finding h, in this problem is due to the 
fact that the coordinate dependence of the order parameter 
involves more than the wave function of the zero-order Lan- 
dau level. By using the equations for the components of the 
order parameter which follows from (6 ) ,  

substituting them into the expression for the supercurrent, 
and integrating the equation rot h, = j,s, after a series of cal- 
culations we obtain 

Here h ,  is the solution to the second equation and cannot be 
expressed in explicit form in terms of v +  and v -  . Introduc- 
ing the quantity 6 according to (17) such that 

<i/,e(1q+12+l q-I2)'+P2 Iq+ 1 ' 1  11- 1'-OhS') 
6 = - 

< h,>2H,,2 1 (18) 

allows us to write ( 16) in the form 

and thereby reduce the problem to the minimization of a 
function of 6, which is a generalization of the usual relation 
to be minimized, i.e., (/414)/(lJ1/2) 1'. The choice of gauge 
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A = ( - Hy,O,O) allows us to write in explicit form a solu- 
tion which has the form of a lattice of superconducting seeds 
with periods a, b, and an angle a between them: 

Xexp (y -inx 1 [2xH(y-nbsin2a)-l] 

x H 
x e r p  [- T(y-nb sin a)']. 

Xexp (2t - ir ix ) exp [ - ';(y-nb - sina)']. 

The condition for periodicity of the absolute value of 
the order parameter induces the following relation between 
a, b and a: 

ab sin a=2n/?cH. 

Each elementary unit cell of such a lattice of seeds contains 
one zero of the wave function (7 + and 7- reduce to zero 
simultaneously) for x = la and y = Jb  sin a. Furthermore, 
if we take into account that in these dimensionless units we 
have 4, = 21r/x, then the natural requirement that the lat- 
tice of seeds be simple leads to Abrikosov vortices, each car- 
rying one flux quantum. Our overall program will therefore 
consist of the following: we substitute the explicit form of the 
solution we have found into ( 18) and find 6 as a function ofp 
and o, which are related to the lattice parameters by the 
following expression: 

This problem is made easier by the fact that x in the com- 
pounds of interest is large (for UPt,, x - 20), and so to accu- 
racy - 1/x2 we can neglect the field energy due to supercur- 
rents, i.e., the term h f. in the numerator of ( 18). As a result 
we obtain 

Here the summation is either over integer rn and n or over 
half-integers; 

is a standard function of the lattice parameters for ordinary 
supercond~ctors.'~ Its minimum is reached for p = 1/2, 
u = 3'/,/2, which corresponds to a hexagonal lattice. 

In order to find the form of the lattice it is not necessary 
to minimize S(p,u) in the entire complex plane p + iu, as 
symmetry considerations isolate the minimum in a certain 
region. First of all, both the vector pairs b, a and b + a, a 
determine the same lattice: which corresponds to the condi- 
tion 6 (p  + 1,u) = 6(p,u).  Secondly, in order to determine 
the form of the lattice we can choose the vectors b and - a 
such that 6(p,u) = 6 (  -p,u).'"hese properties of the 
function S(p,u) allow us to seek its minimum only in the 
strip O<p< 1/2. In addition, 6 (  1/2 + p,u) = 6(  1/2 - p,u),  
so that 6; ( 1/2,u) = 6; (0,u) = 0. Thirdly, the replacement 
a-b leads to the transformation -p/(p2 + d), 
U - - + U S / ( ~ ~  + 02)  and describes a symmetry of 6(p,u) rela- 
tive to motions on the unit circle. This gives us the right to 
choose from the strip O<p< 1/2 that part which lies in the 
unit circle. These properties do not depend on the specific 
form of S(p,u), and hold for the entire region H,, <H<H,,. 
For (19) the first two symmetry properties are obvious, 
while the third is proved by using the Poisson summation 
formula. 

Let us determine u by assuming that the minimum of 
S(p,u) corresponds t o p  = 1/2, i.e., to a position of the ex- 
treme which is stable by symmetry. The hexagonal lattice is 
not even an equilibrium configuration, since 
8; ( 1/2,31/2 /2) = 0. It-is simplest to find the structure of the 
lattice in the limiting case of large w (w - 2 ( 1 + C)/C as 
C+ 0 )  , when the solution (6)  is almost single-component. 
Then A, - 1, A, - l/w2, A,  - l/w4, and the original mini- 
mum S,(p,u) is slightly shifted under the action of the per- 
turbation 8, (p,u). To first order in 1/w2, 

For arbitrary values of w a deviation remains, as we 
have already noted; however, it is not possible to find it in 
explicit form. Nevertheless, because p = 1/2, the lattice of 
phase 6 will in any case consist of rhomboids, and will have, 
as we should also expect, the symmetry D2. The magnetiza- 
tion curve B(H)  of the superconductor near Hc2 has the 
form 

The boundary conditions at the surface of a metal-insu- 
lator interface, which we neglected in ( 15) in our discussion 
of seeds in the bulk of the sample, must be taken into account 
in finding H,, . The difference between this case and the usu- 
al (although j,, = 0 as before) must lead to a change in the 
relation between H,, and H,, . 

5. CONCLUSION 

We see from the results of this paper that superconduc- 
tivity will always be accompanied by unusual behavior of the 
anisotropy of the upper critical field when the order param- 
eter generates other than one-dimensional group representa- 
tions; this is true for crystals of any symmetry. Therefore the 
identification of such an anisotropy for the heavy-fermion 
superconductor UPt, (which is one of the most probable 
candidates for the realization of nontrivial superconductivi- 
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ty ) in a plane passing through the hexagonal axis' could be a 
serious argument in favor of its superconductivity being 
nontrivial. Furthermore, for UPt, (see Ref. 6) there should 
exist an anisotropy in the neighborhood of the kink in the 
curve H,, ( T) in the form of two overlapping ellipses; this is 
connected with the presence in a magnetic field of two un- 
mixed phases near T,, independent of their exact nature. 
Before a specific interpretation of superconductivity in 
Cu, , Mo,S, can be given it is necessary to determine the low- 
temperature dependence of its heat capacity and other char- 
acteristics. 

In conclusion, I am pleased to thank G.  E. Volovik for 
valuable advice and attention in the course of the work, and 
L. I. Burlachkov for useful discussions. 

APPENDIX 

Here we present a proof of the fact that the solution 
corresponding to the minimum eigenvalue of the G L  equa- 
tions for a multicomponent order parameter is associated 
with p, = 0. ( In  this Appendix we will assume 21 IH). The 
vector potential can be chosen in a gauge in which A l H  such 
that it depends only on x and y. Then the operatorj, com- 
mutes with the effective Hamiltonian from (2 ) ,  and can be 
treated as a simple number. Let us discuss Eq. (22) with 
p, #O, and write it in the form 

As a result of applying the operator of spatial inversion, 
these equations are transformed to 

The effective Hamiltonian is invariant with respect to 
the symmetry operations. Since the direction and magnitude 
of the magnetic field do not change, we have 
A (p, ,H)  = A( - p, ,H) .  From this it is clear that forp, #O, 
A (p, ,H) corresponds to two solutions ~ ( p ,  ,H)  and 
V (  - p, ,H) .  They are independent since they involve differ- 
ent functions of the coordinate z. Consequently, ifp, #O for 
the minimum eigenvalue, then the multiplicity of the latter 
equals two. 

A 

Let us turn again to He,. We will discuss it as a differen- 
tial operator in all three spatial coordinates. Because of the 
positive definiteness of the gradient terms, this operator be- 
longs to the class of elliptic operators. For elliptic operators 
with discrete spectra there exists a theorem which states that 
as we vary such an operator continuously the dimensionality 
of its kernel does not change. In  fact, 

ker A= lim exp ( -At) .  
I - + -  

For a continuous variation of 2 the left and right hand 
sides must vary continuously; however, the left side is an 
integer. Consequently, it cannot change in general. As we 
are discussing superconducting samples with finite dimen- 
sions, we arrive at  discrete specza along z, so that this 
theorem applies to the operator He, - A,,,. This implies 
$at the dimensionality of A,,, for any direction of the field 
H i s  the same as for a field oriented along the hexagonal axis. 
But, for this direction, according to ( 3 ) ,  p, #O explicitly 
increases A, i.e., to this direction, as with all the others, there 
corresponds a dimensionality of A,,, equal to 1. Therefore 
we must choose p, = 0. For the three-dimensional vector 
representations of the cubic group, the corresponding GL 
equations are such that the discussion presented above does 
not apply. However, in this case, once we have chosen initial- 
ly different critical temperatures for the two-dimensional 
and one-dimensional representations, we can then allow 
them to approach one another continuously. Then the di- 
mensionality ofA,,, also will change continuously, and for a 
purely two-dimensional or  one-dimensional representation 
it equals unity. 
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