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We have analyzed theoretically the frequency and temperature dependence of intrinsic dielectric 
losses in ordinary insulator crystals when the temperature is on the order of the Debye 
temperature or higher. We investigate crystals with symmorphic symmetry groups which belong 
to one of the 32 crystal classes. We have taken into account contributions to the losses connected 
both with symmetry-induced degeneracy of the phonon spectrum and with the most probable 
types of accidental degeneracy. We show that structure in the high-energy portion of the phonon 
spectrum (i.e., where the energy is on the order of the Debye temperature) can significantly affect 
the form of the frequency and temperature dependence of the intrinsic dielectric losses. We 
establish that the forms of this dependence for crystals with symmorphic groups are determined 
by the crystal class, but not by the space groups within a given class. 

1. INTRODUCTION 

In this paper we describe a theoretical investigation of 
the intrinsic dielectric losses in ordinary crystalline insula- 
tors at high temperatures T (compared to the Debye tem- 
perature a ) .  This paper should be regarded as a continu- 
ation of our previous paper Ref. 1, in which we investigated 
the low-temperature case. " In this paper we will discuss only 
crystals with symmorphic space groups, and limit ourselves 
to the case of frequencies w low enough so that 

n o a 3  

(here and in what follows, the temperature will be in energy 
units). 

As we pointed out in Ref. 1 (see also Ref. 2), losses in 
noncentrosymmetric (NCS) crystals can be represented in 
the form of a sum of three-phonon and quasi-Debye losses. 
In contrast, in centrosymmetric (CS) crystals the losses can 
be cast in the form of a sum of three-phonon and four- 
phonon losses. The quasi-Debye and four-phonon losses, 
which were investigated in detail in Ref. 1, are insensitive to 
the details of the phonon spectrum. The corresponding fre- 
quency and temperature dependences can easily by obtained 
from Eqs. (2.2), (2.4) of Ref. 1 by replacing all powers of T 
except the first by 0 ;  in Eq. (3.1 ) we must retain two powers 
of T. 

Mathematically, this is connected with the fact that in- 
tegration over the wave vectors of the acoustic phonons now 
involves an effective cutoff which is no longer due to the 
Planck function, which cuts off the corresponding integrals 
at a characteristic value of k = k ,  = T/fiv  (where u is a 
characteristic value of the sound velocity ); instead, the cut- 
off occurs at k = k,, where k,  is the limiting value of the 
phonon wave vector. 

The three-phonon losses are sensitive to the shape of the 
phonon spectrum; this was already apparent in Ref. 1, where 
we used the distinctive features of the spectrum of long- 
wavelength acoustic phonons to analyze the low-tempera- 
ture losses. In Ref. 1 we also showed that by extrapolating 
the results of Ref. 1 to the high-temperature regime we ob- 
tain a minimum of the dielectric loss; this constitutes a lower 
bound on the latter. This paper will concern itself with exhi- 
biting the distinctive features of the short-wavelength and/ 

or high-frequency part of the phonon spectrum and clarify- 
ing how these features affect the losses. In this section and 
the two which follow we will investigate the contribution of 
three-phonon losses, as this term is understood "classical- 
ly," i.e., for wr$ l  ( T  is a characteristic lifetime of the phon- 
ons which interact to produce the losses). The case of lower 
frequencies is discussed in Sec. 4. 

Specifically, we are interested in the so-called associat- 
ed losses, i.e., processes which couple quanta of the electric 
field with a phonon to create a phonon on another branch. 
They give the following contribution to the imaginary part of 
the dielectric permittivity E:  

where the subscriptsj' indicate the branch of the spectrum 
while the superscripts label the vector component of the 
electron-phonon potential (EPP) A. If the temperature Tis 
much larger than the characteristic phonon frequencies, we 
can use the following approximation for the Planck distribu- 
tion N,: 

Substituting ( 1.2) into ( 1.1 ), we find that Im E a Tat  high 
temperatures (this fact was pointed out by Vinogradov in 
Ref. 3), and ( 1.1 ) becomes 

However, the frequency dependence of Eq. ( 1.3) depends on 
the behavior of the photon spectrum and the EPP near "con- 
tact points," i.e., points in k-space where some pair of 
phonon frequencies on different branches coincide. 

The only kinds of contact points which were studied in 
the previous article' were lines of degeneracy (or quaside- 
generacy) of the phonon spectrum near which the "associ- 
ation" processes could occur. Naturally, in the low-tempera- 
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ture case only the initial (long-wavelength) portions of the 
acoustic phonon branches play a role. Here, however, we 
will be interested in lines of degeneracy in the short-wave- 
length part of the acoustic spectrum, and also the optical 
branches of the spectrum over their entire range. In this case, 
the isofrequency surfaces are not even remotely similar. Cor- 
respondingly, new objects arise in the theory of losses whose 
contributions require analysis-points of degeneracy of the 
spectrum and special points on the lines of degeneracy. 

We will apply our results to the special case of a particu- 
lar crystal class, which we pick to be C,, . For the other 
classes, we will indicate briefly the characteristic differences 
in their treatment and trace the origins of these differences; 
as for remaining details, we limit ourselves to presenting re- 
sults which will be reduced to tables. 

2. AN EXAMPLE: THE CLASS C,, 

As we showed in Ref. 1, the low-temperature losses are 
due to processes which take place near four lines of degener- 
acy of the long-wavelength acoustic phonon spectrum. In 
this case one finds Im E a 0'. 

The transverse losses are determined by a line of sym- 
metry-induced degeneracy. This line goes throughout the 
whole Brillouin zone along the C3 axis. For the high-tem- 
perature transverse losses there exists a short-wavelength 
part of this line which, as in Ref. 1, gives Im E ,  a w2. 

The longitudinal losses are given by three "obligatory" 
lines of accidental degeneracy lying in the symmetry planes. 
As with the transverse-loss case, these lines must necessarily 
extend into the short-wavelength part of the spectrum, and 
therefore they also give a contribution Im E, ,  a w2. 

At high temperatures the optical branches are excited 
as well. There is also a line of degeneracy along the C3 axis in 
the transverse optical branches, which gives a contribution 
to Im E~ that, generally speaking, is of the same order as the 
contribution from the "obligatory" lines of accidental de- 
generacy of the acoustic branches. 

At first glance it appears that the theory of the phenom- 
enon should be exhausted by this, and that we need only 
verify whether or not there is a special contribution from the 
ends of the degeneracy lines and (for optical phonons) from 
the center of the Brillouin zone. 

Let us begin with a discussion of the structural features 
of the spectrum of long-wavelength optical phonons. The 
degenerate optical vibrations which propagate along the C3 
axis must be polar in general, because the only two-dimen- 
sional representation of the group C,, is a vector one (addi- 
tional degeneracy connected with the reality of the Hamilto- 
nian in the coordinates of the representation does not arise). 
For small inclinations of the propagation direction from the 
C3 axis a splitting of the transverse optical branches appears; 
in analyzing this splitting we must include the contribution 
of the macroscopic electric fields which appear as well as 
spatial dispersion. 

Let us investigate two mutually degenerate optical vi- 
brations, which are characterized by a vector w proportional 
to the corresponding relative displacement of the sublat- 
tices. Because in an insulator these vibrations take place with 
a fixed longitudinal component of the displacement D (by 
virtue of the condition div D = O), the role of the potential 
energy for the optical vibrations is played by the expression 

Here the first term describes the increase in energy 
when there is a uniform relative displacement of the sublat- 
tices under the condition that the macroscopic fields vanish; 
the last term describes the contribution from the macroscop- 
ic electric fields (see the paper by Lang and Pashabekova4 or 
the book by one of the authors ofthe present paper5). As was 
pointed out in Ref. 5, the tensor pi, is nonsymmetric, gener- 
ally speaking. The second and third terms are the next terms 
of an expansion in powers of the small wave vector k, i.e., 
they describe the spatial dispersion; EL," ' is the dielectric per- 
mittivity calculated without including pairs of branches like 
those under discussion here. 

The splitting of the phonon frequencies is calculated 
according to the following general expression: 

Let us point out first of all that the second term in (2.1 ) 
must be equal to zero. In fact, the only invariant admitted by 
the symmetry C,, , i.e., 

is a total derivative with respect to z, and the integral of such 
a term reduces to a surface integral. 

The invariants corresponding to the third term in (2.1 ) 
have the form 

The first two of these invariants do not give any split- 
ting, since they correspond to HI ,  = H,,, H , ,  = 0. The re- 
maining invariants give a first-order splitting for k - k, , 
which results in An a k ' for this case. If, however, we have 
k > k ,  , then the last invariant turns out to be important, 
which gives AR a k ,, k ,  . This splitting turns out to be pro- 
portional to the first power of k , ,  in agreement with the 
general behavior of a line of degeneracies parallel to the C, 
axis.(' 

From this we see that even without including the contri- 
bution from macroscopic electric fields the behavior of the 
splitting as we depart from the point k = 0 (the l? point) 
differs from its behavior away from the line of degeneracy 
parallel to the C, axis. There is a remarkable assertion con- 
nected with this, whose validity we will prove below: the 
contribution to thelosses from the vicinity of the point k = 0 
will be parametrically larger than the contribution from the 
entire line. 
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In analyzing the fourth term in (2.1 ) we will take into 
account the fact that symmetry admits the presence of the 
following components of the tensor P: Px, = P,, and fizz. 
Using the general expression (2.2), we obtain the following 
equations: 

where n, = k,/k, A and B are proportional to the coeffi- 
cients of the invariants (4 )  and (5)  respectively, and 
F = 47rP :,/&I," I .  The final expression for the frequency 
splitting can be written in the form 

AS2=QD [c,nl'+czn12k>a4+cskkZa2n13 cos 3 (v-TO) 1 lh, (2.4) 

where nD is the Debye frequency, c, is a dimensionless con- 
stant of order unity, a is the mean interatomic spacing, 
which measures the spatial dispersion, q, is the azimuthal 
angle, and p, is a constant (in (2.4) we have included the 
leading terms in the parameter ka).  

In what follows, in order to calculate the losses we re- 
quire an estimate of the nondiagonal components of the 
EPP, which correspond to transitions between the optical 
branches of interest to us. The transverse EPP is given by the 
invariant (E is the external electric field) : 

Re [ (E,+iE,) (w,+iw,) '1, (2.5) 

clearly this quantity does not depend either on k or on angle 
in any important way. We obtain the following estimate for it 
(compare with Ref. 1 ): 

Here A ,  is the so-called standard value,' which in order of 
magnitude equals 

wherep is the density of the crystal. 
The longitudinal EPP is given by the invariant 

from which 

Let us begin with a calculation of the transverse losses. 
Using (1.3), (2.4) and the estimate (2.6), we see that the 
integral (1.3) contains the small quantities k, and k,; this 
justifies our use of Eq. (2.4), which was based on an expan- 
sion in k, to calculate the losses. Transforming the integra- 
tion variables n, + (@/a, ) "'n, ,k- (w/fl, ) 'I4k, we find 
that 

Let us point out that when we use expressions of this type to 
estimate the losses, we must reduce each power of T to di- 
mensionless form by dividing it by Mu2 (where M is the 
mean mass of the atoms which make up the crystal and u' is 
the mean square of the sound velocity) and divide the fre- 
quency w by the Debye frequency a,. The smaller the pow- 

er of w, the larger the losses, since the ratio w/R, is assumed 
to be small. From this we see that the vicinity of the point 
k = 0 gives a contribution larger than the entire line of de- 
generacy, which leads to the dependence Im E a w'. 

An analogous calculation for the contribution of the 
zone center to the longitudinal losses would give 
Im E cc This is larger than the contribution from the 
entire line of symmetry-induced degeneracy. However, in 
the present case this is unimportant, because the contribu- 
tion is smaller than that from the "obligatory" line of acci- 
dental degeneracy of the acoustic branches. 

However, there is a point on the line of accidental de- 
generacy which gives a contribution even larger than (2.10). 
This is the point Z with coordinates (0,0,7r/a,), where a, is 
the period of the lattice in the direction of the z-axis. The 
Hamiltonian of the lattice vibrations in the vicinity of the 
point Z has the same form as the Hamiltonian in the vicinity 
of the point, except that near Z there is no contribution 
from the macroscopic electric fields. Actually, at the point Z 
the group of the wave vector is the same as for the l- point, 
and includes the same symmetry element which transforms 
k to - k. Therefore all the limitations induced by symmetry 
on the form of the phonon spectrum at these points are iden- 
tical. The same applies to the EPP. 

The splitting in the neighborhood of the point Z is given 
by Eq. (2.3) with F = 0. We have 

where k is measured from the point Z, the value of the con- 
stant is obviously different from that in Eq. (2.4). 

Calculating the transverse losses in the same way as 
before, we are led to the result 

From this we see that the contribution from the point Z is 
even larger than that from the point T. The contribution to 
the longitudinal losses from this point is proportional to 
w7/*, which in contrast is smaller than the contribution from 
the "obligatory" line of accidental degeneracy. 

In addition to the points Z and T, there may also be yet 
another type of point which can give a contribution to the 
losses. This is a so-called "point of accidental tangency"; we 
will denote such points with the letter \V. As we have already 
mentioned, for small excursions from the C, axis the 
branches diverge linearly; in the group C,,,  there is only a 
single invariant which corresponds to this divergence. Actu- 
ally, the group of the wave vector in our case is also C,, . We 
will assume that the vectors w and w*, just as for k , ,  trans- 
form according to the two-dimensional representation. 
Then the cube of this representation contains only the unit 
representation. 

We will identify as a Y point that point on the C, axis at 
which the coefficient in this invariant reduces to zero as a 
function of k, . At this point the divergence of the branches 
has the same form as at the point Z. Therefore the contribu- 
tion from it to the transverse losses is found to be the same. 
The contribution to the longitudinal losses is found to be 
proportional to w5"; although it is larger than the contribu- 
tion from the entire line of symmetry-induced degeneracy, it 
is nevertheless small compared to the contribution from the 
line of accidental degeneracy. 
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We now need to discuss the contribution to the losses 
from other features at the surface of the Brillouin zone be- 
sides the point Z. Since we are investigating the symmorphic 
groups, there cannot be degeneracies over portions of the 
surface which have finite area (as shown by Herring,' such 
degeneracies can exist in the presence of a screw axis of sec- 
ond order). Let us clarify whether such a line of degeneracy 
can exist at the surface. 

The class C, ,  belongs to three symmorphic space 
groups: C :, , C :, , and C :, . The first two have a hexagonal 
Bravais lattice: correspondingly, the Brillouin zone has the 
form of a six-sided prism. The vertical edges of the prism are 
lines at the surface of the zone having a group of the wave 
vector with the same high symmetry. In C :, this is the group 
C,, which is insufficient to give rise to degeneracy of the 
phonon spectrum. In C : ,  this is the group C, , ;  in this case 
there is degeneracy: the splitting of the branches along the 
entire edge is linear; the only exception could be special 
points of type Y, which give transverse losses proportional to 
J/2 

The group C :, has a rhombohedra1 Bravais lattice. In 
this case it is possible to have two types of Brillouin zones. In 
one of these, there are no lines of degeneracy at the surface; 
in the other, the portion which is a longitudinal line of degen- 
eracy along the C, axis extends to the surface of the zone. 
From this we see that in both of these cases no new contribu- 
tions arise from including the boundaries of the zone. 

Taking into account the results of Ref. 1, we now have 
enough data to discuss the way the losses depend on tem- 

perature over the entire interval of temperature variation. 
We know that the contribution to the losses from the acous- 
tic branches at temperatures much higher than the Debye 
temperature is proportional to T 2  for the class C, ,  . As the 
temperature increases, the temperature dependence shifts 
from quadratic to linear. 

At the same time, the contributions from the points Z 
and Y (for any branches) and r (for the optical branches), 
which are proportional to lower powers ofw, increase expon- 
entially for low temperatures, and for higher temperatures 
they necessarily dominate. This implies that these contribu- 
tions must be comparable to the contributions from the 
acoustic branches even at some intermediate temperature: 

3. REMARKS CONCERNING THE OTHER CRYSTAL CLASSES 

In investigating the other classes, just as in investigating 
the class C, , ,  we encounter two types of features: those 
which are analogous to features we discussed previously for 
the low-temperature case, and those which are fundamental- 
ly new. We will not discuss features of the first type, because 
the necessary analysis is completely analogous to that pre- 
sented in the previous section and the section of Ref. 1 enti- 
tled "Certain Remarks Concerning the Case T 2  0"; the 
corresponding results will be presented below in Table I. 

In this section we will limit ourselves to describing 
those new features which may be encountered in the theory. 
Let us begin with those which are determined by questions of 
symmetry. In the previous section certain features-the 
ends of the symmetry-induced lines of degeneracy-were 
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found to be important. However, they will be important only 
if the divergence of the branches is linear along the entire 
length of a line and quadratic at the points where it ends; this 
occurs along a threefold axis (i.e., when the group of the 
wave vector is C,, ). There is such a threefold axis in the 
Brillouin zone for the class C,,, : the lateral edge of the six- 
sided prism. The behavior of the spectrum and EPP at the 
ends of this edge is the same as at the point Z in the group 
C,, . Altogether, we obtain Im E, a w3I2. 

The contribution from the point Z is of interest even 
when there is no degeneracy on the axis of symmetry, espe- 
cially for the classes C, and D,. The frequency splitting in 
this case has the form 

(here we include the principal terms which give rise to the 
effect). From this we find Im E, a w2. 

Let us turn to an analysis of accidental degeneracy. 
Here the following structures are possible: the points of acci- 
dental tangency introduced in the previous section; special 
points on a line of "quadratic" degeneracy, i.e., a degeneracy 
which is lifted quadratically as we deviate from it, at which 
the rate at which the degeneracy is lifted follows a power 
higher than the second (we will call such points points of 
accidental "hypertangency"); points of accidental degener- 
acy on a symmetry-induced direction which does not con- 
tain a line of degeneracy; and a point of degeneracy at an 
asymmetric position in k-space (see also Refs. 5,8).  

The contributions of Y-points turn out to be important 
for the groups S,, D,,, T,, D,, , and C,, . In a number of 
cases, as with C,, , the contribution from these points varies 
with frequency a w3I2; however, it is clear from Table I giv- 
en below that the contribution from such points can involve 
higher powers of w (due to vanishing of the electron-phonon 
potential at such points). 

The contribution from points of accidental hypertan- 
gency are found to be important for the groups D,, and D ,, . 
Near such points the frequency splitting on a sixfold axis has 
the form 

AQ=Q, [c,  (ak,) 8+c2ask,'k,zl '" 

(here we include the principal terms which give rise to the 
effect). Calculations based on ( 1.3 ) including the corre- 
sponding estimates of the EPP from Ref. 1 give the following 
contributions from such points: for D,,, , 

and for D ,, , 

The contributions of points of accidental degeneracy on 
axes of higher order are found to be important for the groups 
C,, C,, and D,. In the vicinity of such points the frequency 
splitting has the form 

(including the important terms). Taking into account the 
estimates of the EPP from Ref. 1, in sum we obtain for C, and 
c, 

and for D, 

A contribution from points of degeneracy on a twofold 
axis is present for the group C,, . In this case the divergence 
function and estimates of the corresponding nondiagonal 
components of the EPP have the form 

which leads to 

The contribution from isolated points of accidental de- 
generacy at asymmetric points in k-space in a centrosymme- 
tric crystal coincide with the contribution to Im E~ for the 
previous case; in a noncentrosymmetric crystal we have 
Im E a w? This contribution can turn out to be important 
for the groups C,, C,, , D,, , D,, , D,, , and D,. 

We will not stop to calculate the frequency dependences 
of the three-phonon losses, as the results of this calculation 
are presented in Ref. 1. 

4. BASIC RESULTS 

From what was said above it follows that the most im- 
portant contribution to the intrinsic dielectric losses (three- 
phonon, quasi-Debye, and four-phonon) have the following 
temperature and frequency dependence for T 2  0: for the 
quasi-Debye losses, 

(Let us recall that 7 is the characteristic lifetime of the phon- 
ons which interact to produce the absorption). For the four- 
phonon losses, 

For the three-phonon case, for ~ 7 %  1 the loss has the form 

where the exponent n was calculated in the previous sections 
for a number of examples. The results of the calculation for 
the crystals in the other symmorphic space groups are sum- 
marized in Table I. 

In Table I we use the symbols 11  and 1 to denote the 
values of Im E for fields parallel and perpendicular to the 
maximum symmetry direction, respectively., If a given case 
necessarily corresponds to several contributions with differ- 
ent values of n, then the table lists the smallest value. If dif- 
ferent combinations of contributions are possible, then for 
each combination the smallest value of n is given. The under- 
lining emphasizes the contributions from those distinctive 
features of the phonon spectrum which arise or can arise 
only in the short-wavelength portion of the spectrum. The 
letters indicate the type of singularity involved: superscript 
A denotes a point of quadratic frequency splitting on a line of 
symmetry-induced degeneracy with linear splitting behav- 
ior; superscript B denotes a point of accidental degeneracy 
on a symmetry axis of the Brillouin zone; superscript C de- 
notes a point of accidental degeneracy at a nonsymmetric 
position in the Briliouin zone; superscript D denotes a point 
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on a line of degeneracy with quadratic frequency splitting of 
the branches in which the functional dependence of the split- 
ting has a power higher than the second (i.e., points of hy- 
pertangency ) . 

The underlining in the columns of Table I imply that 
the inclusion of additional features of degeneracy do not give 
rise to contributions having a smaller value of n than exist 
without including these features. However, this does not al- 
together imply the nonexistence of additional accidental de- 
generacy-even for those cases which are underlined, the 
presence of accidental degeneracy can lead to an additional 
contribution having the same temperature and frequency de- 
pendence. This will significantly influence the value of the 
numerical coefficient in front of Twn . 

Eqs. (4.1) and (4.3), including the data in Table I, 
completely determine the possible temperature and frequen- 
cy dependences of the intrinsic losses in noncentrosymme- 
tric crystals: for wr$1 they are determined by the sum of the 
quasi-Debye and three-phonon contributions; for w r <  1 the 
losses are determined by the quasi-Debye contribution. 

The results obtained here also allow us to describe the 
case of centrosymmetric crystals. Without repeating the cor- 
responding discussions, which are given in our previous pa- 
pers9 (see also Ref. l ) ,  let us simply state the results. For 
n > 2 and wr$ 1 the losses are determined by the sum of 
three-phonon and four-phonon contributions, while the first 
of these always determines the high-frequency asymptotic 
form; for wr  5 1 the four-phonon contribution determines 
the lossses. For the cases n<2 and wr>  1 the three-phonon 
contribution determines the losses. 

It is important that for 07 < 1 we have, as previously, 
succeeded in isolating a contribution to the losses which is 
very sensitive to features of the phonon spectrum. We have 
preserved the name "three-phonon" for this contribution 
(i.e., it is the low-frequency generalization of the three- 
phonon contribution); its temperature and frequency de- 
pendences can be determined based on the frequency depen- 
dence of the three-phonon contribution for w r $ l .  The 
variation of the temperature and frequency dependences of 
the intrinsic losses in centrosymmetric crystals as the fre- 
quency decreases are shown in Table 11. 

Note that for n(2 a change in the function occurs for 
frequencies of the field w on the order of 1/r, while for n > 2 
the change takes place at frequencies considerably larger 
than 1/r. 

5. COMPARISON WITH EXPERIMENT 

A comparison of the qualitative predictions of the theo- 
ry-i.e., the frequency and temperature dependences, and 
even better the character of the change in the temperature 
dependence with frequency-with experiment would be 

TABLE 11. 

most informative. This possibility is presented to us in the 
experimental data on microwave absorption of alkali-halide 
cry~tals." '~ ' '  While they do not always coincide in their de- 
tails, these papers illustrate the most important features of 
the microwave absorption. At relatively low frequencies 
Im E behaves as wT2; as the frequency increases the frequen- 
cy dependence becomes more rapid than w, while a notice- 
able linear term appears in the temperature dependence. 
Farthermore, in their paper Stolen and Dransfeld" have 
noted the presence of a characteristic wavelength A, such 
that the term in the absorption which is linear in tempera- 
ture becomes significant forA < A, : for LiFA, = 0.2 mm, for 
K I  A, = 0.35 mm, for KBr A, = 0.7 mm, and for NaCl 
A, = 2 mm. 

Let us compare these data with theory. Taking into ac- 
count that the alkali-halide crystals belong to the symmor- 
phic group 0 of the crystal class 0, and using Table I and 
11, we see that as the frequency increases the intrinsic losses 
in these crystals must undergo the following change in their 
frequency and temperature dependences: 

at  frequencies on the order of l / r ,  the damping rate of ther- 
mal phonons. The quantity l / r ,  estimated on the basis of 
data from Ref. 12 for alkali-halide crystals, is found to be on 
the order of 10 cm- ' ,  which corresponds to a wavelength on 
the order of 1 mm. From this we see that the theory repro- 
duces the most important qualitative features of the experi- 
mental data rather well. The absolute value of the observed 
losses also can be matched with the theoretical estimates. " 
However, a serious comparison of the theoretical and experi- 
mental absolute values of the losses is not possible at  the 
present time in view of the insufficiency of available informa- 
tion on the details of the phonon spectrum and the param- 
eters of the anharmonic interactions in the crystals under 
discussion. 

In Ref. 1 we showed how results concerning microwave 
absorption in leucosapphire for T < O  could be interpreted 
within the framework of our theory. As shown by 11'- 
chenko,I4 the absorption in leucosapphire at  high tempera- 
tures also can be interpreted within the same framework. 

6. CONCLUSION 

In this paper we have thoroughly analyzed the tempera- 
ture and frequency dependences of intrinsic losses in insula- 
tors for temperatures larger than or on the order of the De- 
bye temperature O in crystals belonging to the symmorphic 
groups. 

We have shown that the temperature and frequency de- 
pendences of the losses for crystals belonging to symmorphic 

Value of n 

-- - 

Change in the function Im E as the frequency 
decreases 
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groups are determined by the crystal classes and not by the 
space  group^.^ Symmetry influences the losses in two ways: 
it determines the required set of distinctive features of the 
phonon spectrum for a given class, and also limits the largest 
possible set of such features. Table I, which contains the 
basic results of this paper, is in agreement with this principle. 

To each of these temperature and frequency depen- 
dences there corresponds an estimate of the order of magni- 
tude of the losses (see Section 2 ) ,  e.g., Im E a lu oR implies 
that 

This estimate is very rough, and is most likely too low. 
As analysis of a number of specific examples show,' usually 
in this kind of estimate there is an additional numerical fac- 
tor of order 100. The most informative prediction of the the- 
ory is its conclusions about the character of the temperature 
and frequency dependences with varying frequency. 

"In Ref. 1 a short review is given of previous papers on the theory of 
intrinsic losses in insulators. 

"As in Ref. 1, for the group D,,, the orientation of the field is indicated 
with respect to the normal to the symmetry plane, which necessarily 
contains the acoustic axis in this case. 

"Certain quantitative differences are possible among the different sym- 
morphic groups ofa single class, e.g., the presence or absence of Y-points 
in the class C, , ,  (see Section 2) and the number of such points. 
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