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A nonlinear self-induced transparency effect of a metal for narrow hypersound pulses under 
conditions of quantum Doppler-shifted acoustic cyclotron resonance (QDSACR) is predicted. I t  
is demonstrated that the nonlinear evolution of the pulse in the vicinity of the QDSACR 
absorption peaks attributable to resonance electron transitions between different Landau levels 
produces an acoustical soliton travelling at an amplitude-dependent velocity and capable of 
reaching Fermi values. The conditions required for experimental observation of the effect, which 
are virtually identical to the conditions required to observe DSACR quantum oscillations, are 
discussed. 

Reference 1 has demonstrated the fundamental possi- 
bility of a quantum coherent "bleaching" of a pure metal 
manifested as an optical self-induced transparency effect' 
for narrow (shorter than the electron free path length) hy- 
persound pulses which generate acoustical undamped soli- 
tons travelling at a velocity other than the acoustic phase 
velocity. Underlying this effect is the resonance interaction 
between the sound and the conduction electrons in the met- 
al, which induces electron transitions between the pairs of 
resonant states identified by the laws of conservation in the 
continuous electron spectrum of the metal and in linear the- 
ory yielding acoustic damping (Landau damping). 

In nonlinear theory the total resonant transition proba- 
bility from electron scattering by an acoustic pulse may van- 
ish under certain conditions so that there will be no energy 
exchange between the wave packet and the electrons, and 
interaction will become purely dispersive. Here the pulse en- 
velope will correspond to a nonreflecting potential in the 
wave equation for the electrons. It is essential that this enve- 
lope represent an exact solution of the elasticity equation, 
while the existence of this solution is due to the integrability, 
within the framework of the resonance approximation, of 
the complete system of equations of the problem, which in- 
cludes, in addition to the elasticity equation, a kinetic equa- 
tion for the electrons and Maxwell's equations. 

One specific characteristic of the acoustic self-induced 
transparency (ASIT) of a metal compared to the optical 
effect is the participation of delocalized conduction elec- 
trons in the soliton acoustic energy transfer as well as the 
nonzero momentum transfer to the electron in the resonance 
transition. Mathematically these features yield a new inte- 
grable system of equations representing a generalization of 
the familiar three-wave system3 which accounts for an infi- 
nite number of electron degrees of freedom. 

As noted in Ref. 1 the nonreflecting property of the R F  
wave packet will occur only with a certain type of acoustic- 
induced electron scattering when the scattered wave in the 
acoustic reference system propagates in the same direction 
as the transmitted wave. The resonant transition probability 
for the "forward" scattered electrons is an oscillating func- 
tion of position which periodically vanishes (the analog of 
Rabi oscillations in optics), which makes it fundamentally 
possible to produce a nonreflecting potential. On the other 
hand under "backward" reflection conditions the resonance 
transition probability varies exponentially and while never 

vanishing, approaches unity with increasing wave packet 
length. In this case the reflectionless potential cannot exist in 
principle. 

Another necessary condition for the reflectionless state 
is that the characteristics of all resonant transitions involved 
in the interaction be identical. In  a zero magnetic field the 
"forward" scattering process can occur only with a very spe- 
cial Fermi surface typei which, moreover, must have a high 
degree of isotropy of the electron velocity within the reso- 
nance "belt," which makes acoustic self-induced tr..nspar- 
ency difficult to achieve in optics. I t  is demonstratec in the 
present paper that these limitations can be eliminated by 
placing the metal in a quantized magnetic field. As we know 
in the R F  range qR > 1 ( q  is the acoustic wave vector, 
R = u,./R is the Larmor radius) the law of conservation 

allows resonant transitions between different Landau levels 
n'#n  satisfying the required "forward" scattering (see fig- 
ure). At low temperatures T< R the motion of these pairs of 
resonance states in the E ,  p, plane resulting from the chang- 
ing magnetic field will produce quantum oscillations in the 
sound absorption4.' due to the resonance states passing 
through the Fermi level [quantum Doppler-shifted acoustic 
cyclotron resonance (QDSACR) 1. Only a single resonant 
transition in the vicinity of each isolated absorption peak is 
significant, while the conditions for ASIT are most favorable 
in this area. We note that in this case we should anticipate a 
large difference between the soliton velocity and the acoustic 
phase velocity, since the resonant electrons carrying the soli- 

FIG. 1. 
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ton energy have high translational velocities - u,. These ab- 
sorption oscillations together with their associated acoustic 
velocity oscillations are grouped into series with different 
values of 1 = n' - n and differ from the quantum oscillations 
attributable to transitions within each individual level 
(I = 0 )  (Ref. 6)  in the dependence of their parameters on 
the acoustic frequency and wave vector, which causes a dis- 
persion of the acoustic wave velocity. 

Below we formulate a general scheme together with the 
primary results of linear QDSACR theory4 with additional 
results required for a subsequent analysis of the nonlinear 
evolution of an acoustic pulse of finite duration and ampli- 
tude; we then derive nonlinear equations for the acoustic 
self-induced transparency in a quantized magnetic field; as 
we would expect these equations are, in their principal fea- 
tures, identical to the generalized three-wave system found 
in Ref. 1 and have similar soliton solutions. 

1. LINEAR THEORY OF QDSACR 

We consider a planar longitudinal sound wave u(z,t) 
running parallel to the magnetic field [u (z,t) IIH llz] and sat- 
isfying the elasticity equation7 

where p is the metal density, A,, is the longitudinal compo- 
nent of the elasticity modulus of the lattice. The force F on 
the lattice from the electrons, neglecting the insignificant 
inertial component, takes the form 

6 H ( t )  F (r ,  t )  =-NeE ( r ,  t )  - - 
6u(r ,  t )  ' 

where p ( t )  is the electron density matrix satisfying the ki- 
netic equation 

h 

while H is the electron Hamiltonian which, in the quasiclas- 
sical electron wave function representation jn,p,,p,) is an 
underformed lattice 

takes the form of the matrix 

g = A o + 6 R ,  Ho (nn', pZpzf)  =cn ( p z )  6  (P=-PZ' )  6nn.6 (P=-P.z'), 

6H(nn1, p,pZ1) ={ [A,, (nn', pz) +vZ(nn1,  P Z )  Pzla,u(Pz, P;') 
+erp (nn', p,, p,') 16 (P=-P=') .  (6)  

In expression (5)  a is the branch number of the multivalued 
functionp, (p, ) describing the intersection of the isoenerge- 
tic surface by the planep, = const, and A, is the longitudi- 
nal component of the deformation potential. Equations ( 2 ) -  
(4) are closed by the electrical neutrality condition for the 
electrostatic potential p. 

The electron force (3)  consists of an adiabatic part and 
a nonadiabatic part proportional to w .  The adiabatic part is 
generated by all electrons of the Fermi surface and, neglect- 

ing the weak de Haas-van Alphen oscillations of the chemi- 
cal potentialp and the elastic moduli of the metal, gives rise 
to classical renormalization of the deformation potential 
A, (p) - A  (p) which is responsible for the electrical neutra- 
lity, and will also result in a constant renormalization of the 
acoustic velocity, which we shall henceforth assume is in- 
cluded in the definition of the elastic modulus A,,. The nona- 
diabatic part, which is of primary interest and which is deter- 
mined ins/v, to lowest order by the resonant contribution of 
the small denominator, consists of the sum of the partial 
contributions of the resonant transitions between the Lan- 
dau zones: 

The term with I = 0 contains the effect of the giant os- 
cillations' attributable to the contribution of the resonant 
points near the central (in the general case, the extremal) 
cross-section of the Fermi surface [ u, (p, zp,,) - q/m < u, ] 
given by the condition E, ,  (p,) = p. The QDSACR oscilla- 
tions of interest to us correspond to transitions between lev- 
els near the resonant cross-sections with characteristic lon- 
gitudinal velocities u, (p, = p ,  ) - u,: 

At ( E ,  p,)=qv, ( E ,  P I )  -1Q (E ,  p l )=a ,  8, ( ~ 1 )  =E,  (8 )  

and determined by the condition 

The term with I = 0 in the expression for the deforma- 
tion force as well as the resonant part of the longitudinal 
electrical field can be dropped near the QDSACR peaks, 
since the electrical neutrality condition is satisfied only by 
transitions within the levels. The expression for the partial 
force F, corresponding to the I th series of QDSACR oscilla- 
tions in a frequency range w << T typical of the experiment 
takes the form 

For simplicity we set u, = const on the classical electron 
trajectory, and then 

d r  
Al = 1 -A ( r )  exp ( i l ~ r )  . 

0 TH 

The imaginary part of expression ( 10) describes the 
acoustic wave damping found in Ref. 4: 

where d(p, ) = u, T,, is the electron shift along the magnetic 
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field over the orbital motion period T,. 
We use the Poisson summation formulaX to calculate 

the real part of the force F, which determines the acoustic 
velocity renormalization 

where S(E,p, ) is the area of intersection of the isoenergetic 
surface E = const determined by the plane p, = const. Esti- 
mates reveal that the continuously varying term correspond- 
ing to k = 0 in ( 14) is small, while the oscillating terms are 
determined by the contribution of the narrow range near the 
resonance p, - p, -Sp,, -9. Expanding the integrands in 
the neighborhood ofp, in Re F,, we find 

q20um- 
ReF,  = -- 

2n 

dA -' Sl ( E )  
X A 1 )  sign 1 f d ~  n F 1 ( ~ - p ) c t g -  

I 2a ' 

where m* = o/f l  is the cyclotron mass. 
In the general case it is difficult to solve the dispersion 

equation (2 )  subject to (7) ,  ( 12), ( 15) due to the depend- 
ence of the oscillating terms on the acoustic frequency and 
wave vector in the resonance conditions (8 ) ,  (9 ) .  The dis- 
persion equation can therefore be solved by iteration only 
when the small parameter is on the right side. Assuming, in 
accordance with ( 13), aA/ap, = q/m, and using the stan- 
dard estimate m/M- (s/vF) '  ( M  is ion mass) we obtain the 
applicability condition of perturbation theory for solving 
( 2 )  as 

In the general case the acoustic spectrum will contain a 
large number of singularitiesl', each of which contains an 
absorption peak 

together with a correction to the acoustic velocity which can 
have either sign, 

m ' 
6S,, = - IAI I'm,, sign EI, 

4np 
ctg x, I x-nn I B T / Q  

J ,  (2) = (19) 
7C(3) Q sn' [,I (x-an) , I x-nn 1 e T / Q  

Due to the dependence of the resonant cross-section 
area S, (16) on the magnetic field and wave vector, the 
QDSACR oscillations in the I th series within the range 

form a quasiperiodic structure with a period varying slowly 
as a function of the inverse magnetic field: 

6(1 /H)  =2ne/cSl ( H ) ,  S1 ( H )  =S1+2n (m*m,v,2)1 (21 ) 

Gq=qS/l lm, I B. (22) 

The oscillating nature of the dependence of the acoustic 
phase velocity on q ( 19) and the narrow width of each singu- 
larity region Sq, - (T/R)Sq causes a sudden jump in the 
acoustic group velocity, while the maximum value near the 
singularity 

d o  max (qGs) m' -= Qm,Z 
8 q 

" g  - 
G ~ T  

" "- l A 1 1 2  T2mpp2(qR)2 M (23) 

for T=: 1 K, R - 1012 sec- I, A - E ~  may reach Fermi values. 
However small values of A ( A  -0. I&,) are typical of the 
majority of metals, and hence the group velocity of the linear 
acoustic packet under QDSACR conditions is comparable 
to s for qR>5. 

Electron relaxation processes occurring at a frequency 
T-' will suppress quantum oscillations and cause a transi- 
tion to the classical picture of magnetoacoustic resonance. "' 
The estimate of the QDSACR range, accounting for electron 
scattering by phonons or  lattice defects, found in Ref. 4 can 
be obtained based on the following qualitative consider- 
ations which will be used systematically in analyzing the 
nonlinear situation below. I t  is clear from the structure of 
the resonant denominator in (10) that the uncertainty of 
electron momentum Sp,, related to relaxation processes is of 
the order of (raA/ap, ) - ' and will result in uncertainty of 
the resonance transition energy SE, - u,ap,, . The existence 
condition for quantum oscillations derives from the require- 
ment that SE, be small compared to the distance f l  between 
neighboring resonant transitions in the given series (see fig- 
ure) : 

and is significantly more stringent than the existence condi- 
tions of oscillations corresponding to transitions within the 
levels. 

The finite spectral width of the acoustic signal in the 
case of pulsed sound excitation, which is required to achieve 
ASIT, will suppress quantum oscillations in a similar fash- 
ion. With a spatial acoustic signal width L less than the free 
electron path length, the quantity L /u, plays the role of T 

and the corresponding uncertainty of electron momentum 
Sp,, -m, u,/qL imposes the following limit on the existence 
of QDSACR oscillations 

This inequality, obviously, coincides with the condition 
that the spectral width of the acoustic packet be small com- 
pared to the oscillation period (22),  which takes the form 
LSq> I. 

2. ACOUSTIC SOLITONS UNDER QDSACR CONDITIONS 

The linear theory developed above is applicable with a 
finite sound amplitude as long as the nonlinear corrections 
to the resonance linewidth are small compared to its width in 
the linear approximation; henceforth we will relate the 
width to the finite spectral width of a short hypersound 
packet: 

and the wave vector q: 
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It is convenient to analyze the role of the finite acoustic 
amplitude near resonance using a wave equation for the 
Hamiltonian (6) which conserves only the resonant matrix 
elements for transitions between two levels: 

Representing the wave field of the pulse as 

dZu (2, t )  ='12U(z, t )  exp ( i q ~ )  + c.c  , 
x==z-(ot/q), a zUKqu ,  a t u c o u ,  

( 28 )  

we isolate the coefficients a, b that slowly vary on the scale 
p; ' in the wave equations of the resonant approximation of 
Ref. 1 1 : 

$n (2, t )  =a(z ,  t )exp  [ ipiz- ien(pl) t ] ,  ( 29 )  

The equations for coefficients a and b derive from the re- 
quirement that no resonant singularities exist in higher or- 
ders of perturbation theory in system ( 27 ) :  

It is possible to obtain qualitative information on the 
nonlinear dynamics of resonant electrons in the acoustical 
field by examining formal solutions of Eqs. (30)  with a fixed 
field amplitude Q, = const when they can be found in explic- 
it form: 

As we see from Ecls. ( 3  1 ) these solutions oscillate in accor- 
m .  

dance with the discussion in the Introduction for all devia- 
tions of SE from exact resonance. The nonlinear resonant 
broadening is estimated as 

A comparison of this quantity to the linear width obtained 
previously 

[see Eq. ( 25 )  ] establishes the nonlinear region SE, > S E ~  : 

We require SE* <SZ in order to assure that the nonlinearity 
will not cause smearing of the quantum oscillations, and 
consequently the sound amplitudes with which oscillations 
are possible must lie in the range 

The existence of such an interval is guaranteed by the small- 

ness of the oscillation period in q, Eq. ( 22 ) ,  compared to q 
itself: 6q 9 q. 

We note that the second equalty in ( 33 )  guarantees lin- 
earity of the nondissipative part of the resonant force ( 16) 
since, in accordance with the estimate obtained above, the 
width of its generating resonance range SE, -u,Sp,, -10 
substantially exceeds SE,. 

The following is a simple interpretation of the "Rabi 
oscillations" of the solutions ( 3  1 ) L, = u,/Q: The nonlin- 
ear range is determined by the ratio of L, to the pulse length 
and corresponds to the maximum values of this parameter; 
here in the nonlinear range L,, rather than L, is the factor 
responsible for resonance blurring. 

An investigation of the limits of applicability of the res- 
onance approximation (27) - (30)  determined by the zero 
resonance overlap conditions demonstrates that these condi- 
tions are most stringent for resonances with different n [i.e., 
in order to distinguish between the pair of equations ( 2 7 ) l :  
Sp,,<q3/flm,. This inequality is identical to the second in- 
equality in (33 ), while the zero overlap condition takes the 
form @ g SZ for resonances with different I and for multi- 
phonon resonances. Therefore the condition responsible for 
quantization of transverse electron motion simultaneously 
assures the adequacy of the two-level Hamiltonian ( 27 )  and 
the resulting quantum nature of the longitudinal electron 
motion. This fact, which plays the decisive role in achieving 
ASIT conditions, may be surprising at first glance given the 
large longitudinal momentum of the resonance electrons 
p, -p, .  However it is important to remember that the two- 
component wave equation ( 27 )  contains an additional char- 
acteristic scale: the "coherence length" of the resonance pair 
uz / S Z  -d, analogous to the Cooper pair dimension in super- 
col,ductivity theory, which functions as the new quantum 
length. 

I t  is necessary to add to Eqs. ( 30 )  an equation for the 
envelope Q, by expressing the dissipative part of the reso- 
nance force through the functions a, b in order to describe 
nonlinear evolution of a wave packet of arbitrary shape. We 
therefore expand the electron density matrix in the neigh- 
borhood of the wave packet in one-electron wave functions 

where f is the electron distribution function prior to scatter- 
ing on the packet. Assuming that the scattered nonequilibri- 
um electrons thermalize before rescattering, and substitut- 
ing ( 34 ) ,  ( 29 )  into Eq. ( 9 )  we obtain 

iqo 
F[res = - 5 ~ P Z  %(ex) [A-ia.b, exp ( i q X )  + c , c  1, (35 %n2 

where ,y takes the value " + " or  " - ", with E +  = E,, (p, ), 
E -  = E +  - W ,  

Substituting (35 1, ( 29 )  into the dispersion equation (2 )  and 
accounting for the difference between the group acoustic ve- 
locity u, and the phase velocity caused by quantum velocity 
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oscillations ( 1 9 ) ,  after averaging over the fast variables we 
find 

i(d,+vga.)ml --fi 2n2p lA,12 ~ d p , ~ n R ( s X ) a . b x ' .  ( 3 6 )  
X 

The resulting complete system of equations ( 3 0 ) ,  ( 3 6 )  
is nearly identical to the system found in Ref. 1 ,  which is an 
integrable generalized three-wave system. When the condi- 
tion 

holds, it has soliton solutions which in the simplest one-soli- 
ton case take the form 

v  = 
,VP 

1 -'/J'T, sign Z ' 

where To is the soliton lifetime and l? is the linear acoustic 
damping ( 2 2 ) .  The soliton velocity as a function of the sign 
of 1 may be either less than or greater than v,. Here in the first 
case ( I  < 0 )  it drops to zero as To goes to infinity, while in the 
second case ( I >  0 )  the soliton lifetime is limited to a maxi- 
mum value of 

where the soliton velocity reaches the maximum value 
u = v,JI JqR while the amplitude vanishes. 

Evidently the primary problem for achieving an ASIT 
mode under QDSACR conditions is the problem of combin- 
ing high resolution of the acoustical pulse (with respect to 
resonant transitions with different I )  with the limit imposed 
by relaxation processes, i.e., a combination of inequalities 
( 2 5 )  and ( 2 6 ) :  

In reality in very pure metals with r -  lo-' sec and 
magnetic fields of H - 100 kGauss (fl- 10'' sec- ' ) the pa- 
rameter ra is lo4, while the parameter flm,/q2 in the hyper- 

sound range w - 10") sec- ' and for ms' - 1 K is on the order 
of lo', which is in agreement with ( 4 0 ) .  The acoustic ampli- 
tudes given here must be less than Go- l o w 2  K in accor- 
dance with ( 3 7 ) ,  which cor re~~onds  to an acoustic power 
< 1 W/cm2. It is, however, important to remember that ac- 
cording to ( 2 0 )  the QDSACR oscillation system consists of 
several overlapping series and the distance between the sin- 
gularities is in fact less than that determined by relation 
( 2 2 ) .  With the parameters noted aboveqR - 5  and hence it is 
desirable to reduce the number of series by, for example, 
using a metal with a highly symmetrical deformation poten- 
tial [having few harmonics ( 1 1  ) ] and to increase the oscilla- 
tion period by means of small m,. We note that it is generally 
desirable to have small m, since this makes it easier to satisfy 
inequality ( 1 7 ) ,  reduces v, given by ( 2 3 )  and the damping l? 
given by ( 18 1, thereby increasing the maximum possible so- 
liton lifetime To,,, , Eq. ( 3 9 ) .  

"When inequality (17) is not satisfied the acoustical spectrum o(q) be- 
comes a multivalued function whose branches describe the quantum 
acoustic modes analogous to the quantum electromagnetic waves exam- 
ined in Ref. 9. 
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