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The dynamics of nuclear magnetization in NMR with a nonlinearity consisting of a dynamic shift 
of the precession frequency is analyzed. The conditions for the transition from regular behavior to 
chaotic behavior are studied analytically and numerically. The effect of nonuniform broadening 
on the nonlinear dynamics of nuclear spins is studied. The physical consequences of chaotic 
dynamics in NMR and the conditions for observing them experimentally are discussed. 

1. INTRODUCTION 

Studies of chaotic dynamics'.' have been appearing 
with increasing frequency in problems of the physics of con- 
densed matter in recent years.'-l6 Several basic directions of 
the research in this field can be distinguished somewhat arbi- 
trarily: chaotic-attractor regimes in a spin-wave turbu- 
lence,'~~ the dynamics of NMR rnaser~,~." the chaotic dy- 
namics of spin clusters,7-' and classical and quantum chaos 
in models of nonlinear spin systems when periodic external 
fields are applied. lo-'"esearch on dynamic chaos in nonlin- 
ear NMR can also be classified in the last of these direc- 
t ion~. '~- ' "  Such studies deal with one of the simplest and 
comparatively well-studied types of nonlinearities in NMR: 
the dynamic shift of the precession frequency of nuclear 
spins, l 7  which is proportional to the longitudinal component 
of the nuclear magnetization. The dynamic frequency shift 
of NMR is associated with a electron-nucleus hyperfine in- 
teraction and arises in magnetically ordered crystals (ferro- 
and antiferromagnets) at low temperatures.I7 

That chaotic dynamics might arise in nonliner NMR 
was first pointed out by Buishvili and Ugulava,I4 who stud- 
ied the dynamics of the interaction of nuclear spins with a 
periodic train of short, small-area rf pulses. The dynamic 
NMR frequency shift was taken into account. Their esti- 
matesI4 show that chaotic dynamics can arise in this system 
if the product of the NMR nonlinearity constant (the pa- 
rameter of the dynamic frequency shift) and the pulse repe- 
tition period is much larger than the reciprocal of the area 
under the pulse. Ugulava'" showed that a weak longitudinal 
sinusoidal field near the separatrix corresponding to an 
aperiodic motion of the magnetization in nonliner NMR 
could give rise to a narrow stochastic layer. In those studies, 
the nonlinear dynamics of the nuclear magnetization was 
studied over times shorter than the nuclear relaxation times, 
t g  TI,, (the Hamiltonian approximation). 

In the present paper we use the Hamiltonian approxi- 
mation to study the nonlinear dynamics of the nuclear mag- 
netization for NMR with a dynamic-frequency-shift nonlin- 
earity. The envelope of the oscillatory magnetic field acting 
on the nuclear spins is given as a periodic train of pulses of 
arbitrary area. This formulation of the problem arises in a 
study of various transient effects in NMR, e.g., the attenu- 
ation of free induction and the spin echo.I7 

Our basic goals in this study were to determine the con- 
ditions for a transition from regular behavior to chaotic be- 
havior for various nonlinearity levels and for various values 
of the area under the pulses and to study the effect of nonuni- 
form broadening on the chaotic dynamics. 

The results below show that a transition to chaos in this 
system can occur by a more complicated path than would 
follow from the simple estimates of Refs. 14 and 15. In par- 
ticular, there are several order-chaos-order transitions, and 
regularity windows form as the nonlinearity or the area un- 
der the pulses is varied. We will see that at small pulse areas 
the chaotic regime of motion has two time scales: a fast one 
(global chaos) and a slow one (weak chaos and intermit- 
tency). We will also show that the regularity windows are 
metastable because of the presence of weak chaos. 

The effect of nonuniform broadening on the chaotic dy- 
namics in NMR is studied here for the first time. It ia; shown 
that under certain conditions nonuniform broader'ng can 
smear the threshold for the transition to chaos and is .tensify 
the stochastic behavior. We discuss the basic physical conse- 
quences of chaotic dynamics in NMR, taking into account 
nonuniform broadening. We estimate the values of the phys- 
ical parameters which would be required for an experimen- 
tal observation of these consequences. 

2. BASIC EQUATIONS 

We will start with the equations of motion of nuclear 
magnetization in magnetically ordered materials under con- 
ditions such that there is a large dynamic NMR frequency 
shift as a result of an indirect interaction of nuclear spins 
through electron spins.I7 We choose a coordinate system 
whose z axis runs along the magnetic field H which is acting 
on the nuclear spins (H is the sum of the static external field 
Ho and the hyperfine internal field H,, , which is produced by 
the magnetic moments of electrons at nuclei). The x axis of 
the rotating coordinate systems runs antiparallel to the oscil- 
latory external field H+ = H I  (t)exp( - iwt). The equa- 
tions of motion in the rotating coordinate system are" 

iL=v(A-wpm), 
zj=-u(A-o,m) +al ( t ) m ,  

rh=-o1 ( t )  v ,  
where A = w,, - w, w,, = y(H,, - H,,) is the NMR fre- 
quency in the absence of a dynamic frequency shift ( y  is the 
gyromagnetic ratio for a nucleus); w, is a nonlinearity pa- 
rameter (w,  g w  ), specifically, the maximum dynamic fre- 
quency shift at the equilibrium value of the magnetization; 
w, ( t )  = yAxH, ( t ) ;  A is the dimensionless hyperfine-intet- 
action constant; and x is the static transverse susceptibility 
of the electron magnetic system. The variables u,  u, m are 
components of the vector nuclear magnetization (normal- 
ized to the equilibrium value of the magnetization) in the 
rotating coordinate system. Equations ( 1 ) hold when irre- 
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versible relaxation effects are ignored and in the case of spa- 
tial homogeneity (there is no nonuniform broadening). We 
assume that the envelope of the oscillatory magnetic field 
H, ( t )  is a periodic train of square pulses of height h in which 
the length of an individual pulse is To, and the pulse repeti- 
tion period is T. Ignoring the effect of the dynamic frequency 
shift and the frequency deviation A  during the pulse, we can 
rewrite Eqs. ( 1 ) as a mapping: 

u,+I=u, cos ( ~ n + C n  sin cp,, 
~ ,+~=i j , ,  cos (P,-U, sin Tn, 

mn+i=iiinr 

ij,=v, cos a+ m,, sin a ,  
iii,=m, cos a-v, sin a ,  

~ ,~+u ,~+rn ,~=1 ,  
cp,=AT-o,T%,, a=& 1.0, 

where u,, , u,, , m,, are the components of the nuclear spin just 
before the application of the nth pulse, and E = yAxh. It can 
be shown that the transformations (2)  and (3)  conserve 
phase volume: 

\d(u,+r, Un+ir  mn+l)/a(un, On, m,) i=i. 
The mapping (2),  (3)  is a combination of two rota- 

tions: one through a constant angle a (equal to the area un- 
der the pulse) in the um plane and one through an angle p,, 
in the uu plane which depends on the value of fi,, . Mappings 
of the form (2)  were also found in Ref. 13, in an analysis of 
the interaction of a quantum top with a periodic external 
field." The nonlinear dynamics generated by this mapping 
was not analyzed in Ref. 13, however. 

What are the conditions for the applicability of map- 
ping (2)? The effect of the dynamic frequency shift and of 
the frequency deviation A  can be ignored during the pulse To 
if w,, A ~ E ,  To  '. The condition for the applicability of the 
mappings (2) ,  (3) take a simpler form, namely, 

in the case A  = w,, a<  1, u(0) = v(0) = 0, m(0) = 1 
(these conditions are typical of most experiments). To dem- 
onstrate the validity of (4) ,  we note that Eqs. ( 1 ) tell us that 
the dynamic frequency shift can be ignored under the condi- 
tion 

m E 
mLK--, 

f -P.  op 

where m, = (u' + v') "" . For a 9 1 it follows from (2) that 
we have m, -a,  1 - m -a2, and m - 1. Putting these rela- 
tions together, we find (4). 

3. CHAOTIC DYNAMICS IN NMR 

Let us analyze the nonlinear dynamics generated by the 
mapping (2). We introduce the new variables I,, , O,, : 

~,,=l,,'~ cos On, vn=-InYt sin 0,. 

In terms of these variables, relations (2 ) and ( 3 ) can be 
rewritten as follows: 

m, sin a en+, = srctg[ car a tg en + 
I,'" sin 0, 

Z,+I=I,+(~o~2a--1)Z, sin20, 

-I,'"m, sin(2a) sin 0,+mn2 sin" 
( 5  

mn+l=mn cos a+l," sin 8, sin a. 

We will restrict the discussion below to initial conditions 
under which the nuclear magnetization is close to the equi- 
librium position, mO= 1, I(,< 1. In the other limit (mO-0, 
I,,+ 1 with a<  1 ), a mapping as in (2)  can be approximated 
well by a standard mapping."'." The condition derived by 
the phase-stretching model' for a transition to global chaos 
is 

Kn= 1 dcp,+,/dcp,l =opT I u,.I sin a> I .  

As a condition for stochastic behavior we can adopt 
K,  > 1. This condition means that the phase B is in a stochas- 
tic regime of motion after the very first pulse, i.e., 

K=KI=opT sin a luo cos cp+(uo cos a+mo sin a )  sin cpl>1, 

(PEC~~=AT-O,T (mo cos a-uo sin a). (6)  

In particular, with u,, = u,, = 0, m,, = 1, and a < 1, condition 
( 6 ) becomes 

K=KoIsin cpl>l, Ko=oiTa2, cp= (A-w,)Tf KJ2. (7)  

The condition KO > 1 was used in Ref. 14 as a characteristic 
condition for a transition to chaos. For K < 1, the nonlinear 
oscillations of the nuclear magnetization are regular [Fig. 
1 (a )  1 ,  and their spectrum contains several harmonics [Fig. 
2(a) 1 .  For K > 1, the magnetization oscillations are chaotic 
[Fig. 1 (b)] ,  and the Fourier spectrum is broadened by an 
amount -w,  [Fig. 2(b) 1. An interesting aspect of the glo- 
bal-chaos condition (6) ,  (7)  is the nonlinear (oscillatory) 
dependence on the dimensionless parameters of the nonlin- 
earity, o, T, and the perturbation, a .  As a consequence, even 
under the condition w, T sin a > I there should be no chaotic 
motion for 

UO cos cp- (vo cos a+mo sin a )  sin cpzO, (8)  

where q, is given by (6).  Condition (8) ,  for the formation of 
regularity windows, is determined by both the initial condi- 
tions u,,, uO, m,, and the dependence on the area a under the 
pulse and the nonlinearity parameter w, T. In the particular 
case u,, = u,, = 0, m,, = 1, a<  1 condition (8)  becomes 

where q, is given by (7).  Equation (9)  determines the center 
of a region whose width at the base is p- l/Ko [see (7)] .  

FIG. 1. Nonlinear dynamics of nuclear magnetization in the case A = o,, , 
u,, = u,, = 0, m,, = 1. a-Regular oscillations (a,, T = 5.5; a = 0.15rr), 
&chaotic oscillations (w ,  T =  4; a = 0 . 5 ~ ) .  
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The existence of regularity windows is well known in 
dissipative systems.' They were recently studied numerical- 
ly in a continuous Hamiltonian system. '' An analys is 'bf  
the behavior as a function of the parameters of fixed points 
and of periodic trajectories has shown that regularity win- 
dows can exist in a mapping which arises when a train of S- 
function pulses is applied to a spin system. 

As the dimensionless nonlinearity w, T o r  the area a 
under the pulses varies, there can be several order-chaos- 
order transitions in the dynamic system (2) .  Such transi- 
tions have indeed been observed in numerical simulations 
(Figs. 3 and 4) .  

The picture drawn of the behavior of the mapping (2 )  
as a function of the parameters by. the phase-stretching con- 
dition ( 6 ) ,  ( 7 )  is not complete, however. Under certain con- 
ditions, chaos can also exist in the case K <  1 (a< 1, 
o, T > 1 ). Let us examine the mapping (5 )  in the limit a < 1: 

FIG. 2. Fourier spectra for ( a )  regular and ( b )  chaotic 
motion of the magnetization according to calculations for 
the processes in Figs. 1 ( a )  and 1 ( b ) ,  respectively. 

on+,=on+(pn, 
In+,=Zn-2amnln'i2 sin Onta2mn,  ( 10) 
m,+,=mntaZn'h sin On-'/,a2mn, 

'p.=AT-o,T[m, (1-a2/2)+aZ,'" sin 0 , t O  ( a 3 ) ] .  ( 11 ) 

It follows from ( 10) and ( 11 ) that Bis a fast variable, while I 
andmareslow ( I S B / S I 1 - j S B / S m I - K / a ' - w P ~ >  l ) . I n  
the case K  < 1, the change in the phase between pulses, ( 11 ), 
is small, p,, 1, at long times. The result is an adiabatic 
change in the action I and in m. The motion of the nuclear 
magnetization is regular in this case. Because of the slow 
variation of m and I, however, there can be a phase buildup, 
and for a certain time we may have p,, -2a.  In this case the 
motion is no longer adiabatic; abrupt changes in the phase 
lead to the onset of a stochastic behavior and to growth in I 
( a  decrease in m )  on the average. The dynamics of the mag- 

-1 o I u am' 
b 

FIG. 4. Dependence of the regime of motion (regular or chaotic) on the 
FIG. 3. Regularity window in the case A = up:, u,, = u,, = 0, m,, = 1, dimensionless nonlinearity o, Tand on the perturbation a. These results 
a = 0. a-The length of the trajectories is N = 10- ~terations; b-3X 102. were found in calculations for N = 10' iterations. 

720 Sov. Phys. JETP 70 (4), April 1990 Alekseev etal. 720 



TABLE I. 

netization is thus very nonuniform: Over a comparatively 
brief time interval ( S 10 iterations) the motion can be fast 
and random, the trajectory will then "get stuck" for a long 
time ( -  lo2 iterations), a fast motion will then resume 
quickly, etc. (an intermittency regime of motion). 

The possible occurrence of chaos when the adiabatic- 
motion conditions are violated has also been demonstrated 
recently for measure-preserving mappings which arise in 
problems in plasma physics1' and hydrodynamics.2" 

Table I shows values of the dimensionless nonlinearity 
parameter w, T for which, at  the given value of a ,  we ob- 
served a slow stochastic motion at KO < 1 in the numerical 
calculations. The critical value of the nonlinearity, (0, T),, , 
which corresponds to the boundary of the transition to glo- 
bal chaos ( K  zz 1 ), is given in the third column of this table. 
For all values in this table we have u,, = u,, = 0, m,, = 1, and 
A = w,, and the computation time is N = 10'-lo4 itera- 
tions. The boundaries of the regions with weak chaos shown 
in this table (in the second column) are approximate. These 
boundaries actually have a complex fine structure because of 
the pronounced sensitivity of the regime of weak chaos to 
even slight changes in the parameter values (see also Sec. 4 
and Fig. 7).  The mechanism for the onset of chaos described 
here in the case K,, < 1 may also operate at comparatively 
large values a 5 0.271 (see also Fig. 4 ) .  

The existence of a slow onset of chaos in the case K < 1 
results in gradual destruction of the regularity windows. 
Figure 3 illustrates this destruction, for regularity windows 
with 1 = 1 and at the parameter values a = 0.1, A = w, , 
u,, = u,, = 0, and mo = 1. Inside a regularity window there 
exists an additional integral of motion (of the adiabatic-in- 
variant type), u ( t  = n T) = 0. As time elapses this integral is 
destroyed stochastically. The boundary of a regularity win- 
dow is a complex hierarchical structure which consists of 
narrow alternating regions of stochastic and regular motion. 
The window in Fig. 3 is destroyed completely over times 
corresponding to N- 5 x 10' iterations. At the same values 
of the parameters, the regularity window with 1 = 2 is essen- 
tially unobservable, while the narrow window with 1 = 3 is 
destroyed completely over a time corresponding to N 
- 1.5 x 10'. 

Figure 4 shows the regime of motion (regular or chao- 
tic) as a function of the parameters w, Tand a (in the region 
a - 1 ) . The solid curve in Fig. 4 separates regions of regular 
behavior and global chaos in the plane of the variables w, T 
and a. The crosses show the positions of some separate small 
regions of chaotic behavior below the boundary of global 
chaos. The arrows show regularity windows, while the sym- 
bol 0 means that the given window is essentially indistin- 
guishable. The dashed lines show the positions of the centers 
of regularity windows as calculated from (9) .  We see from 
Fig. 4 that near a - ~ / 2  the regularity windows are slightly 

distorted in comparison with the estimates which follow 
from ( 7 )  and ( 9 )  [the first window ( 1  = 1 ) agrees to within 
a few percent with the theoretical estimate with a = 71/21. 
As a - 71 and for a 1, the widths of all the windows serious- 
ly depart from their estimates according to (7 ) .  The even- 
numbered windows are usually distorted to a much greater 
extent than the odd-numbered windows. At a- 1, the lower 
windows are destroyed very slowly. The window with 1 = 1 
in the case a = 0.371 ( A  = w,, u,, = u,, = 0, m,, = l ) ,  for ex- 
ample, is covered completely by "stochastic blinds" over 
times corresponding to N- 10' iterations. 

These results on the position and width of the regularity 
windows agree well with data on the local stability (or  insta- 
bility) of the motion: At parameter values corresponding to 
global chaos we always observe local instability, while with- 
in a metastable window the local instability does not occur 
during the "stability time." In these numerical simulations, 
the transition to chaos is observed only through intermit- 
tency. If the conditions for stochastic instability, ( 7 ) ,  or the 
conditions for the onset of weak chaos are satisfied, the mag- 
netization vector will deviate from its equilibrium position 
on the average. A stochastic excitation of this sort could 
apparently be observed experimentally by comparing the 
values of the longitudinal magnetization in the regular and 
chaotic regimes of motion. Although the stochastic excita- 
tion in the case K < 1 is quite slow, it is important to keep the 
existence of such chaotic regimes in mind. The presence of 
even a slight external noise could accelerate the diffusion in 
the way that an external noise accelerates slow Arnol'd dif- 
fusion in multidimensional Hamiltonian s ~ s t e m s . ~  The re- 
gime of weak chaos (K,, < 1 ) also plays an important role in 
stochastic excitation when nonuniform broadening is taken 
into account. 

4. EFFECTOF NONUNIFORM BROADENING ON NONLINEAR 
DYNAMICS IN NMR 

Nonuniform broadening has an important effect on the 
behavior of NMR with a dynamic frequency shift in most 
experimental situations.17'" The basic physical reason for 
nonuniform broadening is generally a variation of the sus- 
ceptibility X, which causes a spread in the values of the dy- 
namic-frequency-shift parameter, w, = + S, where$ is 
the average value of w, (Ref. 2 1 ) . Observable quantities are 
the average values 

where Bis one ofthe functions u ( S ) ,  u(6) ,  rn(6);  andg(6)  is 
a distribution function. We assume below that it is Gaussian 
with a standard deviation (T: 
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Typical values of the relative standard deviation are u/ 
w, -lo-* - lo- '  

How does nonuniform broadening affect the conditions 
for global chaos? The condition for a transition to chaos for 
an individual isochromate with a dynamic-frequency-shift 
parameterw, + a ( -  a < 6 <  + a )  is 

Ka>l, Ka=l (apT+6T)sin a [ u o  cos q6 
+ (uo cosa+m, sin &)sin q6] 1, (13) 

T~=AT- (opT+GT)(mo cos a-uo sin a ) .  (14) 

Since isochromates with 161 less than or on the order of uand  
with 04% dominate the calculation of the averages in ( 12), 
the primary distinction between (6 )  and the condition for 
chaos in the case of nonuniform broadening is in the behav- 
ior of the terms containing sin p, and cos p, . The condition 
under which nonuniform broadening has only a slight effect 
on the condition for transition to global chaos is 

Iq6-cpI =oT cos a a n ,  (15) 

oT cos a 1 a (U.=U~=O, mo=i).  
AT-opT cos a 

If conditions ( 15) and ( 16) are violated, many isochromates 
with K, > 1 may contribute to the calculation of the averages 
in ( 12). Let us examine some particular cases. 

1. For a -~ r /2 ,  with arbitrary A, inequalities (15) and 
( 16) essentially always hold, and the nonuniform broaden- 
ing has only a slight effect on the nonlinear dynamics of the 
system. 

2. Under the conditions A = q, a <  1, relation (16) 
becomes the inequality 

2 o / ~ , a ~ K  4 .  (17) 

Under the condition a T >  1, conditions'( 15 )-( 17) are vio- 
lated, with the possible result that the regularity windows 
disappear in an analysis of the dynamics of the averages in 
(12). 

How does the nonuniform broadening affect the nonlin- 
ear dynamics of the averages in ( 12) under the conditions 
K < 1, a <  l?  In this case, an individual isochromate may 
acquire chaotic dynamics if the adiabatic condition p,, (6 )  
4 1 is violated, where p,, ( 6 )  is found from (11) and the 
substitution w, -+iS, + 6. Comparing ( 11 ) for p,, ( 6  = 0 )  
and p,, (6) for m - 1, we find that the nonuniform broaden- 
ing causes essentially no change in the nonlinear dynamics in 
the case K, < 1 if inequalities (15) and (16) hold. In the 
opposite case, in which these inequalities do not hold [in 
particular, under the condition p < 1, condition ( 17) may be 
violated even in the case uT< 1 1, the integral in ( 12) re- 
ceives contributions from many isochromates with chaotic 
dynamics, even if K < 1. The result may be enhancement of 
the stochastic excitation. 

To test these estimates we carried out some numerical 
calculations with 2.4X lo3 isochromates (Figs. 5-8). A 
further increase in the number of isochromates has essential- 
ly no effect on the results over the times studied. It can be 
seen from Fig. 5 that a violation of conditions ( 15)-( 17) has 
the consequences that the stochastic excitation at the values 
a = 0.1 and Z,, T = 628 (curve 1; these values correspond to 

FIG. 5. Stochastic excitation of nuclear magnetization in the case A = E!, , 
u,, = u,, = 0, m,, = 1, a = 0.1, u/ Z,, = 0.1. An average was calculated in 
accordance with (12) with 2.4X lo3 isochromates. 1-a,, T =  628; 2- 
3 14; 3-90. 

the center of a regularity window in the case without nonuni- 
form broadening) is even faster than at  the value Z,, T = 3 14 
(curve 2 ) ,  which corresponds to the fastest diffusion in the 
uniform case. The stochastic excitation at the value Z, T 
= 90, which lies below the threshold for global chaos [in the 

case at hand, (a, T),, z 1391, is shown by curve 3 in Fig. 5. 
In this case the stochastic excitation is dominated by the 
isochromates shown in Fig. 7. As can be seen from this fig- 
ure, these isochromates have a fine structure. This fine struc- 
ture exists as a result of the pronounced sensitivity to 
changes in the parameter values in the weak-chaos regime. 
Figure 6 illustrates stochastic excitation at small values of 
KO. In this case the diffusive excitation is nonuniform. 

In  summary, if inequalities ( 15) and ( 16) do not hold, 
nonuniform broadening spread out the threshold for the 
transition to chaos. With increasing value of the nonlinearity 
parameter 7j, T, the stochastic excitation is accelerated. 
Slow excitation may occur even at fairly small values of% T 
(Ko<l ) .  

FIG. 6. The same as in Fig. 5, but for small values of K,,. 1-0, T = 60; 2- 
50; 3-30. 

4. 
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FIG. 7. Isochromates which lie below the boundary of global chaos 
[ (w,  T),, =: 1391 and which exhibit chaotic dynamics in thecasea = 0.1, 
A = o,, u,, = u,, = 0, m,, = 1 ,  N = 10'. The inset shows the fine structure 
of the isochromates with chaos which is manifested as the resolution in 
terms of the parameter STincreases. 

We now consider the nonlinear dynamics of the nuclear 
magnetization in the case a - 1 with nonuniform broadening 
[Figs. 8(a)  and 8 (b ) ] .  It follows from this figure that the 
motion of the magnetization is different from the parameter 
values which correspond to global chaos (solid line) and 
those which correspond to a regularity window (dashed 
line). The rapid damping (over a few iterations) of the oscil- 
lations of the longitudinal component [Fig. 8 ( a )  ] and the 
transverse component [Fig. 8 (b )  1 of the nuclear magnetiza- 
tion might be called "stochastic saturation," since it is 
caused by a rapid splitting of the correlations in the motion 
of individual isochromates in a regime of dynamic chaos. 
The stochastic saturation described here occurs in the ab- 
sence of any irreversible relaxation. This point distinguishes 
the case at hand from the stochastic saturation described in 
Ref. 15, which can occur when diffusion is canceled by relax- 
ation of the longitudinal magnetization component. 

5. CONCLUSION 

We have examined the transition to chaos in nonlinear 
NMR in magnetically ordered media. Depending on the 
areaa  under the existing pulse and also on the dimensionless 
nonlinearity parameter w, T, regularity windows may form, 
and there may be several order-chaos-order transitions. At 
small values of a the regularity windows become covered by 
stochastic blinds in all cases (although the process is usually 

FIG. 8. Nonlinear dynamics of ( a )  the longitudinal component m !  and 
(b)  the transverse component m ,  = [ul + u2] "' of the nuclear magneti- 
zation in the case with nonuniform broadening with the values a = 0.48, 
A = o , ,  u/Z,,=O.l, u ~ , = u ~ , = O ,  m l ) = l .  Solid line-Z,,T=6.5; 
dashed l i n e 4 . 4 5 .  The average was taken over 2.4X 10' isochromates. 

slow), so these windows are metastable. The occurrence of 
nonuniform broadening may also, under certain conditions, 
close the regularity windows and intensify the stochastic be- 
havior. In addition to the stochastic excitation, the broaden- 
ing of the Fourier spectrum of the NMR signal by an amount 
on the order of w, and the stochastic saturation which is seen 
at a- 1, as a result of the combined effects of nonuniform 
broadening and dynamic chaos, can be classified as mani- 
festations of chaotic dynamics in NMR with a dynamic fre- 
quency shift. 

These effects could apparently be observed experimen- 
tally in ferro- and antiferromagnets at liquid-helium tem- 
peratures at the following values of the physical parameters: 
T2- 10-4-10-3 S, T I  - 10-3-10-' S, T-  10-h-10-4 S, E 

-10' Hz, w, -10"-lo7 Hz, T,,-10-7-10ph s, and a 
-0.1-1. 

We propose the following experiment for observing sto- 
chastic excitation: At a time t ( T2 5 t < T I  ) after N short 
pulses have been applied (N- 5-10), yet another pulse is 
applied, and the free-induction signal is observed. The am- 
plitude of this signal depends on the longitudinal component 
of the magnetization, which in turn has different values in 
the regular and chaotic regimes of motion during the appli- 
cation of the N pulses. 

We conclude with a few comments. 
1. Preliminary numerical experiments have shown that 

the chaotic dynamics persists even when irreversible relaxa- 
tion is taken into account, up to T / T z  zz 1 in the case a (< 1 
and up to T/T,--,O. 1 in the case a - 1 (under the assumption 
T I  $ T2).  It would be interesting to study the possible exis- 
tence of a steady-state chaotic regime of motion of the 
strange-attractor type in this problem. 

2. The new effects which we have described here (the 
existence of metastable regularity windows and the existence 
of stochastic saturation in the case of nonuniform broaden- 
ing) appear to be quite general. For example, analogs of sto- 
chastic saturation should probably be observed in nonlinear 
systems which can have chaotic dynamics when strongly 
perturbed (a  strong perturbation would cause a trajectory to 
cover a large part of the phase space) and in the presence of 
nonuniform broadening (the spread could be in any param- 
eter of the system). In this connection it would be interesting 
to search for and study effects of this sort in other physical 
systems. 

3. The situation studied in the present paper is very 
close to that which arises in research on spin echoes, as we 
have already mentioned. Preliminary numerical calcula- 
tions have shown that chaotic dynamics of isochromates can 
affect the behavior of spin-echo signals. 
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