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A possible mechanism of carrier (proton and electron) capture and transport by Bjerrum defects 
involving establishment of a specific configuration of an electric field equal to the field of a point 
charge is analyzed. Finite motion of a charge around a defect on a circular orbit with its plane 
perpendicular to the chain axis is possible in such a field and transport together with a defect can 
occur along a chain. It is shown that D and L Bjerrum defects of two types can exist: a)when 
rotations of the neighboring molecules occur in one direction; b )  when the neighboring molecules 
rotate in opposite directions. 

INTRODUCTION 

In theoretical analysis of the motion of charges in ice 
and other hydrogen-bonded structures it is usual to isolate 
ordered chains of water (or similar) molecules, which are 
known as the Bernal-Fowler filaments' (Fig. 1 ). If a proton 
approaches a molecule on the extreme left in such a chain, it 
may form a covalent bond with an oxygen atom and the 
proton may be transferred from the end to the next molecule 
(Figs. l a  and lb ) .  Repetition of this process can transport 
the proton along a chain. The chain then assumes a position 
in which the transport of the next proton is no longer possi- 
ble (Fig. lc) .  

However, if experimentally observed currents are to be 
explained, 24 we must assume that such a chain returns to its 
initial position. If the molecule at the left-hand edge is rotat- 
ed about the O H  bond perpendicular to the chain axis, a D 
Bjerrum defect is created5 (Fig. Id) .  Subsequent rotations of 
all the molecules or, in other words, movement of the D 
defect restores the initial state of a chain. The same state can 
be attained by beginning rotation from the right-hand end of 
the chain and this gives rise to an L Bjerrum defect, which 
moves in the opposite direction (Fig. Id) .  The next proton 
can move only after the Bjerrum defect moves along the 
chain. A similar modification of the chain results also from 
the motion of a proton hole, which is frequently called an 
OH- defect; maintenance of a current again requires the 
passage of a D or L defect. 

It therefore follows that in hydrogen-bonded structures 
the current has two coupled and inseparable components. 
The hypothesis of such a two-stage proton conduction mech- 
anism was first put forward by Sokolov in 1955 (Ref. 6).  
According to the estimates given in Ref. 7, during the first 
stage a proton or a hole transports only 0.64 of a proton 
(electron) charge, whereas during the second stage a Bjer- 
rum defect carries the remaining 0.36 of the charge. The net 
result is the transport of a single charge and the chain returns 
to its initial position. 

Elementary charge carriers in ice and similar hydrogen- 
bonded structures can be divided arbitrarily into two groups: 
ionic H +  and OH- defects ( a  proton and a hole), which 
disturb the neutrality of the whole chain, and orientational 

fects of the H,Ot, H,O,+ and similar types simply represent 
(in our opinion) a matter of terminology. In fact, the charge 
is always the same and the mobility is governed primarily by 
the height of the energy barrier hindering the transfer of a 
proton from one oxygen atom to another; the influence of 
protons on the neighboring molecules is of secondary impor- 
tance. However, if this problem is considered in the contin- 
uum approximation, when several adjacent protons are 
transferred to other oxygen atoms simultaneously, the solu- 
tion describes all possible ionic defects with different values 
of the delocalization parameter governing the width of a de- 
fect. 

The transport of protons in the form of solitons was first 
considered in Refs. 8 and 9 and then the problem was pur- 
sued further in a number of papers (see Refs. 10-14, etc.). 
The soliton model of the motion of Bjerrum defects was pro- 
posed and developed in Refs. 15 and 16. The treatments giv- 
en in Refs. 8-16 were concerned with the conductivity in a 
one-dimensional model. The question arises whether such a 
model satisfactorily describes a real three-dimensional sys- 
tem. Note that experimental determinations of the mobility 
are carried out along one of the crystallographic axes2 and in 
some cases the conductivity along such an axis is up to three 
orders of magnitude higher than along the two other axes41t 
is therefore quite permissible to assume that the motion of 

(D and L ,  BJerrum defects' which leave the On the FIG. I Schematic representation of the motion o f a  proton along a chain 
whole neutral but alter the orientations of its parts. N ~ m e r -  of water molecules (a-c), and the formation of D and L Bierrum defects 
ous hypotheses of the existence of more complex ionic de- ( d ) .  
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ionic and orientational defects is one-dimensional, especially 
since an external electric field applied to a sample brings the 
real situation closer to the one-dimensional model. '' 

Recent experiments have however shown that the ques- 
tion of the nature of carriers and of the two-stage conduction 
mechanism cannot be regarded as closed. In fact, the expect- 
ed evolution of hydrogen at the electrodes does not oc- 

Therefore, we shall propose one further conduction 
mechanism involving charge (electron or proton) transport 
by Bjerrum defects. This is possible because a Bjerrum defect 
creates a specific electric field configuration due to the di- 
pole moments of the chain molecules. This field forms a trap 
for the charged particle, which together with the Bjerrum 
defect, can be transported even against the direction of an 
external electric field if the latter is less than the field created 
by the molecular chain. 

SOLITON MODEL OF BJERRUM DEFECTS 

Let us consider a chain of water molecules, which is the 
simplest example of a hydrogen-bonded chain. We assume 
that molecules can rotate about a fixed OH bond which is 
perpendicular to the chain axis. A neutral water molecule 
has a permanent electric dipole moment d = 1.87D. In the 
present model the orientation of this moment is defined by 
two angles: O,, is the constant angle between the fixed OH 
bond and d, andx is the angle between the chain axis and the 
projectionp = dsin 19, of the dipole moment on a plane per- 
pendicular to this OH bond (Fig. 2).  Then the energy of the 
dipole-dipole interaction in the chain considered in the 
nearest-neighbor approximation can be described by 

where a is the chain constant. 
The hydrogen bonds between the molecules (some of 

which can be described by the classical dipole-dipole inter- 
action) mean that the dipole moment is in a local field with 
two equilibrium positions x0 = P and 2 = 0. This field can 
be described by a two-well potential with a barrier of height 6 
between the wells: 

The rotational kinetic energy of molecules with a moment of 
inertia I is 

We consider fairly slow rotations of molecules when the ro- 
tation of one molecule can be transferred to the others by the 
dipole-dipole interaction, so that several molecules can par- 
ticipate simultaneously in the rotation process. 

If the neighboring molecules rotate in the same way, 
i.e., if X, and X, + , have the same sign, then the inequality 
x,, + , - ,yn 977 is satisfied. In the opposite case when one 
molecule rotates to the left and the next one to the right, i.e., 
if ,yn and X, + , have opposite signs, the inequality x,, + , 
+ xn is obeyed. Let us consider these two cases. 

1. x,, + , - x,, <P. In this case we have 

Then, Eq. ( 1 ) becomes 

Hd = + 4[+ (X,,+1-xn)2-3 cos 5 1 )  , 
-2nS 2a3 

q=d cos €lo. ( l a )  

The total Hamiltonian describing the system is equal to the 
sum of Eqs. (la), (2),  and (3).  Writing down the Hamilto- 
nian for canonically conjugate levels x,, and I;r, and adopt- 
ing the continuum approximation, we can replace the func- 
tions of a discrete variable with functions of a continuous 
variable 6 in accordance with the rule 

Consequently, the equation of motion becomes15." 

where vo = p/(2a31) ' I 2  governs the velocity V, = avo with 
which rotations propagate along the chain, while 
o2 = ( E  + 3p2/a3)I governs the height of the barrier 
between x0 = P and 2 = 0 subject to the dipole-dipole in- 
teraction. 

The solution of Eq. (4a), 

x1 (t-vt) =arc cos {*th [p(t-go-vt)] ), (5)  

describes the transition of all the dipoles from the initial po- 
sitionxO = P to the final = 0, i.e., it describes the 
motion of an extended D defect (with the minus sign) and, 
conversely, the transfer of all the dipoles from = 0 to 
,yo = P describes the motion of an extended L defect (plus 
sign ). Here, ,u = 2 ' I2~ /v0 (  1 - v2/vi ) ' I 2  is a localization 
parameter which determines the number of molecules 
N = r/,u which participate simultaneously in the rotation 
or, in other words, the size of a defect A = aN. The param- 
eter c0 defines the center of a defect. 

It is shown in Ref. 16 that the same expression (5) de- 
scribes the motion of a defect in an external electric field in 
the presence of dissipation. The equation of motion is then 

~ o ~ ~ ~ ~ - ~ t t + ~ ~ t = o ~ s i n  2 ~ + p E  sin X, ( 6 )  

FIG. 2. Position of a dipole moment in space. 

where y is the dissipation coefficient and E is the field inten- 
sity; the velocity of a defect is no longer a free parameter, but 
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is determined by the parameters of the problem: 

V~=V&(U~+E~)  -'A, (7) 

where 

In an external field a D defect moves as a positively charged 
particle, whereas an L defect behaves as a negative particle. 

2. We now consider a different case of mutual orienta- 
tion of the neighboring molecules in the course of rotation: 

~ n + i + ~ n ~ n .  

Now it is convenient to adopt a new unknown p,, whose sign 
depends on the molecule number: 

%=(-I) "qn. 

We then find that 

and 

The equation of motion can then be of the same form as in the 
preceding case: 

~~~(pc~-cp~~=*~s in  2(p, (4b) 

but the parameters are now different: 

Its solution is naturally of the same form as in the first case, 
but real rotations of the neighboring molecules in a chain 
occur in different directions when we allow for Eq. (8). 

We can compare the Bjerrum defect energies in these 
two cases. We can define the energy of a defect as the differ- 
ence between the energy of achain in the absence of a defect 
and one with a defect: 

In both cases the energy of the defect can be described by 

where 

Comparing these energies, we find that 

AH,<AH2 for vz<v,Z, 
AH*>AHZ for vZ>v,Z, 

where 

Consequently, below a certain critical velocity v, the pre- 
ferred process is the formation of D and L defects of the first 
type, while above it the defects are of the second type. 

ELECTRIC FIELD OF BJERRUM DEFECTS 

We shall first consider the field of Bjerrum defects on 
the basis of general physical considerations. 

At any point in space the density of a field E can be 
resolved into transverse E, and longitudinal Ell compo- 
nents; along the dipole axis and along an axis passing 
through the center of the dipole at right angles to it, we have 
EL = 0. In the case of an infinite chain of identically oriented 
dipoles the transverse components of all the dipoles cancel at 
every point and only the longitudinal component remains. 
However, a Bjerrum defect essentially separates an unor- 
iented part of a chain from one which has been reoriented, 
i.e., it divides the chain into two parts with opposite orienta- 
tions of the dipoles and, consequently, the electric field in 
these parts has opposite directions. 

A D defect creates a field similar to the field of a point 
positive charge and, consequently, it attracts an electron, 
whereas an L defect is the field of a negative charge and can 
attract a proton. 

This qualitative conclusion may be supported by nu- 
merical calculations. In fact, if we consider the field of the 
nth dipole 

rn E,, = - -+ dn 3(dnrn)7 (12) 
rnS rn 

in thexz plane, then at a point (x, z )  with the coordinates (0, 
z, ) of the dipole,we find 

(13) 
dn=(p sin xn, 0, p cos xn) s 

where the components of the field ( 12) can be written in the 
form 

P 2 EnS(x, z) = - 7 sin xn+3p[ (z-zn)cos xn+x sin xnIy, 
rn rn 

P 2-2, EnZ(x, z) = - 7 cos xn+3p [ (z-zn) cos X,+X sin xn],-. 
7,  rn 

Hence, we can see directly that if all the dipoles are oriented 
in the same way, then E', (x, = 0) = - E Z, (xn = T ) .  

Therefore, if the two parts of the chain have opposite orien- 
tations, which is true of a chain with a Bjerrum defect, they 
create oppositely directed fields and can therefore attract 
corresponding charges to a defect. 
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The field of the whole chain is essentially the sum of the 
fields of all the dipoles. Therefore, if we sum over n, we ob- 
tain transverse and longitudinal components of the field and 
in Eq. (5) for ,y(c - vt )  we have to return to a discrete rep- 
resentation J +  n when Jo = no = 0: 

It therefore follows from Eqs. (5a), (12a), and ( 12b) that 

E,(x,z)= C E , , ~ = * ~  sech [ p (n-vt)  ] 
n 

+ ~ ( z - z . )  
[ ( I - zn )  th [  p(n-vt) ]+ x sech[ p (n-vt) ] I}, 

rn5 L 

where the plus and minus signs correspond to the L and D 
defects, respectively. 

In numerical calculations it is preferable to adopt di- 
mensionless variables and consider the fields at points which 
are multiples of the chain length so that 

are integers and the dimensionless expressions (14a) and 
( 14b) become 

sech[ p (n-vt)  ] 

-pn3 n 

3k + ,[ksech[p(n-vt) I+  (m-n) th [p (n-v t )  I ] } ,  
P. (16) 

~l l*(k, m)= + X{ th[  p (n-vt)  I 
-pn3  n 

+ 3(m-n) 
[ k  sech[ p(n-vt) ]+ (m-n)th[ p (n-vt) ] 1) , 

pn5 

where p, = [k + (m - n)'] 'I2, and are related to real 
fields by the expressions 

These expressions have just one parameter p determined by 
the characteristics of the chain and related to the defect di- 
mensions; it is therefore sufficient to select its numerical val- 
ue so as to satisfy the continuum approximation: N = ?r/ 

p)1. Wecanshow thatthevaluesof (16) forp = 1 ( N z 3 )  
are practically indistinguishable from those for p =0.5 
( N = ; 6 ) ,  as shown in Fig. 4. The same numerical value o f p  
lying within the interval 0.5-1.0 can be obtained if we calcu- 
latep from the chain parameters d, I, and E (Ref. 15) deter- 
mined experimentally. We therefore describe calculations 
carried out on the assumption that p = 0.5. 

Figure 4 shows the quantities a f and a ,f at a distance 
50a (k = 50) from the chain in the case of an L defect locat- 
ed at the chain center ( Y  = 0). In the case of a D defect the 

FIG. 3. Sharp peaks of the Ell and E, components in the region of a defect 
and at the ends of a chain at short distances from the chain; k = 10, 
p = 0.5. 

signs of all the fields are reversed. It is clear from Fig. 3  that 
the longitudinal component E ,; has different signs in differ- 
ent parts of the chain. This creates a field which can trans- 
port a positive charge (for example, a proton) toward the 
center of the chain, i.e., to the L defect. The transverse com- 
ponent E:  is directed so that it also facilitates the motion of 
the proton toward the L defect, and we can see that a reduc- 
tion in the localization weakens E: (Fig. 4). This is easily 
understood if we bear in mind that in the region of this defect 
the dipoles, are roughly speaking, directed at right-angles to 
the chain axis. In this case the field created by the dipoles is 
opposite to the field produced by the rest of the chain in one 
direction (k  = 50) and is equal to its field in the other direc- 
tion ( k  = - SO). This is supported by the result of quantita- 
tive calculations. For example, Fig. 4 shows that E:  for 
k = - 50 has a larger absolute value and is directed oppo- 
site to the field E:  when k = 50. Moreover, since the di- 

FIG. 4. Longitudinal ( E l l ,  curves labeled by a number without a prime) 
and transverse (E, , curves labeled by a number with a prime) components 
of the electric field in a dipole chain at different distances from the chain k 
(continuous curves correspond to k = 50 and dashed curves correspond 
to k = - 50) and for different locaiization parametersp: 1 ), 1') 1.0; 2),  
2'), 41, 4') 0.5; 3) ,  3') 0.1. 
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poles located in the vicinity of a defect create a field directed 
in the same way in different parts of the chain, whereas in 
fact E f has different directions on different sides, the domi- 
nant contribution to E: is not made by the region near a 
defect but by the rest of the chain. It is now clear that an 
increase in the size of a defect (reduction of its localization) 
weakens the transverse component E: when p = 0.1 (Fig. 
4).  

It should be pointed out also that the addition of the 
fields on one side of a chain ( k  = - 50) increases also the 
longitudinal component E I f  and the sign of this component 
is naturally conserved. 

The region of the defect can play an important role only 
when it is located close to the chain, for example, when 
k = 10 (Fig. 3 ) .  In this case the field Eli,, * along the chain is 
nonmonotonic and there are sharp peaks at the ends of the 
chain near the defect. We can see how the configuration of 
the field changes during the motion of the defect along the 
chain by examining Fig. 5. Note that the zero of the compo- 
nent E and the maximum of the component El coincide 
with the center of the defect only at the point n = 0. How- 
ever, a defect at any point in a chain attracts a charge of the 
relevant sign. The question arises whether the motion of the 
charge and the defect is linked, i.e., whether the defect does 
indeed carry the charge along the chain. 

TRANSFER OF CHARGES BY BJERRUM DEFECTS 

We consider the motion of a particle of mass m and 
charge e in the presence of a field created by Bjerrum defects 
of the second kind. In this case d, and r, have the following 
components: 

dn={p sin xn, ( - 4 )  "q, p cos x,), 
(18) 

rn={x, y, z-z,), x n =  (-4) "cpn, 

where q = d cos O,, z, = an is the coordinate of the nth di- 
pole in the chain, and r = {xg,z) is the position of a particle. 
The system of equations of motion is then of the form 

We can show that at a distance r>4a the influence of the 
.charge on the defect can be ignored. In fact, for p = 0.5, the 
defect spreads over N = ir/p =:6 molecules. Therefore, the 
action of the charge at a distance r > 2a should destroy the 
defect by smearing it out over the chain, since the dipoles 
then tend to rotate relative to the charge. In the opposite case 
the forces of the dipole-dipole interaciion and of the hydro- 
gen bonds will tend to confine the defect. Let us compare the 
energy binding the first unperturbed dipole lying along the 
axis (n = 4) with its neighbors, and the energy of its interac- 
tion with a charge. The relevant expressions are 

Substituting d = 1.85D. a = 3 A, E = 0.23 X 10- '' erg, and 
e = 4.8 x 10- 'O cgs esu, we can show that already at a dis- 
tance of r = 4a (k  = 4) from the defect the influence of the 
charge is an order of magnitude less than that of the bonds to 
the neighboring molecules, whereas for k = 10 it is two or- 
ders of magnitude less. Consequently, for k > 4 we can con- 
sider the motion of a charge in the field of a Bjerrum defect 
ignoring the influence of the charge on the defect. Then, 
Bjerrum defects of the first type are described by the func- 
tion ( 5 ) ,  whereas those of the second type are described by 
the following expression, which is deduced from Eqs. (5a) 
and (8) :  

xnn(t) = (-1)" arc cos {*th [p(n-no-vt)] ), (5b) 

where the plus and minus signs correspond to the L defects. 
Since the Bjerrum defect creates a field equivalent to the field 
of the point charge, it is natural to assume that an electron or 
a proton travels around the defect in a circular orbit with its 
plane perpendicular to the chain and they also move simulta- 
neously with the defect along the chain at the velocity of the 
defect. We therefore solve the system of equations of motion 
subject to the conditions 

and then adopt a coordinate system moving at the velocity v 
of the defect; this can be done by substituting n - n,, - vt+ n 
and z = vt-0. Moreover, only consider defects of the sec- 
ond type, because this allows us to find simply the solution of 
the problem (as demonstrated below). 

In this case the system of equations becomes 

FIG. 5. Changes in the field configuration as a defect moves along the 
chain showing longitudinal ( a )  and transverse (b) components; n,, is the 
coordinate of the defect center, k = 50, and p = 0.5. 
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y } ,  (2lb) 
' - m  (pZ+zna) 

The sum in Eq. (21c) contains a function which is odd in n, 
so that this sum vanishes. Consequently, Eq. (21c) is satis- 
fied. 

We now consider two equations; (21a) and (21b). 
These equations contain the scalar product d, r, . We can 
calculate this product conveniently by representing d, as a 
sum of three vectors: 

where p', + pt = p, is the projection of d, on the xz plane. 
We then have 

where a,, p , ,  and y ,  are the angles between the relevant 
vectors and r, . When the charge moves in a circle, the angle 
a, between pi, lying along the chain axis and r,, remains 
constant and, consequently, is independent of x and y. If we 
consider Bjerrum defects of the second type [Eq. (5b) 1, 
then pt and p\ are directed to different sides perpendicular 
to the axis and we also have cos p, = - cos 0 -,, so that 

Similarly, because of the structure of the chain (Fig. 6),  the 
vectors q, and q - , are also directed oppositely and we have 

z q n r n  oos ~ ~ - 0 .  
n 

It therefore follows that Eq. (23) can be written in the form 

d,rn=pnzr, cos an=const (24) 

and that we can introduce instead the quantities 

FIG. 6. Interactions of the d,, and d ,, dipoles with a charge in the case of 
a D defect of the second type. 

which are independent of x and y. Then, the system (21a)- 
(2 1 b)  becomes 

but it has a solution which describes finite rotational motion 
of the charge around the defect only in the case R < 0: 

where w, = ( - fI) ' l2; p = [(a/mO2)* + C/m:] ' I 2  is the 
radius of the charge orbit; C is the constant of integration 
governing the value of p. The sign of R is governed by the 
sign of the particle charge e and by the sign of d, r, of Eq. 
(24), which depends on the nature of the defect. For a D 
defect it follows from Eq. (24) that 

since la, I < ~ / 2  (see Fig. 6),  so that in order to satisfy the 
condition R < 0, we have to assume e < 0 and, as expected, 
the field of a D defect is equivalent to the field of a positive 
charge which can capture a negative charge. On the other 
hand, an L defect characterized by cos a, <O 
( ~ / 2  < la, I < P) captures a positive (e > 0 )  charge. Bearing 
this point in mind, we find that a,, has the same sign in both 
cases: 

which is true also of the quantity 

which positive and governs the frequency of rotation of a 
charge around a defect. 

We can show that the series described by Eqs. (27), 
(30), and (31) and governing the quantities a ,  P, and mi 
converge. Let us estimate the values of these series. Adopt- 
ing the discrete representation characterized by p = ak and 
z, = an, we obtain from Eq. (30) 

where q(+ ,k2)  is the generalized Riemann q function.I9 
Similarly, it follows from Eq. (27) that 

OD 
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We estimate w; bearing in mind p', = p cos X ,  = + p tanh 
(pn) ,  where the plus and minus signs correspond to the L 
and D defects, respectively, and alsor, = a ( k  ' + n2) ' I2  and 
cos a, = n/(k ' + n2)'I2, SO that Eq. (24) implies 

d,r,=pnzr,, coos an=*npa th ( p n )  

and Eq. (3 1 ) becomes 

Here the sign of the charge is allowed for explicitly; it corre- 
sponds to the case of attraction between charge and the de- 
fect. The sum in the above expression is easily calculated for 
given values of k and N, which is the number of particles in a 
chain. If we introduce 

we can see that the values of 5; for N = 100 are practically 
the same as 5; for N = 200. We can therefore limit our anal- 
ysis to finite chains. For example, if k = 5, we have 5; 
= 1 . 3 6 ~  lo-' and for k = 10 we obtain 5; = 1.06X 

Having calculated o, = (3pe/ma4) '125, for e = 4.8 X 10 
cgs esu, d = 2.5D, a = 3 b;, and m equal to the mass of an 
electron or a proton, we find that for k = 5 (p  = 5a = 15 b;) 
the frequency of revolution of an electron around a defect is 
w, ~ 7 . 2 X  1014 s p  I, the frequency of a proton is w, 
z 1.7 X 1013 s- ' if k = 10, the corresponding values are 
w, = 2~ 1014 s-' and w, = 4 . 7 ~  10'' s-I. 

We can calculate similarly the quantity defined by Eq. 
(30). If we represent Eq. (27) in the formP = p(k)eq/ma3, 
where 

a ( k ) =  b+2 
n-i 

we can show by direct calculations that p ( k )  -0 in the limit 
N+ co. 

We now find the values of the parameters of the solution 
which ensure that the condition (20) is satisfied. Substitut- 
ing Eq. (29) for x and y and averaging over one charge revo- 
lution around the defect, we can show that this condition is 
satisfied if a/w;. In fact, the smallness of p2 %a2/wi com- 
pared with p means that the shift of the center of the charge 
orbit from the origin of the coordinate system along the x 
axis is small compared with the orbit radius. (It  should be 
pointed out that the shift along they axis is altogether absent 
because P =  0.) We now estimate numerically the shift 
along x ;  in doing this we bear in mind that 

a a C  
-=-- (4) sech ( p n )  
mo2 3 i30z 

Calculation of the value of ii and comparison with 5; shows 
that a/w; - 10-'a. This is true both forp = 5a (k  = 5) and 
forp = 10a (k  = lo ) ,  i.e., the shift can be ignored compared 
with the orbit radius and, consequently, the condition of Eq. 
(20) is satisfied. 

ANALYSIS AND CONCLUSIONS 

Our analysis thus shows that one of the possible states 
of a charge-defect syst\m is that in which the charged parti- 
cle follows along a circular orbit of constant radius around 
the center of the defect and the plane of the orbit is perpen- 
dicular to the chain axis, i.e., the charge is captured by a 
Bjerrum defect. The charge may be a free proton or an elec- 
tron, always present in ice and similar systems. The question 
arises how far classical ideas are applicable to the motion of 
such charges. Let us estimate the de Broglie wavelength of 
these particles in the case when they are captured by a Bjer- 
rum defect. 

On the one hand, the energy of a particle is 

where A is the de Broglie wavelength. On the other, the ener- 
gy of a particle following an orbit of radius p at an angular 
velocity w is 

These two relationships give 

For the values we = 7.2X 1014 s-' for an electron and 
w, = 1.7 X lOI3 s- '  for a proton when the orbit diameter is 
2p= 30b;,wefind~, =6b;andAp =0.15b;,i.e.,thequan- 
tum size of a proton is two orders of magnitude less than the 
orbit diameter and therefore in this situation we can regard it 
as a classical particle. However, the size of an electron is only 
one-fifth of the orbit diameter so that in this case the above 
treatment is fairly rough. Estimates of the dimensions of an 
electron and a proton for 2p = 60 A give the same ratios of 
these quantities to the orbit radius as for 2p = 30 b;. 

The influence of thermal fluctuations on the motion of a 
charge captured by a Bjerrum defect is unimportant. In fact, 
the energy of gyrations of an electron or a proton at the 
angular velocities given above is z 3 eV, whereas the thermal 
energy k T  = 0.025 eV is two orders of magnitude less. 

We shall now consider the problem of the direction in 
which a charge-defect complex moves in an external electric 
field. A free D defect moves in a field as a positively charged 
particle, whereas an L defect moves as a negative particle. 
This is because after the passage of a proton or a hole in a 
field of a given direction the molecular dipole moments are 
in an energetically unfavorable position because they are ori- 
ented against the field (Fig. lc) ,  l 6  and there is only direction 
of motion in a chain with a given configuration. However, if 
the defect captures the charge, then generally over distances 
of the order of one segment of the chain we cannot exclude 
the influence of the charge on the defect and we must regard 
them as a single complex. Once we do this, the influence of 
an external field on this complex is determined not only by 
the action of the field on the defect but also that of the field 
on the charge, which is opposite in sign (!) and different in 
value. If this interaction is stronger than that with the defect, 
the complex moves in the direction governed by the sign of 
the charge and not that of the defect. This allows us to ex- 
plain why there hydrogen is not evolved at the electrodes in a 
system of this kind and the current through a sample of ice 
can flow as long as we please in spite of the limited number of 
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the elementary charges (H+,  OH-, D, and L )  in a given 
volume of ice:'7318 electrons are transferred by the D defects 
from the negative to the positive electrodes, where they re- 
main, whereas the D defects return to the negative electrode 
and the process is repeated. 

The field influences the charge and defect in different 
ways: the interaction with the charge is linear and that with 
the defect is nonlinear (tending to saturation),I6 so that in 
general we can have cases in which (for other values of the 
field) its influence on the defect is stronger than on the 
charge. In other words, the effective charge of the same com- 
plex may depend on the field and for different complexes 
D + e and L + p the dependence may be different. It is quite 
likely that this accounts for the broken nature ofthe current- 
voltage characteristic of ice." 

We must mention one other important feature. In the 
model of transport of ionic defects ( a  proton H +  or a hole 
OH-) developed in Ref. 9 the molecules of a chain to the left 
and right of these defects are also oriented in different ways. 
The configuration of the chain in the course of the transport 
of, for example, H+  is similar to the configuration of the 
chain with an L defect, and, therefore, a field of the negative 
charge is created, but it does not capture any other positive 
charges; instead it stabilizes the already implanted proton 
H+ and the resultant field of the proton in the chain (or at 
least its transverse component) should be close to zero. This 
is why ionic defects should not capture and transfer other 
charges apart from their own intrinsic charges. 

The proposed model applies to an isolated chain. How 
do neighboring chains affect the motion of a charge associat- 
ed with a defect? First of all, we note that the Bjerrum defect 
concentration is fairly low ( 10 m~l / l i t e r ) ,~ '  so that chains 
with defects in ice are surrounded by many ordered defect- 
free chains. The latter create only longitudinal electric fields 
and the field transverse to the chain axis is created only by 
the chain with a defect, which is why the charge is trapped. 

It therefore follows that Bjerrum defects may act as 
traps and as charge carriers: an L defect can carry a proton 
and a D defect can carry an electron. These defects can play 
the main role in proton and electron transport, because in ice 
the concentrations of orientational D and L defects are five 

orders of magnitude higher than ionic H,O+ and O H  de- 
fects.=' It is also possible that the main contribution to the 
current comes from the transport of electrons by D defects, 
because electrons are 2000 times lighter than protons and, 
consequently, they should be captured more easily. 

The author is grateful to 0 .  S. Parasyuk who carried out 
numerical calculations of the defect field, and also to V. Ya. 
Antonchenko and V. F. Petrenko for valuable exchange of 
ideas. 
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