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An investigation is reported of the longitudinal magnetothermoelectric power of a metal which is 
in a state close to an electronic topological transition. Under certain conditions this power may 
exhibit giant oscillations as a function of the applied magnetic field. These oscillations arise 
because the electron relaxation time in a magnetic field depends on the electron energy and are 
typical of normal metals, irrespective of the shape of the Fermi surface. Nevertheless, both the 
form and the amplitude of these oscillations change greatly near a topological transition. The 
results of recent investigations of the magnetothermoelectric power of cadmium single crystals 
subjected under pressure in a magnetic field are compared with the predictions of the proposed 
theory. 

1. INTRODUCTION 

Detailed experimental and theoretical investigations 
have recently been made of the kinetics of electronic topo- 
logical transitions.'-'* The thermoelectric power of metals 
and alloys undergoing such transitions has attracted partic- 
ular attention because they are accompanied by giant anom- 
alies if the temperature of a sample is sufficiently low. These 
anomalies have been reported for Li, _ , Mg, ,Cd, _ , Mg, , 
and Bi, _, Sb, alloys, for Ta and In bulk samples, and for Bi 
and A1 whiskers. The results of all the experiments are in 
good qualitative agreement with the current theoretical 
ideas. '-I2 

The next stage in the investigation of the kinetics of 
electron transitions in the vicinity of a topological transition 
was reached in the recent studies of the influence of a mag- 
netic field on the anomalies of the thermoelectric power of 
Cd crystals near transitions induced by hydrostatic pres- 
sures.l"admium undergoes a complex change in the Fermi 
surface topologyi4 at pressures close to PC = 16 kbar in the 
absence of a magnetic field: the "arms" of a hole "monster" 
collapse in the second Brillouin zone and electron "needles" 
appear in the third zone. Varying the pressure near PC also 
gives rise to a clear peak in the pressure dependence of the 
thermoelectric power; the amplitude of this peak depends 
strongly on the field but the field does not affect the position 
of the peak.'"t is interesting to note that on one side of such 
a transition the thermoelectric power is practically indepen- 
dent of the magnetic field and on the other side the depen- 
dence is strong. The dependence of the magnetothermoelec- 
tric power (MTEP) on the applied magnetic field reported 
in Ref. 13 demonstrates a tendency to reach saturation far 
from an electronic topological transition, whereas near such 
a transition the MTEP peak rises monotonically with the 
field up to 6 T. 

The MTEP of a metal undergoing an electronic topo- 
logical transition in the absence of a magnetic field exhibits a 
giant peak of the thermoelectric power due to a change in the 
probability of the electron-impurity scattering near a transi- 

tion point, as demonstrated in Refs. 9-1 1. On the other 
hand, it is well known that transport characteristics ofa  met- 
al exhibit oscillations of the de Haas-van Alphen type as a 
function of the applied magnetic field H. However, whereas 
the de Haas-van Alphen oscillations are related to a periodic 
dependence of the thermodynamic potential O ( p )  on the 
applied field H, the transport characteristics oscillate be- 
cause of changes in the processes of conduction electron 
scattering in a magnetic field. For example, an oscillatory 
correction to the electron-impurity relaxation time15 is 
shown to be responsible for electrical conductivity of the 
Shubnikov-de Haas type. In other words, both in a magnetic 
field and near an electronic topological transition the expres- 
sion for the relaxation time of conduction electrons includes 
corrections that depend in different ways on the energy and 
these corrections give rise to anomalous contributions to the 
thermoelectric power. 

We shall use an electronic topological transition model 
of the "neck-breaking" type to calculate the longitudinal 
thermoelectric power of a metal near a transition in the pres- 
ence of a magnetic field applied parallel to the neck axis. This 
geometry is selected in order to avoid the complicating influ- 
ence of effects of the magnetic breakthrough type, which 
appear in this model of the Fermi surface when the magnet- 
ic-field orientation is transverse. 

2. MODEL AND ELECTRON RELAXATION TIME NEAR AN 
ELECTRONIC TOPOLOGICAL TRANSITION IN THE 
PRESENCE OF A MAGNETIC FIELD 

Following the usual treatments,"-" we simulate break- 
ing of the neck of a Fermi surface of a metal by simulating 
this neck with a hyperboloid of revolution (Fig. 1 ). A one- 
sheet hyperboloid then represents an open Fermi surface and 
a two-sheet hyperboloid corresponds to a closed surface. 
The number of conduction electrons n. determines the limit- 
ing value of the longitudinal momentum p,. In this model 
the energy of a conduction electron in the presence of a mag- 
netic field H can be described by 
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FIG. 1 .  Topological transition of the neck-breaking type in a magnetic 
field. If A = 0 an open Fermi surface becomes closed, p,, is the limiting 
value of the longitudinal momentum. 

where E, is the critical energy corresponding to the transi- 
tion point at T = 0 in the absence of a magnetic field and of 
impurity scattering; R = eH/m,c is the cyclotron frequen- 
cy; m,, m, , and m, are the longitudinal, transverse, and spin 
masses of electrons. We assume f i  = 1 and, for the sake of 
simplicity, we assume m, = m,. To each Landau level and 
" & " spin index corresponds a Fermi momentum p,, + - de- 
fined by 

where ,u is the chemical potential. 
We introduce a parameter A + representing the prox- 

imity ofthe electron system in a metal to a topological transi- 
tion: 

where 

The maximum number of levels N,,, is found from 

which allows for the Landau level degeneracy. The summa- 
tion indicated above is carried out over all real momenta 
p,, * [i.e., the summation in Eq. (5 )  is carried out also over 
the spin index]. For simplicity, we assume that the interac- 
tion of electrons with impurities is independent of the elec- 
tron spin; the projection is then not affected by the scattering 
processes and we can consider independently the currents of 
electrons with different spin projections. 

We now discuss the specific case of an electron with the 
spin projection + 4. We are interested in the case of a pure 
metal ( T T )  1)  in a moderately strong magnetic field 
(a+). The states of conduction electrons in a magnetic 
field H Ilp, are characterized by quantum numbers n andp,, 
so that the expression for the probability of electron scatter- 
ing by an impurity is then given byi6 

where N, is the number of scattering centers per unit volume, 
Uis the Born scattering amplitude (assumed to be isotropic 
in order to simplify the treatment), and the energy spectrum 
of an electron is described by Eq. ( 1 ). Integrating Eq. ( 6 )  
with respect to the momentap,, we obtain 

where E,,, (w) = w + A +  - f l (m + 1/2),  w = E - p ,  8 ( x )  
is the Heaviside function, &,,=p:/2mZ, and 
Wo = .rr-'N, I U 12m,p0 is the Born probability of electron 
scattering by an impurity far from a transition. 

In moderately strong fields (when f l  < p ) ,  we can apply 
the Poisson formula and go over from summation to integra- 
tion in Eq. ( 7 ) .  Using the explicit shape of the Fermi surface 
of Eq. ( 1 ) in the selected model, we have 

where N A, is the maximum number of the Landau levels 
governing the largest section So of the Fermi surface: 

So=2nmLQ (N,,,+'l,), 

Using the integrals in Eq. (8 ) ,  we find that the scattering 
probability W +  (w) is described by 

where P(E") = ( 2 ~ k / f l )  ( E ~  - w),p( - A) = (277k/fl) 
X ( - A - a ) ,  and C(a )  a n d S ( a )  are the Fresnel integrals: 

Using Eq. ( l o ) ,  we now find the relaxation time 
r(w,A+,fL) = W ~ ' ( w ) .  Note that we obtained Eq. ( 6 )  in 
the Born approximation. We can go over from the Born scat- 
tering amplitude U to the true amplitude A in the presence of 
a magnetic field if we use the results of Ref. 15 and 17: 
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which then gives the following final expression for the relax- 
ation time T ( w , A + , ~ ~ )  

~ ( 0 ,  A+,  Q) = n ( w ,  A ) + T ~ ( w ,  Q ) + z s ( o ,  A, Q ) ,  (13) 
where 

T* (u, n) = TOR (A) 'h (-4) k-% cos (Ip ( e . )  - +) , 
2e0 R-t 

and To = T(N, ( A  12m,p,) - ' is the relaxation time of an elec- 
tron scattered by an impurity far from an electronic topolog- 
ical transition in the absence of a magnetic field, while the 
coefficient R = 2 ) A  )Z(p,m,/2~)2 - 1 is due to the differ- 
ence-in a magnetic field-between the true and Born scatter- 
ing amplitudes. The above expression for the relaxation time 
is limited to terms on the order of (A/&,) 'I2, and (WE,) 
which govern the behavior of the MTEP near an electronic 
topological transition. A more detailed analysis of the 
expression for T ( w , A , ~ )  is carried out in Ref. 17 using the 
temperature diagram technique and expanding a one-elec- 
tron Green function in terms of the eigenfunctions of the 
electron in a magnetic field.I5 

Clearly, since Eq. (13) does not contain spin indices, 
the relaxation time of an electron with the spin projection 
- f is described by the same equation. The quantity T,  in 
Eq. (13) has been encountered before.9-" It describes the 
likely scattering processes near an electronic topological 
transition in the absence of a magnetic field: T, is the usual 
scattering in the peripheral part of the Fermi surface to the 
peripheral part again, whereas the term with the 8 function 
represent the scattering from the a peripheral to a singular 
region. It should be pointed out that the probability of the 
scattering to a singular region described by the last term 
7,-'( I W  + AI /E , ) "~~(  - w - A) is effectively independent 
of the parameter E, (since r0-I o c ~ , ' l ~  holds) and we can 
expect that the model nature of the description of the Fermi 
surface neck will not affect the final results. 

The influence of a magnetic field on r(w,A,R) is mani- 
fested by the presence of the term r2 + 7,. For example, at 
T = 0 the term r2 represents the correction to the relaxation 
time in the case of a one-sheet hyperboloid (for A > 0).  In 
the opposite case (for A <O) when the neck is broken, the 
contribution of T, also becomes nonzero and we shall show 
that this results in a strong cancellation of the oscillatory 
part of the thermoelectric power. However, the parameter E, 

in the expressions for r2 and T, not only occurs as the factor 
explained above, but also performs the function of a phase of 
the oscillatory trigonometric and Fresnel functions. This is 
because this model applies in reality only near a neck. If we 
use it literally, then all the integrals with respect top, in Eq. 
(6) and with respect to tin Eq. (8) can be found accurately, 
but then the result is governed by the limiting area of the 

cross section So which is not generally an extremal cross 
section of the Fermi surface because dS/dp, 1, = , ,  #O. In 
fact, it is clear that far from a neck the real Fermi surface has 
certain maximum cross sections and these determine the 
magnitude of the correction to the relaxation time as well as 
the oscillation period when the magnetic field is altered. l 8  If 
the latter is indeed the cross section S,,, , then the correction 
calculated by the steepest-descent method near the point 
S,,, will depend on the derivatives d 'S/dp.P,2 Jp,pT,, and 

dS /a& ll,,p,,.~x = 2rm*. Therefore, using the expressions in 

the system ( 13) for T, and 7 ,  we must bear in mind that the 
model of an electronic topological transition with the spec- 
trum described by Eq. ( 1 ) predicts an oscillation amplitude 
governed by the derivative dS/dp, 1, _p,,  #O. This is a short- 
coming of the model and it suggests that the results obtained 
cannot be used to provide a quantitative description of the 
effect, but the qualitative picture is correct because in reality 
near one extremal cross section far from the neck of the Fer- 
mi surface the derivative dS/dp, vanishes and the oscilla- 
tion amplitude is then governed-in accordance with Ref. 
18-by in* and d 'S/dp: We can therefore say that the 

real behavior of the Fermi surface near an extremal cross 
section increases the amplitude [by a factor of (~,/w,) ' I 2 ]  

of the oscillations in the relaxation time, compared with the 
results given by Ref. 13. 

3. GENERAL EXPRESSION FOR THE THERMOELECTRIC 
POWER 

We now discuss our main task, which is calculation of 
the thermoelectric power of a metal closs to an electronic 
topological transition point in the presence of a magnetic 
field. We are interested in the a thermoelectric tensor com- 
ponent fl, on the assumption that not only a magnetic field, 
but also a temperature gradient VT (VT (IE IIH lip,) acts 
along the hyperboloid axisp, (Fig. 1 ) .  It is knownI6 that 

Integrating with respect to angles, we obtain 

Note that Eq. (14) describes the contribution of electrons 
with the spin projection + +. Obviously, the contribution of 
electrons with the opposite spin is exactly the same. Summa- 
tion over the spin projections gives rise to a factor 2 in the 
numerator of Eq. ( 15). Substituting the explicit expression 
for .r(w,A,R) from Eq. ( 13), we find that near an electronic 
topological transition in the presence of a magnetic field the 
electron component of the thermoelectric power can be rep- 
resented as a sum of three contributions: f l ,  are the usual 
background and singular parts of the thermoelectric power 
near an electronic topological transition in the absence of a 
magnetic field; f l ,  is an oscillatory Shubnikov-de Haas cor- 
rection due to the influence of a magnetic field on the kinet- 
ics of conduction electrons far from a transition, and f l , ,  is 
due to the influence of the applied magnetic field on the sin- 
gular part of the thermoelectric power near the transition 
(as in Sec. 2, this division is quite arbitrary). 
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The contribution of P, calculated from Eq. (15) is 
identical with that found earlier:9 

where 

is the thermoelectric power far from the transition on the 
open Fermi surface side.'' We stress that the singular part of 
the thermoelectric power in the direct vicinity of an elec- 
tronic topological transition is (E,/T) ' I 2  times greater than 
the background value. Note that we have ignored here the 
range h k T l n ( T ~ ) ,  where P,  = f l , [ 1 + 0 . 1 2 ( ~ , ~ ) ' / ~ /  
( T A ) ~ ' ~ ] ,  in order to avoid unnecessary complications.' 

4. OSCILLATIONS OFTHE THERMOELECTRIC POWER OF A 
NORMAL METAL IN A MAGNETIC FIELD 

We now consider the contribution made to the thermo- 
electric power /3, by the magnetic-field dependence of the 
relaxation time. The results obtained in the present section 
are in no way related to the specific model of the Fermi sur- 
face and they describe oscillations of the Shubnikov-de Haas 
type exhibited by the thermoelectric effect of a normal met- 
al. 

Substituting in Eq. (15) the expression for T ,  (w,R) 
from the system of equations ( 13), we obtain 

= 

( 2 x ( y T )  (21c:~ n x v ,  - sin ---). 
-a L. 4 

In contrast to the background component 0, ,calculation of 
the integral in Eq. ( 15) shows that the main frequency de- 
pendence (expressed in terms of the parameter zO/R)  is due 
to the strongly oscillating cosine and not due to the usual 
term proportional to w. It is interesting that the function 

occurring in the above expression is a total derivative of the 
function T ( x )  = x/sh x [ T ,  ( x )  = - +nY1(x)  1, which 
appears in a description of the Shubnikov-de Haas oscilla- 
tions of the -conduction of a normal metal in a magnetic 
field.16 

Note that Eq. ( 17) is identical with an ex~ression ob- 
tained earlier.19 w e  now analyze these results. 1; weak fields 
( R < 2 2  T) the exponential fall of the terms of the series in 
Eq. ( 17) means that we need to consider only the first term 
of the sum with k = 1, whereas the thermoelectric power is 

In strong fields ( R  > 2 2  T) an analysis of the sum in Eq. 
( 17) is more difficult. The exponential fall of the terms in 
this series begins only from k,- ( R / 2 2 T ) ;  moreover, in 
accordance with the asymptotic form T I  ( x )  described by 
Eq. ( 18), these terms increase in magnitude and alternate in 
sign. Bearing in mind this fact, we estimate the sum by calcu- 
lating only the terms k 5 ( R / 2 2 T )  in the series ( 17) by 
replacing the function Y, ( 2 2  T / R )  with its asymptotic val- 
ue valid in the case of small arguments: 

rn 

If R N +  ,,, satisfying ~, , / l l , ,  , = N + 1/2 ( N  is an 
integer), we have s i n ( 2 ~ ~ ,  k /ON + ) =0, and 
C O S ( ~ I T E ~ ~  /ON + ,,, ) = ( - 1) ! We then obtain 

Therefore, at the point R, + ,,, where all the terms of the 
sum ( 17) have the same sign and the cosine reaches its maxi- 
mum value, we have 

We can also calculate the thermoelectric power at a dif- 
ferent singular point R = a,+ ,,, . Now the expression in 
square brackets in Eq. ( 17) assumes the value _+ 1 and the 
sum can be calculated using just the first terms [and not the 
upper limit as was done for u ( R , + ~ , ~ ) ] ;  
u(R,+ ) = 0.22. Therefore, we have 

A similar 
ON- I/', 

PC 0,- I,', 

analysis of the sum in Eq. (17) at the points 
and the sign of the latter function 
) (E,/T) ' I2,  varies rapidly with R. There- 

fore, the dependence of the oscillations of the thermoelectric 
power on the cylotron resonance frequency (i.e., on the mag- 
netic field) has the form shown in Fig. 2. Figure 3 gives the 
results of a computer calculation of the values of P,(R) 
valid in the range of moderate and strong fields. We can see 
that in weak fields there are indeed sinusoidal oscillations 
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1 1 1 1 l l 1 1 1 I  
FIG. 2. Schematic dependence of the relative value of the thermoelectric 0 4  % 0 && 
power DH/&,R on the cyclotron frequency f i  = e H / m l c ,  The points 52 
N + a identify the values of 0 ,  + . at which we have = * + a ( N  is FIG. 3. Results of a numerical calculation of the dependence D ,, on the an integer). 10 - ( E ~ / T )  Ii2exp( - 2 ~ 2  ~ / f l ) ;  1") - ( E O / ~  Ii2(fi/T); external magnetic field (in the case when E,dT= 500). We can see 2 )  - ( ~ ~ ) / f l )  ' I 2 .  that the strongly nonharmonic oscillations in the range 2?iT/fl C 1 

change rapidly to ordinary quasiharmonic oscillations inweaker fields. 

with a gradually increasing amplitude, whereas in strong 
fields the curve becomes clearly asymmetric about the R - ' 2nzkT 
axis, there are large peaks in the range f l>  0 corresponding X V l ( T ) + 2 T ( ~ ) ' h e x P ( -  

to the points E,/ (  N + 1/4), separated by I/&, exactly, 
2n2kT 2nieo 

whereas at the points ( N  + 1/4)/R the value in question is 
X ~ ~ ( ~ ) ] e x P ( ~ k ) ~  (24) 

8< 0 and the dependence exhibits inflections which become 
larger as the magnetic field is increased. where the function 

5. OSCILLATIONS OF THE SINGULAR PART OF THE 
THERMOELECTRIC POWER NEAR AN ELECTRONIC 
TOPOLOGICALTRANSITION IN A MAGNETIC FIELD 

We now turn to calculating the singular part of the ther- 
moelectric power fl, (A, T,S), allowing for the influence of 
the applied magnetic field on the singularity of the thermo- 
electric power near an electronic topological transition. This 
quantity is determined formally by the contribution T,  to the 
general expression given by Eq. ( 13). Ignoring small terms 
in the integrand of Eq. ( 15) ,  which contains powers 
(a/&,) ' I 2  and higher, and transforming the Fresnel inte- 
grals into an incomplete Euler gamma function, we find 

(23) 
We now investigate the general expressions in different 

regions in the vicinity of an electronic topological transition. 
A. A 4 - T(two-sheet hyperboloid). In this range of val- 

ues of A, after expanding of the y function in terms of the 
parameter xT/lAl (when x 5 1 are important), we can 
transform the integral in Eq. (23) to the simpler expression 

t2 cos (2xt/n) 
d t  

0 

is in turn found to be the total derivative of \V, ( x ) .  
In moderately strong fields ( R  S 1 A 1 ) the incomplete 

gamma function remaining in Eq. (24) can also be replaced 
by the asymptotic form at large values of the argument: 

where it is found that the main part of the contribution of the 
first term in square brackets of Eq. (24) is exactly equal in 
magnitude and opposite in sign to the contribution 
pH (R,T) found in the preceding section. Therefore, in the 
rangeR5IAI (IAl>T) wehave 

In weak fields, i.e., for fl < 2 2  T< 1 A 1, in view of the expo- 
nential nature of the terms in this series, we can sum it retain- 
ing only just the first term: 
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In strong fields for 2 d T ( R <  [A\ the terms of this series rise 
again to k,-R/2dT and then begin to fall exponentially 
(with increasing k) .  Terminating the summation at -k,, 
we find 

This sum can be calculated explicitly for k, > 1: 

ko2 cos [ a (k0+'/,) 1 
E ( - l ) '  k2cos(ok)=(-1)~- 

2 cos(a/2) 
. (30) 

k= I 

The remarkable properties of the above sum are strong oscil- 
lations of its sign depending on the value of k, within a band 
of width - k and the presence of strong ( - k ) positive 
peaks at certain values of a which gives 
R N +  ,,, =Sd27~m,  ( N +  1/21. 

Therefore, the quantity 0, + 0, found for 
T( R < 1 A 1 (but R # RN + ,,, ) oscillates rapidly [no longer 
harmonically, but in accordance with a more complicated 
law, because the sum of Eq. (29) contains many harmonics] 
within a band 

However, near singularities R N +  ,,, this dependence has 
sharp peaks of amplitude which increases linearly with R: 

Finally we consider the range of strong fields R > 1A1. 
As in the preceding case, the exponential fall of the terms of 
the series begins from k, - R / 2 d  T% 1 , but for 1 5 k 5 R/ I A I 

c. -. . --- 
5L 

FIG. 4. Results of a numerical calculation of the total magnetothermoe- 
lectric powerp,, + p,,  as a function of the external magnetic field [in the 
case when (E,, + A ) / T =  500, A <  - T ) . ]  

(although R/IAI ( R / 2 d  T), we cannot use the asymptotic 
form (26) for the gamma function. An analysis of Eq. (24) 
shows that the corrections to the first terms are of order 
(T/IAI)'''and the quantityfl,, ( R )  + fl, ( R )  is still given 
by Eqs. (31) and (32) in this range of fields. 

It therefore follows that for A< - T (two-sheet hyper- 
boloid) the amplitude of the magnetic-field-dependent con- 
tribution BH + f l , ,  is considerably smaller [by a factor 
(T/IA / ) ' I 2  ] than the amplitude of the normal magnetoelec- 
tric effect f l H ( R ) .  The corresponding dependence of 
flHS ( R )  + fl ( R )  is shown in Fig. 4. In strong magnetic 
fields this dependence is far from harmonic. In accordance 
with analytic results, there are strong positive peaks at 
points 2 d T / R N  + ,,, , but the magnitude of this effect in the 
range A 4 - T is less than that of the oscillations of fl, in 
terms of the parameter ( T/IA1) ' I 2 .  

B. A > 0 (one-sheet hyperboloid). Going back to the in- 
tegral representation of the gamma function in Eq. (23), 
altering the order of integration, and bearing in mind that 

we obtain 

with a ,  = nR/2T. 
The sums occurring in Eq. ( 35) can be calculated exact- 

ly. For example, we find that 

1 ch (ax) 1 

- - a s h ( z a )  2az) 
sh lax) , I z l < n .  

We can use an expression of the form (36) if we express the 
arguments of the trigonometric function in Eq. (35) in the 
form kx, where 1x1 <T. This can be done by representing 
S d 2 ~ m ,  R in the form S,,/27~m, R = ZV + r, where N is an 
integer and 
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represents the fractional part; then, D, ( A,R,T) assumes the 
following form in the range under investigation (A > 0): 

2n2 ' A  1 
- - sh-' an [ exp (2anr) [n - + - + 

a, T 2 shun 

where fins is still given by Eq ( 34). 
Far from a transition (where A) T), the sum of Eq. 

(34) can be limited to just the first term because of the expo- 
nential dependence of the terms on nA/T: 

exp (BrIT) 

In weak fields characterized by R g  T, this expression sim- 
plifies to 

In the opposite case when R > T but A) R, we find that 

For the sake of completeness we also give the expression 
for BHS very strong magnetic fields (A ) T, R )  A), which 
are not attainable experimentally: 

AIT, Ir-'I2 1 BTIQ, Q+BN+ll, 
'I2 (QIT)', 1 ~ - - ' l ~  1 <T/Q, Q=QN+nh (41 

Figure 5 shows the dependence offi, on the magnetic 
field in the range defined by A > T and A > R. It should be 
noted that fins now becomes exponentially small compared 
with fi, and the latter determines the magnetoelectric effect 
in the investigated range. Then, the MTEP behaves like the 
MTEP of an isotropic metal. 

Figure 6 gives the results of a numerical calculationfiHs 
for the intermediate range Q - T- A. We can see how an 
increase in R alters the oscillation profile from sawtooth to 
dip-like. 

C. A 4  T (direct vicinity of an electronic topological 
transition). The thermoelectric power now exhibits a giant 
anomaly in the absence of a magnetic field, which depends 
weakly on A (Refs. 9-1 1 ). Therefore, for the sake of simpli- 

FIG. 5. Graph of the function /3,(2GT/Q) plotted for co/T = 500 and 
A, T. The results of numerical calculations are in good agreement with 
analytic expressions given by Eqs. (38) and (39). 

city we shall be interested in the dependence fins (R,A = 0). 
Substituting A = 0 into Eqs. (34) and (37), we obtain 

(L+ sexpa.  
2 shun 

) + exp (-2anr) 2a,, ( r + f ) ] } . 

As before, we have r = {~JZn-rn, R} - 1/2 and Eq. (23) is 
transformed to Eq. (42) using the properties of the sums in 
Eq. (36). 

In weak fields ( R <  T )  the sum in the expression (42) 
generally contains only terms with n - T/R % 1. However, 
the sum obtained in the limit R -0 is dominated by the terms 
with n ( T/fl and it is found that this term exactly cancels 
the first term independent of R which occurs in the braces. 
The coefficient in front of the linear term of the expansion in 
powers of /3, can be determined in exactly the same way 
and the higher contributions found in this range are small 
[ - (R/Tl3I2 1. We therefore have 

In the opposite case when T, for any value n = 1,2,3, ... , 
we can write down 

An analysis of the sum in Eq. (42) obtained after the simpli- 
fication shows that fiHs(R) is strongly dependent on the 
value of the parameter r(fl) .  If Jr(R) - 1/21 R T/Q 
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( R #  a, + ,,, ), the sum in Eq. (42) converges rapidly and 
we have 

Therefore, if S1 differs from the resonant values of the mag- 
netic field (a, + ,,, ), which we have already identified, the 
contribution pHs remains practically constant and of the 
order of 0, (A = 0). Therefore, very close to the values of 
R,, ,,, (where Ir(fl) - 1/21 5 T / n )  the terms of the se- 
ries (42) no longer fall exponentially, but the series can be 
summed and pHs is described by 

i.e., against the background of the constant value ofP,,if 
a# fl, + ,,, then at the points fl = a,+ ,,, there are deep 
and extremely narrow (An - R T h o  ) dips. The general na- 
ture of the dependence PHs (R,A = 0 )  is demonstrated in 
Fig. 7. 

FIG. 6. Graph of the function PI,( 1/S1) in the inter- 
mediate range A > 0 (E , , /T  = 500, A/T = 4 ) .  For 
clarity, the oscillatory peaks are shown on different 
scales for different values of A. 

Following exactly the same procedure, and expanding 
Eq. (23) in terms of small values of the ratio A/T, we can 
find the A-dependent correction to the nonlinear depen- 
dence flHs (R,A = O), but it is of no special interest. 

It is important to stress that the position of the absolute 
maximum i f  flHs (A) is completely independent of the ap- 
plied magnetic field, which can be demonstrated directly by 
differentiatingfl, of Eq. (23) with respect to A. The equa- 
tion for an extremal point - 
I "" 1 -- -0 .,,, ( x - A S / 2 T )  '" ch2 x 

obtained in this case is then independent of the magnetic 
field and it is identical with the corresponding equation 
found in Ref. 9: A* = - 1.28T. 

6. DISCUSSION OF RESULTS 

We analyze these results by considering first the behav- 
ior of a longitudinal thermoelectric power of a normal metal 
(in the absence of an electronic topological transition) in a 
magnetic field. We can see from these expressions that, in 
accordance with the general ideas from the theory of galva- 
nomagnetic phenomena, the longitudinal component of the 

FIG. 7. Schematic dependence B,,(2r?T/R, A  = 0 )  near an elec- 
tronic topological transition. Here, 
B =  ( 9 / 4 ~ ' / ~ ) ( 2 " '  - 1).2-11'{(3/2) andx, = 2r?T / f l , ,  ,,'. The 
envelopes 1 and 2  correspond to rf: '/,a'"(2"' - 1 )I<( 1/2) I /  x. 

I 
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thermoelectric power of a normal metal considered as a 
function of the applied magnetic field exhibits oscillations of 
the Shubnikov-de Haas type. The origin of these oscillations 
is obvious: the magnetic field is increased, the Landau levels 
cross the Fermi level and this results in a periodic change in 
the density of states and a consequent change in the relaxa- 
tion time. It is important to note that, beginning with fields 

the amplitude of these oscillations exceeds the background 
value 8, ( - T / E ~ )  for a normal metal in the absence of a 
magnetic field and in this sense the oscillatory contribution 
can be regarded as giant [by a factor (E,/ T )  'I2]. 

It should be pointed out that the problem of oscillations 
of the transverse component of the thermoelectric power in a 
magnetic field was considered a long time ago (in the six- 
ties).2G22 However, the amplitude of the oscillations found 
in these early studies, like the oscillations of the conductiv- 
ity, does not exceed the background value. 

This is because the thermodynamic approach used in 
these early studies ignored the energy dependence of the 
electron relaxation time this dependence is responsible-in 
accordance with Eq. (15)-for the anomalously large am- 
plitude of oscillations of the longitudinal thermoelectric 
power we have found. 

Since the function w coshp2(w/2 T) which occurs in 
the expression forpis odd, any noneven (in w) contribution 
to ~ ( w )  gives rise to a correction to the thermoelectric pow- 
er. In view of the smallness of the background value, such 
contributions are usually considerable. An anomalously 
large thermoelectric power is found in measurements on 
Kondo alloys, near electronic topological transitions, and in 
other cases. We can see from the above analysis that a mag- 
netic field has a similar effect on the thermoelectric power, 
because it bends the electron trajectories and gives rise to an 
energy dependence of the relaxation time of these electrons. 

We now analyze oscillations of the longitudinal MTEP 
of a metal near an electronic topological transition. Far from 
the transition on the one-sheet hyperboloid side ( A  ) T) the 
associated corrections p, are exponentially small and the 
whole field-dependent part offl is governed by p H  (Figs. 2 
and 3), as discussed above. Nevertheless, we must point out 
that the nature of the small-amplitude oscillations ofpHs is 
now very different from the oscillations offl,: in weak fields 
(R <2? T) these oscillations are sawtooth-shaped [see Eq. 
(39) ] whereas in stronger fields (R 2 2 2  T )  the dependence 
of DHS is in the form of narrow and deep dips in fields in 
which the next Landau level crosses the Fermi level. This 
characteristic behavior of pHs ( R )  is also retained near the 
transition ( A <  T), but the amplitude of such oscillations 
becomes of the same order of magnitude as those ofp,  ( a )  
and the field-dependent part of the thermoelectric power 
pH (R ) + PHs (0) is a sum of oscillations of these two types. 
It is interesting to note that in the range A< - T the contri- 
bution ofpHs largely cancels the value of pH.This is due to 
our artificial division of the magnetic-field-dependent part 
of the relaxation time in Eq. ( 13) into two parts (T, and T, ) . 
Consequently, in the case of a two-sheet hyperboloid the 
magnetic-field dependent part of the thermoelectric power 
pH + PHs also oscillates [see Eq. (27) 1. However, the am- 

plitude of these oscillations expressed in terms of the param- 
eter ( T/lAl) 'I2 is less than on the other side of the transition 
( A )  T ) .  Nevertheless, in terms of the parameter 
( E ~ / I A ~  ) ' I 2  these oscillations exceed the background value 
Do and are of the same order of magnitude as the anomaly 
flHS which appears as we approach an electronic topological 
transition. 

The oscillations found by the above analysis can, under 
certain conditions, be observed experimentally. This is easily 
done for a normal metal in the absence of an electronic topo- 
logical transition. The conditions for experimental observa- 
tion are that the magnetic field in the sample be uniform, 
AH/HN ~H,/E, ,  the temperature gradient be small, and 
the electron mean free path be long ( T T ~  1 ) . 

In the experiments described in Ref. 13 these require- 
ments were satisfied (with the possible exception of the 
last), so that no oscillations were observed. However, the 
above results indicate that some features of the dependence 
offion the proximity to the transition point and on the mag- 
netic field nevertheless can be explained qualitatively by 
such oscillations. 

Firstly, the position of the thermoelectric power peak is 
independent of the applied longitudinal magnetic field, 
which is in good agreement with the experimental results. 
Secondly, one wing of the dependence is affected strongly by 
the applied magnetic field. The profile of the other wing is 
almost unaffected by an increase in the field. If we average 
the dependences (24) and (34) over the magnetic field, we 
find that in sufficiently strongly magnetic fields the asymme- 
try of these functions has the effect that the thermoelectric 
power behaves like the envelopes of the peaks, i.e., to the left 
of the transition the dependence p(R,A< - T) should be 
much weaker [by a factor (T/IAl) 'I2],  than on the right 
( A S T ) .  

Finally, when the magnetic field is increased, the value 
of the thermoelectric power at such a peak increases and this 
is again in qualitative agreement with the experimental re- 
sults. 

We now consider the limiting case of weak fields. We 
can see from the above results that the oscillatory correc- 
tions then fall exponentially in magnitude. We must remem- 
ber that we postulated that electrons are rarely scattered by 
impurities (RT) 1 ) and, we assumed that r,  <l = U ~ T .  For 
H 5 mc/er, this condition is no longer obeyed and our theory 
is invalid in such very weak fields. 

We shall conclude by analyzing the influence of spin 
splitting on the characteristics of the behavior of the MTEP 
near an electronic topological transition in the case when the 
spin mass differs considerably from the cyclotron mass (m, 
#m, ). We shall allow for this influence by modifying the 
expression for the relaxation time ( 13 ), so as to replace A 
with A ( t 1 ) = A ~ ' / , R ( m , / r n s - I ) ,  which describes 
electrons with the spin projections 1/2. Moreover, we can 
show that in the system of equations ( 13) the expressions 
describing r,(w,R) and r,(w,A,R) now have not the factor 
( - 1 ) but exp( in-km, /ms ), which in the calculation of the 
thermoelectric power of a normal metal pH of Eq. ( 15) 
transforms to cos(akm,/m, ), in agreement with the theo- 
retical treatments given in Refs. 16 and 18. The situation is 
more complex in the case of the contribution PHs which is 
due to the effect of the applied magnetic field and due to the 
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proximity of the system to an electronic topological transi- 
tion. If the effects associated with the thermal spreading of 
the Fermi surface predominate over the spin splitting effects 
[ T )  n ( m ,  /ms - 1) ] or if the system is far from a transi- 
tion point [A)n(m,/m, - 1) 1, then (as in the case of 
pH ) the summation over the spin projections in the relation- 
ship (23) gives rise to a factor cos(~krn,/m, ). In the oppo- 
site case the currents of electrons must be calculated sepa- 
rately fors = * 1/2 and then added. This alters not only the 
profile of the oscillation peaks, but also shifts the electronic 
topological transition point by an amount fl(m,/m, - 1 ) . 

The authors are deeply grateful to A. A. Abrikosov, A. 
G. Aronov, V. S. Egorov, and M. I. Kaganov for discussing 
these results and valuable comments. 

"The above value differs by a factor of 2 from that given in Refs. 9-11. 
This is due to the fact that the background value is selected on the side of 
the open Fermi surface ( A ,  T) and not a closed one, as was done in 
Refs. 9-1 1. It should also be mentioned that the quantity E,, is a param- 
eter of our model and therefore we cannot literally compare the experi- 
mental results with the expressions in Eq. ( 16). Nevertheless, the factor 
(E,,/T)"' provides a correct indication of the order of magnitude by 
which the thermoelectric power increases [the factor is (E,/T)"',] in 
the vicinity of a transition. This applies also to other quantities (for 
example, T , , )  described by expressions that contain the parameter E,,. 
We are grateful to M. I. Kaganov for drawing our attention to this point. 
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