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A theory of cyclotron-phonon resonance is developed for the case when the difference between 
the Landau levels is equal to the energy of two-phonon combinations (2L0, LO + TO, 2TO). An 
allowance is made for nonequidistant Landau bands. A comparison of the value of the splitting 
energy under pinning conditions with the experimental values is used to estimate the constants of 
the nonlinear electron-phonon polarization interaction. 

Many experimental investigations of the magnetoab- 
sorption in semiconductors have revealed pinning (with a 
characteristic discontinuity of the curve representing the de- 
pendence of the maximum absorption coefficient on the 
magnetic field) in the case of a cyclotron-phonon resonance 
(CPR) which can be explained by means of ~ n e - p h o n o n ~ * ~  
and two-ph~non'.~ interaction Hamiltonians allowing for 
various branches of the crystal lattice vibrations. The experi- 
mental investigations reported in Refs. 3-8 have shown that 
pinning can be due to the interaction of electrons with the 
following combinations of optical phonons: 2LO(m), 
2TO(m), LO(m) + TO(m), where m = X, L, and r are 
the high-symmetry points in the Brillouin zone.9 The inter- 
action of the electron subsystem with these phonon combi- 
nations should give rise to the observed effects not only in the 
CPR case, but, for example, in the case of a magnetophonon 
resonance, under Raman scattering conditions, etc. 

In this connection it would be useful to estimate the 
constants governing the electron-phonon interaction in a 
two-phonon Hamiltonian. We shall therefore develop a the- 
ory of the CPR lineshape in the case of a nonlinear electron- 
phonon polarization interaction, allowing for a non- 
equidistant distribution of the Landau bands. 

The two-phonon processes are manifested most clearly 
under pinning conditions when the frequencies of the longi- 
tudinal w,,,,, and transverse w,,,, phonons and the sep- 
aration IR between the nth and ground Landau levels satisfy 

where n, p, and q are arbitrary integers; w,,,,, is the fre- 
quency of a longitudinal phonon; w,, ,, is the frequency of 
a transverse phonon; R, = (E, - ~ , ) / f i  [E, is given by Eq. 
(2)  1. Under these conditions the upper electron level, to 
which an electron is transferred as a result of the CPR ab- 
sorption, is very unstable because the probability of its decay 
is high.10." Ifp and q assume the values 0, 1, and 2, so that we 
havep + q = 2 (which corresponds to the experimental situ- 
ation discussed in Ref. 4), then the nth level has the same 
energy as the n = 0 level plus the energy of two phonons if 
the condition ( 1 ) is satisfied. An allowance for the interac- 
tion between these levels lifts the degeneracy and splits the 
CPR absorption line into its components. ",11 

We consider an n-type semiconductor having cubic 
symmetry with a nonparabolic dispersion law subjected to a 
quantizing magnetic field at temperatures such that elec- 
trons fill only the n = 0 Landau band and optical phonons 
are not excited. The transition of an electron to higher Lan- 

dau levels on absorption of an electromagnetic wave is due to 
a linear optical polarization interaction. l2  

The electron energy levels in a magnetic field, consid- 
ered without requiring the Landau bands to be equidistant or 
the conduction band to be parabolic, can be written in the 
form (see Ref. 1 3 ) 

1 
En* = - - 4fi(&) 

&. +%{I + -[hn,.+,, 
2 2 E8 

Here E~ is the width of the band gap, m* is the effective mass 
of an electron, m is the mass of a free electron, A is the spin- 
orbit splitting; p is the Bohr magneton, fl is the cylotron 
frequency, and His  the magnetic field intensity. The systems 
of equations (2)  is derived on the assumption that the states 
with low values of k, play the dominant role in the CPR 
process when the condition ( 1 ) is satisfied. 

A nonlinear polarization interaction Hamiltonian can 
be defined as in Ref. 14: 

where a combination of 2LO(m) phonons corresponds to 

whereas for a combination of LO(m ) + TO(m) phonons we 
have 

Cj,, (q, g ' )  =iDfi [~Lo(rn,~~o~rn)I 'rjj, (9, qr) 
~{6~~(6j,2+6jpj) +6j,i (6j2+6js) ), 

and in the case of a combination of 2TO(m) phonons, we 
find that 
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where q and q' are the wave vectors of optical polarization 
phonons, a and a are the quantum numbers of electrons in a 
magnetic field, b,. and a, are the phonon and electron sec- 
ond-quantization operators, respectively, V is the normali- 
zation volume, J,,. (q  + q') is a matrix element of the 
exp{i(q + q', r ) )  operator calculated using the wave func- 
tions of electrons in a magnetic field,I5,l6 j and j' are the 
numbers of the vibration branches (j = 1 refer to LO phon- 
ons, whereas j = 2, 3 refer to TO phonons), A,  D, and Care  
constants which need to be determined, and c.p. stands for 
cyclic permutation. 

The phonon polarization vectors are of the form 

The absorption coefficient can be calculated using the 
Kubo formula for the complex electrical conductivity I' and 
the diagram technique of Konstantinov and Perel''' when 
the density matrix f a,. is found from the quantum kinetic 
equation 

where S = - w $- 6, 6-0; w,., = w,. - W ,  (w is the fre- 
quency of the absorbed radiation), Fh,, and Wg'"' are the 
angular and horizontal irreducible parts of Eq. (5) .  

i t  is shown in Ref. 10 that the angular parts of Eq. (5)  
are important; an allowance for this circumstance and a de- 
tailed analysis of the perturbation theory series for complex 
electrical conductivity demonstrates that the infinite series 
of graphs shown in Fig. 1 is an essential part of the problem. 
The CPR line profile is determined by the function Wwhich, 
as a result of summation of an infinite series in Fig. 1, results 
in renormalization of the electron line under the external 
phonon line. "' In this case W has the form shown in Fig. 2: 

If we carry out the necessary integration with respect to 
the phonon momenta and retain in Eq. (6)  only the reso- 
nance terms, which corresponds to n,, = 0 in W, we find 
that for a combination of 2LO(T) phonons, we have 

whereas for a combination ofLO( T )  + TO( T )  phonons, we 
obtain 

and for a combination of 2TO(T) phonons, we find that 

where E = ( W  - R,)/fl is the dimensionless energy of an 
electron measured from the N =  3 Landau level, 
R, = ( E ~  - ~ ~ ) / f i  is the separation between the n = 3 and 
n = 0 Landau levels, n is a lattice constant, and R is the 
magnetic length; 

Bo= [1+2hQ/~J '". 

We can show" that for each of the three phonon combi- 
nations 2LO(T), L O ( r )  + TO(T), and 2TO(T) the spec- 
trum of the electron-phonon system consists of two 
branches (an electron level with the quantum Landau num- 
ber n = 3 and a level with n = 0 plus two optical phonons 
from the corresponding phonon combination participating 
in the pinning process). 

The electrical conductivity is now described by 

FIG. 2 
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where& is a matrix element of the current density. If we 
use Figs. 1 and 2, we find that the electrical conductivity 
becomes 

where N, is the electron distribution function and C, is the 
electron-phonon interaction constant of the Frohlich Ham- 
iltonian. l 2  

The absorption coefficient of external radiation K(w), 
related to the diagonal part of the electrical conductivity 
given by Eq. (8) by the expression 

(no is the refractive index and c is the velocity of light) is 
obtained from Eq. (8)  by integrating the resonant denomi- 
nator with respect to q, and k, . At low temperatures we can 
replace N,  by a step and the absorption coefficient is then 
given by 

where b = E + iBBo/~'12, xO = 2"*.lr2~ 'Nis the dimension- 
less Fermi momentum, N is the density of electrons in the 
n = 0 Landau band, R ,  = (E, - ~,,)/fi, R, = (E, - ~,,)/fi, 
and 

Intherangewhere~<Oandb<O,but  JbJ<xi/B:,wefind 
that K ( o )  = 0 in Eq. (9 ) .  

Beginning from the frequencies satisfying the condition 
1 b I <x;/B ;, the photon energy becomes sufficient to trans- 
fer an electron from the n = 0 Landau level to the n = 3 
Landau band and to create a phonon. In the range E* < E < 0, 
where E* is the real root of the equation b + xi /B i ,  we find 
that Eq. (10) is valid and it has a maximum at 
E = - (BB,,)~'~. In this case, we obtain 

For E > 0 and xO/B '13B < 1, then Eq. (1 1 ) with a maxi- 
mum at E = 2 ( ~ B ( , ) ~ / ~ a ~ ~ l i e s ;  however, for xO/ 
B '/'B(:/' > I ,  then Eq. ( 12) is valid and it has a maximum at 
E = o.s(BB,)~/'. 

We now estimate the constants A,  D, and C governing 

the strength of the two-phonon interaction, we do this by a 
comparison with the experimental data reported in Refs. 3, 
4,7, and 8 for n-type InSb. Pinning has been observed for the 
2LO(T) combination of phonons when the condition n = 3, 
p = 2, and q = 0 is satisfied in Eq. (1) .  In the case of a 
LO(T)  + TO(T)phonon combination there is no pinning 
and this is characterized by n = 3, p = 1, and q = 1 in Eq. 
( 1 ); pinning does appear in the case of 2 TO( T) phonons for 
n = 3,p = 0, and q = 2. The total splitting energy in pinning 
is fid,,, = 0.2-0.8 meV in all cases. Measurements reported 
in these papers were carried out on samples with an electron 
density N = 1.6X 1016 cm-" which corresponds to the case 
whenx,,/(B '/'B,:") > 1. It then follows from Eqs. ( 10) and 
( 12) that the theoretical splitting under pinning conditions 
is 

In the case of a combination of 2 L O ( r )  phonons we can 
determine the splitting energy if fiR in Eq. ( 13) is found 
from R, = 2wL0,,, . It follows from this equation that pin- 
ning should be observed in magnetic fields of intensity 
H = 23.8 kOe. The experiments give H = 24 kOe. A com- 
parison of the experimental and theoretical values of the 
splitting gives the constant A = (2.4 f 0.8) x 10-l4 cm2. In 
the case of the LO(T)  + TO(T)phonon combination the 
solution of the equation fl, = w, ,,,, + w ,,,, gives 
H = 23 kOe for the magnetic field. Pinning is observed in 
experiments in a field H = 23.5 kOe. In this case the con- 
stant is D =  (2.6 f 0.9) x 10-l4 cm'. For the 2TO(T) 
phonon combination the magnetic resonance field deduced 
from the equation f1, = 20,,,, is H = 22 kOe. The experi- 
mental value is H = 22.2 kOe. The constant C deduced from 
the experimental splitting under pinning conditions is then 
( 1.6 + 0.6) x 10-l4 cm2. 

Note that 

which corresponds to the selection f , ( E )  = 1 f ,(E) = 0 in 
Eq. (2) .  The correctness of this selection is supported by the 
very good agreement between the theoretical and experi- 
mental values of the magnetic resonance fields. We deter- 
mined the constants assuming the following phonon ener- 
gies: h,,,,, = 24.4 meV and h,,,,, = 22.8 meV (Refs. 
19 and 20). 

We shall conclude by noting that the two-phonon inter- 
action gives rise to effects comparable in magnitude with the 
effects due to the one-phonon interaction.*'." 

It would be interesting to find the interaction constants 
for the two-phonon Hamiltonian theoretically since the ex- 
perimental values are already known. However, this com- 
plex task is outside the scope of the present work. 
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