
W-bosons and the structure of the interface between the A and Bphases 
of superfluid 3He at low pressures 

G. E. Volovik 

L. D. Landau Institute for Theoretical Physics of tha USSR Academy of Sciences 
(Submitted 22 November 1989) 
Zh. Eksp. Teor. Fiz. 97,1198-1207 (April 1990) 

An analog of the electroweak interaction in superfluid "e, leading to a small W-boson mass and 
the phenomenon of vanishing charge (Landau ghost, in Western terminology), has a substantial 
influence on the structure of the boundary between the A and B phases at low temperatures and 
pressures. Under these conditions the strong-coupling corrections are small and there occurs an 
additional degeneracy of the order parameter in 3He-A. One of the components of the order 
parameter in 3He-B, which plays the role of the W-boson in 'He-A, penetrates deeply into the A- 
phase owing to its small mass, thus enlarging the thickness of the domain wall between theA and 
B phases. Symmetry breaking in the core of the domain wall, which should occur at low pressures, 
is also considered. 

1. INTRODUCTION 

The separation boundaries between 'He-A, and 'He-B 
(the A-B interface) has been vigorously investigated both 
theoretically and experimentally. The earliest theoretical 
papers on the determination of the structure of the order 
parameter within the interface are due to Osherof and 
Cross,'.' and also to Kaul and Kleinert.' The interface was 
considered at high pressures, when the A phase exists in the 
absence of a magnetic field, and near T,. , where Ginzburg- 
Landau theory is applicable. An exact solution of the Ginz- 
burg-Landau equations was afterwards obtained by Scho- 
pohl' and Salomaa.' Experiments to measure the speed of 
propagation of the A-B-interface into the bulk of the super- 
cooled A-phase were carried out in Refs. 6 and 7. This made 
it possible to estimate the friction force acting on the moving 
wall from the side of the normal component of the fluid. 

The dynamics of the interface, in which a fundamental 
role is played by the Andreev reflection of quasiparticles on 
the boundary, was discussed in Refs. 8-12 at intermediate 
temperatures, outside the domain of applicability of the 
Ginzburg-Landau theory, as well as at temperatures which 
are not too close to zero. In  this region the friction force does 
not depend on the structure of the order parameter within 
the interface wall, since it is determined by the values of the 
order parameters on both sides of the interface. For lower 
temperatures new dissipation mechanisms associated with 
the wall motion may become more important, including the 
creation of quasiparticles and solitons, such as the interpha- 
sons considered by Salomaa."hese processes are already 
determined by the internal structure of the rigid core of the 
interface, and therefore it is necessary to investigate this 
structure at low temperatures, in fact for T = 0. 

Here we do not calculate the structure of the core of the 
A-B-interface, but discuss some new features of its structure 
for low temperatures, features which should manifest them- 
selves at low pressures, when the weak coupling approxima- 
tion becomes applicable. It will be shown that in this range of 
temperatures and pressures the size of the rigid core of the 
domain wall increases for two reasons having an exact ana- 
logue in elementary particle physics. One of them is the exis- 
tence of collective boson fields in 3He-A, corresponding to 
the W-boson field in the theory of the electroweak interac- 

t i o n ~ . " . ' ~  These modes are almost Goldstone modes; their 
mass vanishes in the weak coupling approximation, owing to 
a hidden symmetry in the BCS model, leading to a degener- 
acy between the A-phase and the planar phase. 

The strong-coupling corrections lift the degeneracy and 
the mass of the W-boson becomes nonzero. This mechanism 
for mass generation for the W-boson is thus different from 
the known Higgs mechanism in the electroweak theory (see, 
e.g., Huang's book, Ref. 15). The strong-coupling correc- 
tions are experimentally small at low pressures. As a result of 
this one of the components of the order parameter which 
exists in the B-phase and corresponds to the Wboson field in 
the A phase, penetrates deeply into the bulk of the A-phase, 
thus increasing the size of the domain wall between the B- 
and A-phases. 

Another mechanism leading to an increase in the size of 
the domain wall is the vanishing-charge (Landau ghost) 
phenomenon, well known in quantum electrodynamics 
(Refs. 15,16). This phenomenon consists in logarithmic 
shielding of the electric charge by the electron-positron 
vacuum owing to the dielectric vacuum polarization. Be- 
cause of this effect the W-component of the order parameter 
in 'He-A decays more slowly than the usual exponential law. 
The influence of an effect analogous to the vanishing of the 
charge on the structure of another soliton-like object in 'He- 
A-the nonsingular quantum vortex-was discussed in Ref. 
4 - 
I I .  

The A-phase exists for low pressures and temperatures 
only in a sufficiently strong magnetic field. Therefore we will 
consider from the outset domain walls in the presence of 
such a field. In Sec. 3 we consider maximally symmetric A- 
B-interfaces, and in Sec. 4 we discuss the symmetry-breaking 
which must occur at low pressures. 

2. THE ASYMPTOTIC BEHAVIOR OF W-BOSON COLLECTIVE 
MODES IN THE A-PHASE 

The bosonic fields in superfluid 'He-A are the devia- 
tions 6A,, = A,,, -A j,:' of the order parameter, defined by 
a 3 X 3 matrix A,,, , from its equilibrium vacuum value 

where d is a unit vector along the axis of the magnetic anisot- 
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ropy; the mutually orthogonal unit vectors e ,  and e2 repre- 
sent the orbital part of the order parameter with the orbital 
anisotropy vector 1 = e,  X e,, and A, is the gap amplitude in 
the spectrum of Bogolyubov quasiparticles. We use Greek 
subscripts for the components of a vector in spin space, and 
latin subscripts for the components in orbital space. The de- 
viations corresponding to W bosons can be expressed in 
terms of a complex spin vector W = W ,  + IW, which is per- 
pendicular to d and thus contains four real components: 

The real components W ,  and W2 of the complex vector W 
form a vector with subscript i in the plane perpendicular to 1. 

The analogy with W-bosons stems form the fact that the 
fields W: interact with the Bogolyubov fermions near the 
zero of the gap in a manner similar to the interaction of the 
SU(2)  gauge field with the Weyl fermions, i.e., via a covar- 
iant derivative D, = d, - T-W, , where r a r e  the Pauli matri- 
ces. 

The Lagrangian for these four collective modes has two 
important components. One of them is the gradient term, 
which is nonanalytic in the gradients of the order parameter. 
The nonanalytic behavior follows from the massless charac- 
ter of the Bogolyubov fermions in the A-phase: there are gap 
zeroes in the fermion spectrum at k = , k,l ,  near which the 
Bogolyubov equation reduces to the Weyl equation for 
chiral fermions in the presence of an electromagnetic, weak, 
and gravitational fields. These chiral fermions play the role 
of massless left-handed electrons and right-handed posi- 
trons in quantum electrodynamics (QED).  In the same 
manner as in QED, the vacuum of the massless fermions 
exerts a logarithmic screening action both on the "electric" 
and the "weak" charges in 'He-A. This also differs from the 
vacuum polarization effects of the electroweak interaction, 
where in place of screening, there occurs antiscreening of the 
weak charge, i.e., asymptotic freedom (see Ref. 15). The 
gradient term, which is obtained as a result of integration 
over the fermion vacuum, near the gap zeroes, can be ex- 
pressed in terms of the field strength of the magnetic SU(2)  
field, which in the linear approximation has the form 

Since the Bogolyubov equations near a zero of the gap exhib- 
it a local gauge symmetry as well as general covariance, the 
result of integration over the fermions also has these symme- 
try properties and has the following covariant form 

wheregis the determinant of the metric tensor in 'He-A (see 
Ref. 14). In terms of the usual variables we obtain the fol- 
lowing expression for the nonanalytic gradient term: 

where kf and oF are the Fermi momentum and velocity. 
A second important contribution to the Lagrangian is 

the mass term. A Lagrangian which is invariant with respect 
to local SU(2)  gauge transformations is not allowed to con- 
tain a mass term, which would violate this symmetry. There- 
fore in the weak-coupling approximation the W-bosons in 

the A-phase are Goldstone bosons, i.e., the corresponding 
fields can penetrate into the A-phase. However, a mass term 
may arise if one takes into account the strong-coupling cor- 
rections in the BCS model, corrections which in principle do 
not have a gauge invariant form. We write this term in a form 
convenient for comparison with the gradient term: 

Here 6 = fiu,/A, is the coherence length and 17 is a dimen- 
sionless parameter which vanishes in the weak coupling ap- 
proximation, and is therefore small for low pressures, where 
the strong coupling corrections are experimentally small. In 
a literal expression this parameter is of the order A, / E ,  g 1 
(EF is the Fermi energy) ; therefore, although the W field is 
expelled from the bulk of the A-phase (an analog of the 
Meissner effect), the penetration depth of this field may be 
quite large compared to the coherence length. 

The gradient term in Eq. (5 )  contains the gradient 
along the vector 1, since the transverse gradients can be ne- 
glected in Eq. (4 )  on account of the strong anisotropy of the 
A-phase. The transverse gradients are, however, present 
among the noninvariant terms in the Lagrangian; these 
terms are obtained by integrating with respect to the fer- 
mions far from the zero gap, where the Bogolyubov equation 
already coincides with the Weyl equation. The logarithmic 
divergence is absent from these terms and they are analytic 
in the gradients. We write these terms in the following form 

where a and b are dimensionless parameters of the order of 
unity. In the weak-coupling approximation we have 

where m* is the mass of the excitation in the normal Fermi 
liquid and m, is the mass of the 'He atom. These expressions 
for a and b can be obtained from the expression for gradient 
energy of the vector field 1, since the hidden symmetry of the 
BCS model in the weak coupling approximation unifies the 
"photons"-the oscillations of the field 1 and the W-bosons 
into one multiplet (see Ref. 18). 

From Eqs. (5)-(7) one can find the asymptotic behav- 
ior of the W-mode in the A-phase. If the propagation direc- 
tion is perpendicular to 1 then the W-mode decays according 
to the usual exponential law, and depending on the polariza- 
tion of W, relative to the orbital vectors e,, and e,, , either as 

Since we have ~g 1, the penetration depth of this collective 
mode is large compared to the coherence length 6. If, how- 
ever, the mode propagates along the vector l, then on ac- 
count of the logarithmic divergence of the gradient energy 
the asymptotic behavior is changed 
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3. THE W-MODES IN MAXIMALLY SYMMETRIC A-B 
INTERFACES 

Since for low pressures the A-phase exists only in the 
presence of a magnetic field, one must investigate to what 
extent the magnetic field modifies the structure of the do- 
main wall. In a vanishing magnetic field an analysis based on 
symmetry of the structure of the domain wall was carried out 
in Ref. 5. According to that paper the combinations of sym- 
metry elements possible in a wall separating two phases with 
different symmetries of the vacuum state belong to the two 
groups D : I '  and D :,': 

Here C,, , C,, , and C,, denote rotations by an angle .rr 
around thex,y,z axes, respectively, with thex axis normal to 
the wall, and they and z axes arbitrarily oriented in the plane 
of the domain wall; T is the time reversal operation and P 
denotes space inversion; thus the operations C, ,  Pand  C,, P 
denote reflections in planes perpendicular to the wall. The 
action of the group elements P and T o n  the components of 
the order parameter are the following: 

Re &=Re A,,, T ~m Aa i=-~m A,~, (13) 

and the action of the rotations yields 

and similarly for the operations C,, and C,, . 
A nonzero magnetic field which is either parallel or per- 

pendicular to the boundary separating the phases does not 
violate these symmetry elements, if one neglects a small term 
in the energy which is linear in the magnetic field. Under 
these conditions the fundamental term is quadratic in the 
field: 

It does not violate the time-reversal symmetry and conse- 
quently conserves all the symmetries in Eqs. ( 10) and ( 11). 
Thus, in the presence of a longitudinal or transverse magnet- 
ic field the classification of the domain walls according to 
their symmetry does not differ from the classification in the 
absence of the field. 

According to this classification there are three different 
solutions having the maximally possible symmetry, i.e., ei- 
ther D : I '  o r D  We write down the asymptotic behavior of 
these solutions on both sides of the boundary in a field HJlf 
(here f ,9,f are the unit vectors along the coordinate axes). 
For the first solution the asymptotic behavior in the regions 
of the A-phase ( x  = - ) and the B-phase ( x  = + ) 
have the form 

Here it was taken into account that the gap in the B-phase is 

anisotropic in the presence of a magnetic field. The longitu- 
dinal gap Al l  is smaller than the transverse gap A, for H $0. 
The D :" symmetry of these asymptotic forms requires that 
in the maximally symmetric solution with a given asympto- 
tic behavior the following components of the order param- 
eter should be different from zero: 

The first three components are the order parameter of the B- 
phase to the left of the wall. The components ReA,, and 
I d , ,  represent the A-phase to the left of the wall. The com- 
ponent I d , ,  vanishes on both sides of the boundary and are 
slightly different from zero inside the wall only for symme- 
try reasons, since it obeys the symmetry D :I). The compo- 
nent corresponding to the W-boson in the region of the A 
phase is ReA,. It is one of the components of the B phase to 
the right of the wall and decays in the A phase. 

The second solution with the symmetry D i 2 '  has the 
asymptotic behavior 

and the nonvanishing components of the order parameter in 
the wall are 

A third solution has the same symmetry and the same com- 
ponents of the order parameters as the first, but differs from 
it in asymptotic behavior: 

3: Aai(x=-00) =A,i, (&,+ifi), 
(20) 

A,i(x=+m) =A1,2,Li+Al(Q,Qi+2,&i). 

Correspondingly, for a field aligned with the wall, say 
HI[?, we have 

with the same components and symmetry as the solution for 
the field Hllx. Further, 

with the components listed in Eq. ( 19). The qualitative be- 
havior of these components inside the wall is shown in Fig. 1. 
Finally, 

3: Aai(x=-m) =AA&, ( i i+i l i ) ,  

A,,(x=+w) =Allgagi+AI(2a2i+2a2i) 
(23) 

with the components listed in Eq. (17).  Each maximally 
symmetric Ansatz contains five components. Owing to the 
maximal symmetry there always exists a solution for the or- 
der parameter within the domain wall for the given Ansatz. 
However, not all the solutions are local minima of the ener- 
gy. Some of them correspond to saddle points of the energy 
functional. Thus, according to Refs. 4 and 5, in a vanishing 
field and in the Ginzburg-Landau temperature range, the 
solution 1 corresponds to minimal energy, such that 
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FIG. 1. The qualitative behavior of the four most important of the five 
components of the order parameter, corresponding to the maximally sym- 
metric structure of the interface between the A and B phases of superfluid 
'He in a magnetic field situated in the plane of the interface (the field is 
Hllf and the normal to the surface is along the unit vector 8 ) .  The A , ,  
component of the order parameter of the B phase to the right of the wall 
corresponds to the gauge field of a W boson with small mass, in the A 
phase to the right of the wall. This field penetrates deeply into the bulk of 
the A phase on account of its small mass, and decays asymptotically ac- 
cording to the law ( 9 ) ,  which is nonstandard on account of the vanishing 
charge phenomenon, which is valid both in QED and in 'He-A. 

E,  < E2 < E,. However, in the field Hllf this solution is obvi- 
ously a saddle point, since the direction of the vector d in the 
bulk of the A phase, d(lH, contradicts the requirement de- 
rived from Eq. (15) that at  equilibrium the vector d should 
be perpendicular to the field ( the coefficient satisfies g2 > 0).  
This means that the solution 1 with the vector 1 lying in the 
plane of the wall becomes unstable either with respect to 
breaking of the symmetry, or, according to Ref. 5, with re- 
spect to the solution 2 with a vector 1 perpendicular to the 
wall. If the field is weak, the first instability mechanism be- 
comes operative. Near the wall, on the side of the A phase 
there appears a region where the vector d revolves from the 
position d = i to directions either along d = f or d = 2. In 
the first case the symmetry of the order parameter in the wall 
reduces to the two-element group {l,C,, PT}, and in the sec- 
ond case it reduces to the other two-element group 
{l,C,, P}. As a result, the total solution for the domain wall 
contains in the first case nine components, four in addition to 
the components ( 17) : 

Re A,,, Im A,,, Re A,,, Im A,,, (24) 

and in the second case the solution contains ten components, 
the components ( 17) plus another five: 

Re A,,, I1n A,,, Re A,,, Im A,, Im A,. 

As the magnetic field increases the region where a reor- 
ientation of the vector d occurs decreases and thus the ener- 
gy of the wall increases. Thus, one may expect a phase transi- 
tion from the solution 1 with broken symmetry to the 
solution 2, where the vector d is already correctly oriented to 
begin with, and therefore there is no need to break the maxi- 
mal symmetry D :". 

Each of the maximally symmetric solutions contains 
one of the three components of the B-phase, which trans- 
forms into the W-boson mode of the A-phase. This is the 
component ReA, in the solutions 1 and 3, and the compo- 
nent ReA,,, in the solution 2. In order to determine the 
asymptotic behavior of this mode in the A-phase one must 
take into account the fact that owing to the energy of the 
magnetic anisotropy the magnetic field itself leads to a mass 
of the W boson for that polarization of the latter which is 

parallel to the magnetic field. This can be seen if one rewrites 
Eq. ( 15) in terms of the W field: 

Therefore, for HIIS the field of the W-boson penetrates deep- 
ly into the A phase only for the domain walls 1 and 3, and for 
H l f ,  only for the solution 2. In  the cases 1 and 3 the W field 
decays according to the usual exponential law (8 ) ,  whereas 
for the solution 2 the decay occurs according to the law (9 ) .  
Hence in a phase transition which must take place from solu- 
tion 1 with the additional components (24) to solution 2 as 
the magnetic field perpendicular to the wall increases, the 
penetration depth of the W-field, and accordingly, the size of 
the core of the domain wall must decrease. We note that the 
deep penetration of the W component into the A phase, as 
compared to the other components, can already be seen from 
the numerical solutions in Refs. 4 and 5, in spite of the fact 
that the solutions were obtained for high pressures where the 
strong coupling parameter 77 is not so very small. 

4. A DOMAIN WALL WITH BROKEN SYMMETRY 

For low pressures, when the parameter rl is small, the 
approximate degeneracy between the A-phase and the 
planar phase may also lead to symmetry-breaking in the A-B 
interface. This follows from the scenario of the transition 
from the B phase to the A phase via a planar phase, first 
discussed by Cross' in the weak-coupling approximation. If 
one exactly follows his line of reasoning one is led to an A-B- 
interface with two cores. In the first core which has a size of 
the order of g, a transition occurs from the B phase into the 
planar phase, which means that, in fact, the longitudinal gap 
A ,  vanishes. The subsequent transition from the planar 
phase into the A phase occurs through intermediate degener- 
ate states, and so the size of the corresponding region is de- 
termined by the strong coupling parameter 7 which removes 
this degeneracy. This region forms the second core of size 
-6177. 

This scenario due to Cross was not realized in his calcu- 
lations, since he considered a vanishing field, where an A-B- 
interface exists only for high pressures and 77 is not particu- 
larly small. Therefore a more convenient solution had 
maximal symmetry, i.e., dependent on five parameters (in 
Cross' solution the number of components was four, since 
the component which vanished on both sides of the wall was 
not taken into account). For low pressures this scenario 
should be realized. We consider it for the case of the state 
with the asymptotic behavior 2 in a field perpendicular to the 
wall, the solution defined by Eq. ( 18). This is exactly the 
state to which the solution 1 must go over as the magnetic 
field is increased. We now determine into what the solution 2 
transforms as the pressure is lowered. 

The qualitative structure of the order parameter for a 
domain wall with two cores is represented in Fig. 2. In this 
structure only the components of the order parameter which 
are perpendicular to the field are essential. As one moves 
from the side of the B phase by a distance of the order of the 
coherence length, the only parallel component of the B 
phase, ReA,, , vanishes, as a result of which a planar phase is 
formed with the order parameter 
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FIG. 2. The qualitative behavior of the five most important of the nine 
components of the order parameter which exist in the core of the A-B- 
interface with broken symmetry. Such an interface must exist in a field 
perpendicular to the interface at low pressures, when the strong-coupling 
parameter 7 is small. It consists of two cores: in one core, having a size of 
order the coherence length &, there occurs a transition from the B phase 
into a planar phase; in the second core, which has a larger size -&/g,  the 
transition into the A phase occurs. This wall exhibits a spontaneous super- 
fluid flow along the surface. 

Further, the deformation of the planar state into the A phase 
occurs through degenerate states characterized by a coordi- 
nate-dependent order parameter cP: 

Here varies from zero, corresponding to the planar phase 
with the order parameter (26), t o  T ,  which corresponds to 
the A phase to the left of the wall, where Ani = A,j, (9, 
+ ii, 1. The intermediate states correspond to a rotation of 

the orbital vector of the Cooper pairs with spin fi2: 

1, =[el, xe,,]= - f cos @ ( x )  + %sin @(x) .  

The wave function of these pairs is described by the first 
terms in Eq. (27).  This rotation does not change the energy 
in the weak coupling approximation, in which the Cooper 
pairs with spins up and spins down are independent. In the 
planar state (cP = 0) we have 1, = - l , ,  where 1, = e l ,  
Xe,, is the orbital angular momentum vector of Cooper 
pairs with opposite spin - +if, which are described by the 
second term in Eq. (27 1. In the A phase, where Q, = T holds, 
wehavel ,  =1 ,  = I .  

The expression (27) contains the components ReA, 
and ImA,,, , which are absent from ( 19). This shows that the 
symmetiy D:" of the maximally symmetric solution 2 is 
spontaneously broken. The symmetry that is broken is CZ,, 
since C,,A,, = -A,,, and only the symmetry element 
C,,PT is conserved. Thus, the group D k" reduces either to 
the two-element subgroup ( 1 ,C,, PT)  , or to ( 1 ,C,, PT),  if a 
transformation of the axes is carried out. This symmetry also 
admits the existence of the components ReA,, and IrnA,, 
which thus must be present in the exact solution. Among the 
four additional components only ReA, corresponds to the 
W-field which penetrates into the A phase according to the 
law (9) .  

r,,c,pn )------ 
/ (1,CzyPI 
/ unu LI; 

FIG. 3. A qualitative phase diagram of the states of the A-B-interface in 
thelf-P (magnetic field, pressure) plane, with fields perpendicular to the 
wall. The states of the wall differ both in symmetry and in the orientation 
of the vector 1; the appropriate symmetry group is indicated in the picture. 
The maximally symmetric state 2 with symmetry Di" is expected for 
large pressures and strong fields. As the pressure or the field is decreased 
one should expect spontaneous breaking of the symmetry D i", as a result 
of which at low pressures the state with two cores is formed whose struc- 
ture is depicted in Fig. 2. The phase diagram does not depend essentially 
on the symmetry of the wall at large pressures and weak fields, discussed 
in Sec. 3. Even if this symmetry does not differ from the symmetry 
( l,C,,PT) of the wall with two cores, there still must exist a first-order 
phase transition between the two broken-symmetry states (the dashed 
line), since the orientation of the vector 1 is different in these two states, 
and the transition between these states requiresa further symmetry reduc- 
tion in the intermediate regions. For a transition from the phase Di"  to 
the phase with two cores which exhibits a lower symmetry and the same 
orientation of the vector I, the phase transition may be of second-order 
(full line). 

The phase diagram of the states of the A-B interface in 
thep-H (pressure-magnetic field) plane, is shown in Fig. 3. 
It does not depend on the state which is realized for weak 
fields at high pressures, i.e., whether it is the state (24) or 
(25).  Even if this state does not differ in symmetry from the 
state (27) at low pressures, a first-order phase transition 
nevertheless occurs between them, owing to the different ori- 
entations of the vector 1 in these states. 

The broken symmetry of the rigid core of the domain 
wall between the A and B phases leads to the existence of a 
spontaneous mass flow along t h e y  axis, since the residual 
symmetry does not change this component of the flow: 
C,, PTj, = j ,  . The spontaneous flow is forbidden in a maxi- 
mally symmetric a-b interface, on account of the C,, sym- 
metry which transforms this component into its opposite 
C,, PTj, = - j,, but it is allowed in the walls 1 and 3. The 
symmetry breaking also leads to a two-fold degeneracy of 
the states of the core, as a result of which the plane of the 
interface may contain singular lines which separate portions 
with different directions of the superfluid flow, having iden- 
tical asymptotic behavior far from the wall. 

5. CONCLUSION 

The low-temperatures low-pressure region in 'He-A re- 
mains one of the most interesting areas in the study of super- 
fluid 'He, on account of the far-reaching analogy with quan- 
tum field theory in elementary particle physics, as well as 
because of the hidden symmetry leading to an additional 
degeneracy of the order parameter. In addition to the chiral 
anomaly and the vanishing-charge phenomenon, these prop- 
erties modify significantly the structure of extended objects, 
such as quantized vortices in 3He-A (Ref. 17) and the inter- 
face between the A and B phases (the latter exhibited in the 
present paper). For a magnetic field perpendicular to the A- 
B interface one should expect a series of phase transitions in 
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which the structure of the order parameter inside the rigid 
core is changed, similar to what happens in vortices in super- 
fluid 'He. If the symmetry in the core of the wall is broken, a 
spontaneous superfluid flow appears. In some walls one of 
the components of the order parameter, which plays the role 
of the W-boson, penetrates deeply into the bulk of the A 
phase, thus increasing the size of the core of the wall. An 
interesting possibility would be to use a moving wall as a 
source of W-boson collective modes of the order parameter. 

We are grateful to M. M. Salomaa and N. Schopohl for 
useful discussions. 
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