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A new phenomenon has been discovered: drift of spiral waves on nonuniformly curved surfaces. 
The phenomenon is studied analytically using an approximate kinematic approach. The results 
obtained are confirmed by computational experiments. The possibility of observing drift in a 
medium with a Belousov-Zhabotinskii reaction is discussed. 

INTRODUCTION 

The considerable and constantly increasing interest in 
autowave processes in nonlinear excitable media is attribut- 
able, first of all, to the prevalence of these phenomena in the 
most diverse systems (physical, chemical, and biological) 
and, second, to the possibility of using excitable media as a 
basis for new devices for information processing. 

Excitable media consist of intercoupled nonlinear ele- 
ments which are capable of forming a pulse in response to an 
external signal. ' The coupling between the elements is estab- 
lished, as a rule, by means of diffusion or heat-conduction 
processes. In an excitable medium there is one uniform rest 
state that is stable with respect to weak disturbances. Strong 
disturbances engender a traveling pulse, after the passage of 
which the medium once again returns to the rest state. Ex- 
amples of excitable media are a nonequilibrium plasma (in- 
cluding also electron-hole plasma2 ), magnetic superconduc- 
tors with current,' ferroelectric and semiconductor media,4 
solutions with different modifications of the Belousov-Zha- 
botinskii reaction,'-' nerve and muscle tissues, populations 
of  microorganism^,^ etc. 

One of the most important elementary autowave struc- 
tures in a two-dimensional excitable medium is a spiral 
wave, arising at locations where the autowavefront cuts off. 
The cutoff of the autowavefront in the plane rotates around a 
region, called the nucleus, within which the medium re- 
mains in a state of rest. In isotopic media the nucleus is a 
circle. The shape of the front and the angular velocity of one- 
armed spiral waves in unbounded media do not depend on 
the initial conditions and are determined solely by the pa- 
rameters of the excitable medium. 

Thus far the evolution of spiral waves in a plane has 
been studied in greatest detail. However a two-dimensional 
excitable medium can have the form of an arbitrary curved 
surface. In this work we shall study a number of new effects 
associated with the rotation of spiral waves on nonuniformly 
curved surfaces, we shall present the results of numerical 
modeling, and we shall discuss the real possibilities of ex- 
perimental observation and practical application of these ef- 
fects. 

1. MATHEMATICAL MODELOF AN EXCITABLE MEDIUM 

Excitable media are, as a rule, described by a complicat- 
ed system of nonlinear partial differential equations of the 
"reaction-diffusion" type: 

u=f ( u )  + B A ~ ,  (1 )  

where u = u(r ,  t )  is a vector field characterizing the state of 

physically small elements of the medium; the vector function 
f ( u )  describes Kocesses ("reactions") within an individual 
element; and, D is a matrix of diffusion coefficients or ther- 
mal conductivities. Physically, the components of the vector 
u are, as a rule, the concentrations of the reacting substances 
or the temperature. In most cases of practical interest, by 
exploiting the differences in the characteristic time intervals 
over which the components of the vector u change, the sys- 
tem ( 1)  can be reduced to two or three equations. Thus very 
informative mathematical models describing many isotropic 
excitable media contain only two equations: 

I=f, (u ,  v )  +D,Au, 
6=f2 (u, v) +D,Av, 

where the null isocline f, (u,  u )  = 0 has an N-shaped form 
and the null-isocline f,(u, u) = 0 is a monotonic function. 

A specific example of the system ( 2 ) ,  which is very con- 
venient for analytic studies and computer calculations, is the 
model proposed in Refs. 8 and 9: 

e, k,u-v>0, 
ek,, k,u-v<0 

where coefficients k g ,  kf, E,  k,, p, and a determine the form 
of the functions f, and f2 and the coefficients k, and k ,  are 
chosen so as to make the function f (u )  continuous. 

2. KINEMATICS OF AUTOWAVES ON TWO-DIMENSIONAL 
SURFACES 

To calculate autowave processes in excitable media in 
each separate case it is necessary to know the specific form of 
the nonlinear functions f, andf, of the system (2 ) .  However 
the remarkable similarity of autowave processes observed in 
media of the most diverse nature and in computational ex- 
periments with different models of excitable medial.9 sug- 
gests that the evolution of these structures is based on simple 
universal mechanisms whose operation does not depend or 
depends weakly on the specific form of the functions f, and 
f2. This idea, which has been convincingly confirmed by nu- 
merous full-scale and computational experiments, forms the 
basis of the so-called kinematic approachy.10 to the study of 
autowave structures. The kinematic approach is an effective 
method for studying different autowave  regime^."-'^.'^,'^ 
Using this method we shall construct an analytic description 
of the effects studied in this paper. 
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On the basis of the kinematic approach an autowave is 
completely determined by specifying the line of its front. As 
time passes each section of the front moves in the direction of 
the normal with the velocity V, determined by the local geo- 
desic curvature K of this section. Assuming the curvatures of 
the fronts are small we can set approximately 

The form of the line of the front can be specified by its natu- 
ral equation K = K(l, t) ,  relating the geodesic curvature K 
and the arc length I at the time t. 

In addition, at the point of cutoff the front can advance 
or contract in the tangential direction with a velocity C, 
which depends on the curvature of the front KO, as the point 
of cutoff is approached. There exists a critical value of the 
curvature Kc, for which the velocity of advance vanishes. 
For curvatures KO close to Kc, the velocity of advance of the 
front can be given approximately as follows: 

where the coefficient yo must be positive in order to guaran- 
tee a stable solution in the form of a spiral wave. Therefore 
the front advances if K,, <Kc, and contracts if KO > Kc, .  

The basic equation of the kinematic model was derived 
in Ref. 1 1. This equation permits describing the evolution of 
the form of an autowave as it propagates along a curved two- 
dimensional surface: 

where k is the Gaussian curvature of the surface and the arc 
length I is measured from the point of cutoff of the front. 

The natural equation determines the form of the front, 
but not its position on the surface. T o  describe the evolution 
of the front uniquely it is sufficient, aside from determining 
its form, to indicate how the front moves, i.e., the motion of 
the point with I = 0. The specific form of the law of motion of 
the end point depends on which coordinates are chosen on 
the curved surface. Thus on a plane (Gaussian curvature 
k = 0 )  the coordinates of the point of cutoff of the front 
xo(t)  and y o ( t )  change according to the following equations: 

i0=-V ( 0 )  sin a. ( t )  -C cos ao ( t ) ,  ( 7 )  

! j o =  V ( 0 )  cos a. ( t )  -C sin a0 ( t ) ,  

where a,, is the angle between the x-axis and the tangent to 
the front at the point I = 0. 

Thus on the basis of the kinematic approach the propa- 
gation of autowaves in any two-dimensional excitable medi- 
um is described by a small number of phenomenological pa- 
rameters, such as the velocity of the plane front V,,, the 
critical curvature Kc, ,  the parameter D determining the de- 
pendence of the velocity Von the curvature, and the param- 
eter y determining the velocity of advance C. These param- 
eters must be determined either experimentally or  from the 
system (2 ) ,  which for the kinematic model plays in the role 
of "microscopic" equations. Of course, the values of the 

kinematic parameters depend strongly on the form of the 
nonlinear functions f, and& in Eqs. (2) .  Under some condi- 
tions, however, the values of the parameters D and y do not 
depend on the form of the functions f, and f2. Thus if 
D, = D,,, then the parameter D is equal to D,, or  D,, ,  while 
the parameter y vanishes." I t  is this case, for which the dif- 
fusion coefficient of the activator is practically equal to that 
of the inhibitor ( the variable v ) ,  that is realized in an excit- 
able medium with the Belousov-ZhabotinskiI chemical re- 
action. 

3. SPIRAL WAVES ON THE SURFACE OF A SPHERE 

A sphere is a surface with a constant positive Gaussian 
curvature k,, = const > 0, and kO = 1/R02, where R,, is the 
radius of the sphere. We shall use the basic equation of kine- 
matics (6 )  to study the autowave regimes on a spherical 
surface. We first study the stationary solution of Eq. (6) .  In 
the stationary case Eq. (6 )  has the form 

1 

Equation (9 )  can be solved analytically if DK,,./ V,, < 1, 
which corresponds to weakly excitable media. If the radius 
of the sphere is sufficiently large, so that RoKc, % 1, then the 
stationary equation (9 )  can be studied by the methods ofthe 
theory of singular perturbations, developed for equations 
with small parameters in the term with the highest order 
derivative. I' As shown in Ref. 1 1, the solution of Eq. (9)  is a 
spiral wave that is symmetric relative to the equator, rotat- 
ing with constant angular velocity on the surface of a sphere, 
and having, unlike the two -dimensional case, two nuclei (at 
the northern and southern poles of the sphere). The curve 
describing the autowave-front, for example, in the northern 
hemisphere, is almost everywhere the so-called evolvent of a 
circle on a sphere, the natural equation of which has the 
following form: 

where A = (w' - Vik,,) 'I2 and w is the angular rotational 
velocity of the spiral wave. The form of the front differs from 
the evolvent only in narrow boundary layers near the nu- 
cleus (where the curvature is a linear function of I) and the 
equator (where K is a quadratic function of I) .  Figure 1 
illustrates a spiral wave on a sphere. 

An important property ofa  spiral wave on the surface of 

FIG. 1 .  The form of the front of a stationary rotating wave on the surface 
of a sphere. 
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a sphere is that its angular rotational velocity is higher than 
in a plane, and for small ko (kO/K f, < 1 ) it is proportional to 
the Gaussian curvature: 

where wo is the angular velocity of the spiral wave in a plane 
and is given by the expression 

with 6 = 0.685. 
It should be noted that the fact that the angular rota- 

tional velocity increases as the Gaussian curvature of the 
sphere increases was established in Ref. 11. In Ref. 11, how- 
ever, instead of Eq. ( l l ) an incorrect expression was given 
for w, differing by the fact that the second term in parenthe- 
ses did not have a cofactor of the order of V,,/DK,,. . Thus in 
the case of weakly excitable media ( V,,/DK,,. $ 1 ) the depen- 
dence of the angular velocity on ko is stronger than that indi- 
cated in Ref. 1 1. 

The "quasistationary approximation" is very effective 
for studying the nonstationary regimes of the evolution of 
spiral  wave^.".'^ Because the characteristic restoration time 
of the front of a spiral wave is different from the characteris- 
tic penetration time of a spiral wave this approximation 
makes it possible to distinguish these processes in a wide 
range of values of the parameters of the excitable medium. I 4  

Within a narrow boundary layer the form of the front rapid- 
ly adjusts itself to the instantaneous value K(0, t )  of the 
curvature at the end point, after which this value slowly 
reaches the critical value Kc,. owing to contraction or ad- 
vance with velocity C. If the quasistationary approximation 
is applicable, then to describe the nonstationary evolution of 
a spiral wave it is sufficient to determine the character of the 
motion of only one end point ( I  = 0 )  of the front. This ap- 
proximation is applicable if 

The condition (12) is very weak, since ( V,,/DK,, ) $1. 
When the inequality ( 12) holds the curvature KO at the end 
point of the front satisfies the following equation: 

This equation is supplemented by a system of three dif- 
ferential equations describing the motion of the end point of 
a spiral wave along a two-dimensional surface. On a plane 
these equations have the form of Eqs. ( 7 )  and (8 )  for the 
Cartesian coordinates xO and yo; on a sphere the position of 
the end point is most naturally described by ihe values of the 
polar and azimuthal angles 6' and q5. As a result we obtain a 
closed system of four first-order ordinary differential equa- 
tions, whose solutions determine the trajectory of the end 
point of a spiral wave. 

In concluding this section we note that the evolution of 
spiral waves on the surface of a sphere was recently studied 
experimentally." Spiral waves Vvere excited in a solution 
with a Belousov-Zhabotinskii chemical reaction on the sur- 
face of a small bead ( R O z 0 . 6  mm). The stationary state 
examined above was not observed in the course of the experi- 
ment. We think this is because, first, the spherical surfaces 
employed were too small-one loop of the spiral barely fit 

onto the sphere-and, second, a medium with high refracti- 
bility (the characteristic width of the front in the photo- 
graphs in Ref. 16 is comparable to the radius of the sphere) 
was used, and in this case nonstationary (cycloidal) regimes 
of rotation of spiral waves appear in the plane also." 

We shall now describe the basic results of this work 
concerning the evolution of spiral waves on surfaces with 
variable curvature. 

4. EVOLUTION OF A SPIRAL WAVE WHEN THE RADIUS OF 
THE SPHERE VARIES PERIODICALLY 

We shall first study an auxiliary problem (which is, 
however, of interest in itself) concerning the dynamics of a 
spiral wave on a sphere whose radius changes periodically in 
time according to the law 

In this case the Gaussian curvature of the sphere undergoes 
oscillations with amplitude k ,  = 2R ,/R i. In what follows 
we assume that the diffusion coefficient of the activator is 
practically equal to that of the inhibitor D,, -- D,. = D. This is 
based on two facts. First, the case of equal diffusion coeffi- 
cients is realized in a chemically excitable medium with a 
Belousov-Zhabotinskii reaction, which is convenient for ex- 
perimental study of spiral autowaves. Second, as already 
noted, if D,, -D, , ,  then the kinematic parameter y, which 
determines the velocity of advance, approaches zero. This 
means that in studying the drift of a spiral wave in this case 
we can neglect the velocity of advance C compared with the 
velocity of normal motion V. This significantly simplifies the 
final formulas for the drift velocities, which in the general 
case C # O  are extremely unwieldly. In addition, taking into 
account the fact that the velocity C is different from zero 
does not lead to any qualitatively new results; it merely gives 
quantitative corrections to the expressions for the drift ve- 
locities obtained under the condition y-0. 

Let a spiral wave, the radius of whose nucleus satisfies 
ro<Ro, circulate on the surface of a sphere whose radius 
varies periodically according to the law ( 14). We denote by 
0,) and 4,) the polar and azimuthal angles of the center of the 
nucleus of the spiral wave and by 0 and q5 the spherical co- 
ordinates of the moving end point of the autowavefront. For 
computational convenience we shall choose the axis of the 
spherical coordinate system so that the center of the nucleus 
of the spiral wave lies near the equator: 7~/2  - Oo< 1. 

For C = 0 and rO<Ro the velocities of the end point in 
spherical coordinates are described by the following expres- 
sions: 

vo V ,  cos wt 
0=--sinat, 4=- - .  

R R sine, 

Let the frequency of variation of the radius of the sphere 
be close to the rotational frequency w of the wave: 
Iw - wl 1 <W We substitute into Eq. ( 15) the expression 
(11) [where ko is replaced by k,,- k ,  cos(w,t + p ) ]  and 
( 14). Averaging over the time (i.e., retaining only the terms 
that oscillate slowly with frequency (w,  - w / )  we find that 
when the radius of the sphere is modulated periodically the 
center of the spiral wave should drift along the surface of the 
sphere with the following angular velocities: 
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4 
(wI-w) t+pl ,  

(16) 
I---- 

& ==( 4 sin &, E 2  DKcr Kcr2  

As in the case of periodic variation of the parameters of a two 
-dimensional excitable m e d i ~ m , ' ~ . "  this drift has a resonant 
character. The trajectory of the center of the nucleus is a 
closed curve, whose characteristic size increases as w ,  ap- 
proaches w. At w = w ,  the direction of drift is determined by 
the initial modulation phase& and its velocity is proportion- 
al to the amplitude of the changes in the Gaussian curvature 
k, .  

5. DRIFTOF A SPIRAL WAVE ALONG A NONUNIFORMLY 
CURVED SURFACE 

We now study the basic problem addressed in this 
work-to describe the dynamics of a spiral wave on a non- 
uniformly curved surface. 

A surface in a three-dimensional space is characterized 
by two curvatures: the average curvature H and the Gaus- 
sian curvature k. " There exist several types of surfaces with 
constant Gaussian curvature k (but, generally speaking, 
with variable average curvature H): a plane, a sphere, a 
pseudosphere, a cone, and a cylinder with arbitrary cross 
section. Since only the Gaussian curvature k appears in the 
basic equation of kinematics of the spiral wave ( 6 )  the kine- 
matic approach allows for the existence of stationary (time- 
independent geodesic curvature K )  solutions, describing 
spiral waves, on these surfaces. For this reason, it follows 
from the equations of kinematics that on a nonuniformly 
curved surface with a constant Gaussian curvature there will 
be no drift of spiral waves, in spite of the nonuniformity with 
respect to the average curvature H. This conclusion can also 
be drawn by studying the structure of Laplacians in the "mi- 
croscopic" equations in an excitable medium (2 ) .  

As an example we consider a spiral wave rotating on the 
surface of a cone with half-angle a .  Let the axis of the cone be 
oriented along the z-axis. The position of any point on a 
conical surface can be specified by two coordinates: x ,  = r, 
where r is the distance from the vertex of the cone to the 
given point, and x2 = 4, where q5 is the azimuthal angle. The 
components of the metric tensor g,, on the surface of the 
cone have the form 

The Laplacian operator on the cone is calculated in the stan- 
dard manner: 

where g is the determinant of the metric tensor. 
Substituting Eqs. ( 17) into Eq. ( 18) we obtain the La- 

placian on a cone: 

Making the substitution of variables dq5' = sin a d 4  we trans- 
form to a Laplacian in the plane. But there is no drift of spiral 
waves in a plane. Therefore there will be no drift on the 
surface of the cone. Analogously, by making the correspond- 

ing substitution of variables, it can be shown that there is no 
drift on other surfaces with constant Gaussian curvature. 
For this reason nonuniformity of the average curvature is 
not a sufficient condition for drift of a spiral wave; a neces- 
sary condition for drift of a spiral wave is that the Gaussian 
curvature of the surface must be nonuniform. 

Consider a spiral wave on a sphere whose surface is 
slightly deformed, so that the Gaussian curvature k is a func- 
tion of the polar angle 6. By slight deformation of the sphere 
we mean that the Gaussian curvature k does not change 
much over a distance of the order of the size of the nucleus of 
the spiral wave, so that (dk  /dB) (r,,/R,,) & k,, holds. For mo- 
tion along such a nonuniformly curved surface the end point 
of the spiral wave passes successively through a region with 
different values of the Gaussian curvature. For this reason it 
moves as if the Gaussian curvature of the surface varied as a 
function of time according to the law 

We have thus reduced the problem of the evolution of a 
spiral wave on a nonuniformly curved surface to the problem 
studied above concerning the motion of a spiral wave along a 
spherical surface with a periodically varying radius. In addi- 
tion, the change jn the curvature governed by Eq. (14) is 
characterized in this case by the parameters 

k ,  = (dk/dO)I, ,,,, (r,,/R,,), B=O,  w ,  =a. 

For these values of the parameters we obtain from Eq. ( 16) 
the following expressions for the drift velocities: 

4 0 =  - 
4 sin 0, 

Analysis of the relations (21) leads to the formulation 
of the following laws of drift of spiral waves along nonuni- 
formly curved surfaces. First, the drift velocity of a spiral 
wave is proportional to the gradient of the Gaussian curva- 
ture. Second, the motion occurs in a direction perpendicular 
to the gradient. We also note that the term Vk,,/{2DK,,'in 
the parentheses in Eq. (21) is small compared with unity, 
since it is of the order of (r,,/R,,)'. For this reason the sign of 
the angular velocity 4,) is determined only by the sign of 
dk  /d6. Thus on the surface of a prolate ellipsoid of revolu- 
tion a spiral wave rotating counterclockwise in its northern 
"hemisphere" should drift with angular velocity 4,) < 0. 

We now estimate the drift velocity for a medium with a 
Belousov-Zhabotinskii reaction. We shall take the typical 
values V,, = 3 mm/min and r,, = 0.5 mm. Let the spiral wave 
rotate on the surface of a prolate ellipsoid of revolution, take 
for the minor semiaxis a = 2 mm, and for the major semiaxis 
b = 3 mm, and let the position of the center of the nucleus on 
the sphere be determined by the angle 6,,~77/6. The Gaus- 
sian curvature of the ellipsoid of revolution has the form 

Differentiating Eq. (22) with respect to 6 and substituting 
the derivative into Eq. (21) gives the angular velocity 
6,) = 0.035 min I ,  which corresponds to the drift velocity 
q, ~ 0 . 0 4  mm/min. Thus under these conditions the center 
of the spiral wave moves over a distance of the order of the 
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radius of the nucleus approximately over ten revolutions of 
the spiral wave. 

6. COMPUTATIONAL EXPERIMENT ON A "REACTION- 
DIFFUSION" MODEL 

We also studied the drift of spiral waves along nonuni- 
formly curved surfaces in numerical experiments on a model 
of the type ( 2 )  with the functions f, and& given in the form 
( 3 )  with the following coefficients: 

For this medium the velocity of propagation is V , , ~ 0 . 4  and 
the radius of the nucleus is ro=: 2. 

The calculations were performed for the case of a pro- 
late ellipsoid with semiaxis a = 2 and b = 2.9. The Lapla- 
cian operator on an ellipsoid, calculated in accordance with 
Eq. ( 18 ), had the form 

sin " "I sin 0 
{ (I+~ sin2 6)'" a0 sin2 0)'" ae 

wi thp = ( b / a ) '  - 1 .  
A square difference grid with step A 0  = A$ = 0.005 

was chosen. An explicit difference scheme with a time step 
At = 0.04 was employed. The motion of the spiral wave in 
the northern "hemisphere" of the ellipsoid was modeled. 
The initial position of the center of the nucleus of the spiral 
wave was determined by the angles 0,) -- 0.56 and p,, =: 0.2. 

The trajectory of the end point of the spiral wave, ob- 
tained as a result of the calculations, is shown in Fig. 2. One 
can see from the figure that an individual loop of the trajec- 
tory has the form of a strongly prolate and almost closed 
ellipse. The entire trajectory can be represented as the mo- 
tion of the end point along an ellipse whose center moves 
slowly. The loops of the trajectory are elliptical because an- 
gular coordinates were employed. In metric coordinates the 

FIG. 2. The trajectory of .e end point of a spiral wave on the surface of a 
prolate ellipsoid. 

boundary of the nucleus of the spiral wave is a circle. The 
observed displacement of the center of the nucleus confirms 
the prediction of the foregoing analysis. Indeed, as one can 
see from Fig. 2 ,  the nucleus of a spiral wave drifts only along 
the parallel of the ellipsoid (0,) = 0 )  in a direction deter- 
mined by the formula ( 2 1  ). In addition, the estimate of the 
drift velocity using the formula ( 2 1  ) (4,) = 2.8 X 10 - ' ) 
agrees well with the results of numerical calculations 
( $ 0  = 3.6 x 10 ) . In the computational experiments per- 
formed with ellipsoids of a different shape the drift velocity 
was also observed to increase as the gradient of the Gaussian 
curvature of the surface increased. 

CONCLUSIONS 

In this paper we predicted and calculated the drift of 
spiral waves along nonuniformly curved surfaces. The sig- 
nificance of this study is increased by the fact that real possi- 
bilities for observing the effect examined above have now 
appeared. This is connected with the appearance of modifi- 
cations of the Belousov-Zhabotinskii reaction with an im- 
mobilized catalyst. In this modification the reaction occurs 
not in the entire volume of the solution, but rather only in a 
thin layer at the bottom. We recall that the resonance effects 
predicted for spiral waves on a plane on the basis of the kine- 
matic approach on Ref. 12 have now been directly confirmed 
experimentally." This also confirms the existence of the 
drift effect discovered in this work, and the estimates made 
show that the displacement of the spiral wave can easily be 
observed visually. For this reason, if the catalyst is immobi- 
lized on a nonuniformly curved surface with a given relief, it 
is possible to obtain fundamentally new possibilities for con- 
trolling spiral waves. In particular, it is possible to achieve 
motion of spiral waves in required directions, stationary ro- 
tation in a definite region, or annihilation of pairs of spiral 
waves with different topological charges. It is very impor- 
tant that in so doing there is no need to make the properties 
of the excitable medium itself nonuniform, and this makes it 
much easier to implement such methods for controlling spi- 
ral waves. 

' V. A. Vasil'ev, Yu. M. Romanovskii, and V. G. Yakhno, Autowaoe Pro- 
cesses in Kinetic Systems, Reidel, Amsterdam ( 1987). 

'B. S. Kerner and V. V. Osipov, Zh. Eksp. Teor. Fiz. 83, 2201 (1982) 
[Sov. Phys. JETP 56, 1275 (1982)l .  

' A .  I. Buzdin and A. S. Mikhailov, ibid. 90,294 (1986) [Sov. Phys. JETP 
63, 169 (1986)l .  

"Yu. I. Balkarei, M. I. Elinson, and M. G. Nikulin, in Prohlerns in Mod- 
ern Radio Engitieering and Electronics [in Russian], edited by V. A. 
Kotel'nikov, Nauka, Moscow ( 1980), p. 43 1 .  

'A. M. Zhabotinskii, Concentrution Autooscillations [in Russian], 
Nauka, Moscow ( 1974). 

" A .  T. Winfree, Science 175, 634 (1972). 
'S. C. Muller, J. Plesser, and B. Hess, Physica D 29, 71 (1987). 
'1. Krinskii, A. M. Pertsov, and A.  N. Reshetilov, Biofizika 17, 271 

(1972). 
" V. S. Zykov,Simulation of' Wave Processes in Excitable Media, Manches- 
ter Univ. Prcss ( 1988). 

I O  V. A. Davydov and A. S. Mikhailov, Nonlinear Waves: Srrucr~qr@s and 

Bifurcations [in Russian], Nauka, Moscow (1987), p. 261. 
I '  P. K. Brazhnik, V. A. Davydov, and A. S. Mikhailov. Teor. Matern. Fiz. 

74,440 (1988). 
"P. K. Brazhnik, V. A. Davydov, V. S. Zykov. and A. S. Mikhailov, Zh. 

Eksp. Teor. Fiz. 93, 1725 ( 1987) [Sov. Phys. JETP 66,984 ( 1987) 1 .  
"A. B. Vasil'eva and V. F. Butuzov, Asytnprotic Expan.sions oJ'So/utions 

of Singularly Perturbed Equations [in Russian], Nauka, Moscow 
(1973). 

"V.  A. Davydov, V. S. Zykov, A. S. Mikhailov, and P. K. Brazhnik, Izv. 

670 Sov. Phys. JETP 70 (4), April 1990 Abramychev eta/. 670 



Vyssh. Uchebn. Zaved., Radiofiz. 31,288 (1988). I v  A. P. Norden, Theory of Surfaces [in Russian], Gas. Izd. Nauch-Telch 
" J. J. Tyson and J. P. Keener, Physica D 32, 327 ( 1988). Lit., GINTL, Moscow ( 1956). 
"J.  Maselko and K. Showalter, Nature 339,609 (1989). 2"K. I. Agladze, V. A. Davydov, and A. S. Mikhailov, Pis'ma Zh. Eksp. 
"V. S. Zykov, Biofizika 31, 862 ( 1986). Teor. Fiz. 45,601 (1987) [JETP Lett. 45,767 (1987)l. 
IXV. A. Davydov and V. S. Zykov, Zh. Eksp. Teor. Fiz. 95, 139 (1989) 

[Sov. Phys. JETP 68, 80 ( 1989)l. Translated by M. E. Alferieff 

671 Sov. Phys. JETP 70 (4), April 1990 Abrarnychev eta/. 671 


