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Equations are obtained which describe the relaxation of two-domain structures in the B-phase of 
'He as a consequence of spin diffusion through domain boundaries. The dependence of the 
velocity of domain wall motion on the isotropic part of the spin diffusion coefficient for weak 
magnetic fields is found for two possible types of two-domain structures, which differ in the 
orientation of the anisotropy axis of the order parameter in the static domains. The shapes of the 
domain walls are also obtained for certain values of a parameter which characterizes the ratio 
between the rate of the diffusion process and the rate of flow of the spin current. 

The two-domain structures which arise in the super- 
fluid B-phase of 'He when it spins precess in a weakly inho- 
mogeneous time-independent magnetic field has already 
been investigated in detail both theoretically' and experi- 
men tall^.'^ The two-domain structure is a stationary solu- 
tion to the equations of spin dynamics when the dissipation 
of the Zeeman energy is neglected. The presence of a gradi- 
ent in the time independent magnetic field causes the spin 
precession to decompose in space into two domains-a dy- 
namic domain and a static domain. 

In the dynamic domain, the spin deviates from its equi- 
librium orientation by an angle p slightly larger than 
8,) = arccos( - 1/4), and precesses with a frequency w, 
which equals the Larmor frequency at the location of the 
boundary separating the domains; in the static domain the 
spin has its equilibrium direction. The dynamic domain is 
located in a region of relatively weak magnetic fields. The 
small deviation of the anglep from 6, is caused by a rather 
sizable local shift in the frequency of the free-induction sig- 
nal in 'He-B (for the expression for the frequency shift see 
Ref. 5 ) ,  which compensates for the spatial variation of the 
Larmor frequency. The dissipation of energy leads to relaxa- 
tion of the structure: the dimensions of the dynamic magnet- 
ic domain decrease, and the domain wall begins to move in 
the direction of smaller magnetic fields. The motion of the 
wall is caused by variation of the free-induction signal fre- 
quency. 

The relaxation of the dynamic magnetic domain occurs 
because of two mechanisms: a surface relaxation mechanism 
involving spin diffusion through a domain wall of thickness 
on the order to 

( c I  is the velocity of one of the two types of spin waves and 
V w ,  is the gradient of the Larmor frequency for a linear 
dependence of the magnetic field H on the z-coordinate), 
and an "internal" bulk Leggett-Takagi relaxation mecha- 
nism,' which comes into play when the local Larmor fre- 
quency does not coincide with the precession frequency. The 
diffusive mechanism dissipates the Zeeman energy; this in 
turn leads to motion of the domain wall with a constant ve- 
locity W that depends on the spin diffusion coefficient D, and 
to a corresponding linear decrease of the frequency of the 
long-lived induction signal with time. This decrease is ob- 
servable due to the in-phase character of the spin motion in 

the dynamic domain. In contrast, the contribution to the 
rate of variation of the precession frequency caused by the 
Leggett-Takagi relaxation mechanism is proportional to the 
cube of the size of the dynamic domain in the z-direction; 
this allows us to separate out the diffusion mechanism by 
extrapolating the experimental time dependence of the long- 
lived induction original frequency to a zero-size dynamic 
domain. Using this extrapolation procedure, we can use the 
rate of variation of the signal frequency, which is related to 
the velocity of domain motion through the equation drop/ 
dt  = Vw, W, to obtain the spin diffusion coefficient D and 
the effective Leggett-Takagi relaxation time re, which de- 
termines the effectiveness of the bulk energy dissipation 
mechanism.' We will assume that the hydrodynamic ap- 
proximation w, T , ~  < 1 is applicable. 

Experiments in which the spin diffusion coefficient is 
determined by varying the rate of change of the LLIS fre- 
quency were carried out in Ref. 3. In this paper a comparison 
was made with the results of a theoretical calculation, ' based 
on the assumption that the relaxation caused by the spin 
diffusion through the domain boundary is slow, i.e., the pa- 
rameter i) = Du,/c:, is assumed to be small (i)< l ). As a 
consequence of this, it was assumed in the calculation that 
the shape of the domain wall (i.e., the distribution of spins 
along the z-direction) is the same as in the static case. How- 
ever, in these experiments3 the parameter i) was not always 
small: for temperatures close to T, it is of order unity. There- 
fore, a more precise determination of the spin diffusion coef- 
ficient from experiment requires that the equations of spin 
dynamics by solved again, this time without neglecting the 
diffusive terms. 

The order parameter in "e-B is proportional to R (n, 
8 ) ,  i.e., to the matrix which represents a rotation around the 
direction of the anisotropy axis n by an angle 8. It is more 
convenient to describe the motion of the order parameter by 
using the Euler angles. I.' 

where R, ( a )  is the matrix for a rotation around the z-axis 
by an angle a ,  etc. ( In  what follows, the z-axis will be as- 
sumed to be the direction opposite the magnetic field H). 
The Leggett e q ~ a t i o n , ~  which describes the motion of the 
spin density S and the order parameter in a magnetic field, 
can be written in the form of Hamilton's equations in the 
variables a ,  p, @ = a + y and the combinations of the spin 
projections of S which are canonically conjugate to them: 
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P = S, - Sc , SD and Sc (.Sz is the projection of S along thez- 
axis, Sc is along the f = R z  axis and SD is along the line of 
nodes [ z ,  G I .  Let us choose the normalization in such a way 
that x/g2 = 1 (X is the magnetic susceptibility per unit vol- 
ume of 'He-B, and g is the gyromagnetic ratio for 'He-B). 
The density of the Leggett Hamiltonian in these variables is 
written in the following way: 

The dipole energy U, and the gradient energy F, have the 
form 

F V = ' / ~ C ~ , ~  [2 (I-cos P )  al(a'--@') +@'2+fi' 2 ]  - 
- (cIl2-cL2) [( I -cos  b )  a'-@'] ' .  ( 3  

where R is the frequency of the longitudinal resonance, c,, 
and c, are the velocities of the two types of waves, and the 
primes denote derivatives with respect to z. The constant 
magnetic field is assumed in this case to be weakly inhomo- 
geneous, and the vector V u L  is directed along thez-axis. The 
Hamiltonian equations for the Hamiltonian &P have the 
form 

aa an a p  6% 
-=- -=-- 
dt d P  ' d t  6 a  ' 
ag  an as, sn 
-=- -=-- 
a t  as, ' a t  6P ' 

a@ an as, 6% -=- -=-- 
at  as, ' a t  6@ ' 

Here the sign S denotes a variational derivative: 

In these equations the diffusive and Leggett-Takagi re- 
laxation terms are absent. We will assume that the size of the 
dynamic magnetic domain is sufficiently small that the bulk 
relaxation mechanism need not be included; as we have al- 
ready mentioned, this contribution is important only when 
the dimensions of the dynamic domain and gradients of the 
magnetic field are sufficiently large, and decreases rapidly as 
the size of the domain shrinks. For this reason, we add to the 
equations only the terms connected with spin diffusion. Note 
that in 'He the quantity D is a tensor of spin diffusion coeffi- 
cients Dikg,, . In the B-phase, symmetry considerations allow 
us to write this tensor in the form9 

Here D and D ,  are respectively the isotropic and anisotropic 
parts of the tensor of spin diffusion coefficients, and A,< is the 
instantaneous structure of the order parameter at a point z at 
time t .  However, we know in advance that after expanding 
the rate of energy dissipation in space and time derivatives of 
S in the longitudinal geometry, the final result will contain 
only the isotropic part of the tensor of spin diffusion coeffi- 
cients. Therefore, without any loss of generality we can im- 
mediately retain in the equations only the isotropic part of 
the tensor, i.e., D. 

From this we see that in three of the six spin dynamic 

equations (specifically, in the equations for the rate of 
change of the spin density projections P, S j ,  and So) it is 
necessary to add the projection of the term DAS on the axes 
z, f, and the line of nodes. It is clear that as a zeroth approxi- 
mation we need to substitute the stationary solution which 
describes the Larmor precession into the diffusion term. 
This solution has the form 

S,=a, s in  p cos a, 
S,=ap s in  p sin a, 

S,=ap COS @. 

The variational equation then acquires the form 

-=-- asp IS%' + Dwp[af'+2a'P1 ctg P I ,  a t 6 P 
as, 6% -- 
a t  6 @ 

D o p [ a '  sin2 P+gl ' 1 .  15) 

Let us replace the variable a by the variable 
t 

$=a + J a p ( t )  at, 
0 

replace the Hamiltonian % by a new Hamiltonian 
% = &P + opP, and divide it into two parts *(, + V, 
where %(, is the part of the Hamiltonian which does not 
depend on the coordinatez and spatial derivatives, while Vis 
a perturbation having the form 

The system of equations now appears as follows: 

82'0' d@ dV 
-=--- 

as, a t  as, ' 
( 4 )  

Use of the stationary solution as a zero-order approximation 
is legitimate only if the diffusion and gradient terms in the 
equations of motion are small compared to the magnetic and 
dipole terms. The condition for the gradient terms to be 
small is 1% c,, /51, while the condition for the diffusion terms 
to be small leads to the inequality 5 4 ~ 1 ~ ~  '/ci - lo2, which 
is clearly fulfilled in experiments." 

In order to find a solution in the form of a moving do- 
main wall, let us take as the zeroth-order approximation the 
stationary periodic solution from Ref. 7: 

P=oP (COS $ - I ) ,  Sp=O, Sr=ap ,  
cos @= (i/z-cos b )  / ( l+cos P) . 
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The anglesfl and @ can vary from zero to 8,, = arccos ( - 1/ 
4).  We can ignore the fact that the anglepcan be larger than 
00, because of the insignificance of this deviation 
(fl,,,,, - 8, < l o - '  rad),  which implies that the energy dissi- 
pation caused by the gradient of the angle f l  in the dynamic 
domain is negligibly small. Substituting the stationary solu- 
tion into the right sides of these equations and applying the 
procedure described in Ref. 10, we can at once reduce the six 
equations to just two in the variables $ and u = cos 0 .  In 
differentiating the projection of the spin with respect to time 
we can neglect the weak time dependence of u p .  In contrast 
to the system obtained in Ref. 10, this system of equations, 
which describes the low-frequency dynamics of the order 
parameter, contains the diffusion terms. 

Here 

cZ ( u )  =ucIIz+ (I-u) cL2, 
3 

The two possible signs of d@/du indicate that in fact it is 
possible to form two types of two-domain structures and 
correspondingly domain walls which differ in the direction 
of the anisotropy axis n of the order parameter in the static 
domain: the vector n can be directed either opposite the mag- 
netic field (d@/du > 0 )  or along the field (d@/du < 01, 
whereas n l H  is the dynamic domain. 

Due to the presence of dissipation caused by diffusion 
through the domain wall, there are no stationary solutions to 
the system of equations ( 7 ) ; therefore we need to seek solu- 
tions which describe a moving wall. If we take into account 
that the precession frequency of the two-domain structure, 
as in the earlier cases, equals the Larmor frequency at the 
location of the domain wall at a given instant of time, i.e., 

op ( t )  =oO+VoL ( 2 0 -  W t )  , 
~ L ( z )  -ap ( t )  =v0L(~-zO+Wt), 
a=*- (~OSVOLZO) t+ V0LWt2/2 

(where w, is the Larmor frequency at some point in the ex- 
perimental vessel whose coordinate will be assumed to equal 
zero, zO is the coordinate of the domain wall at the initial 
instant of time, and W is a constant), this system admits 
solutions of the form $ = $(z - z,, + Wt), so that all the 
functions in the equations now depend only on the combina- 
tion z - zO + Wt. The coordinate z ,  of the domain wall is 
determined from the vanishing of this argument, i.e., from 
theconditionz, - zo + Wt = 0. The sign in front of Wcorre- 

sponds for W> 0 to the relaxation of the wall in the direction 
of negative z. From the system of partial differential equa- 
tions we pass to a system of ordinary differential equations 
by replacing d$/dt by Wd$/dz and introducing the dimen- 
sionless coordinate { = (z - zO + Wt)/A: 

dm u' +t+wqr- [ 1-2z2 ( u )  ]q' 2-E2(-1) q' - 
du 

+ [uu' 2+ (I-uZ) u N ]  
, - 

( I - U ~ ) ~  

Here 5 = Du,/c~ and W = @'jlwP/ci are dimensionless 
parameters, and we introduce the notation Z2(u) = c2(u) /  
ci ; the dash in Eq. ( 9 )  denotes differentiation with respect to 
6. To the two branches of @ ( u )  there correspond two solu- 
tions to this system of equations for a given value of b, or to 
two possible configurations of the spin with oppositely di- 
rected vectors n in the stationary domain (opposite - - and 
along H ) ,  moving with two different velocities W(D). 

As boundary conditions let us take the conditions that 
the spin current equal zero at the boundaries of the chamber. 
This implies that the flux density S, in the direction z, i.e., 

must vanish as {- * W .  Using these boundary conditions 
for the spin current, we find from the system of equations the 
asymptotc forms for u({) and *I({), starting from the fact 
that u ( f )  goes to one (or to - 1/4) exponentially as 
{+ + w ( - w ) .  The system of differential equations we 
have obtained must be solved numerically, using the asymp- 
totic forms we have found for u ({) and *I({). Solving the 
system for the two branches of @ ( u )  separately for various 
values of the parameter D, we find the two corresponding 
distributions u({) and t ( f )  which characterize the shape 
of the moving domain wall. In this case, for each branch of - - 
@ ( u )  the value of W(D) is unambiguously determined. The - - 
function W(D) can also be found from the expression 

+== 

which is obtained by integrating the first equation of the 
system (9 ) ,  and coincides with the corresponding expres- 
sion in Ref. 1. Starting with Eq. ( l o ) ,  we can also estimate 
the insignificant variation in the shape of the domain wall 
caused by the gradual decrease in the precession frequency. 
For this we introduce a parameter which characterizes the 
shape of the wall: 

rn 

o = J [)' 'sin' P+F1 ' ] d E  
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and estimate its change over the dimensions of the vessel 

The results for the velocity P a n d  shape of the domain 
wall obtained by integrating the equations numerically are 
shown in Figs. 1-3. Figure 1 illustrates the computed de- 
pendence of the dimensionless velocity of domain wall mo- 
tion k on the dimensionless spin diffusion coefficient i). 
Curve I in this figure corresponds to a moving two-domain 
structure in which the anisotropy axis n within the static 
domain is directed antiparallel to the magnetic field H (i.e., 
the branch of the function @(u)  with d@/du > 0).  Curve 2 
shows the same function for a structure in which the static 
domain is characterized by a vector n which is parallel to H 
(i.e., d@/du > 0).  It is significant that the spin configuration 
for which the anisotropy axis in the static domain is directed 
parallel to the magnetic field dissipates faster than the con- 
figuration with n in the static domain directed antiparallel to 
the magnetic field. For large values of the parameter i) the 
difference in wall velocities becomes significant. For com- 
parison, in Fig. 1, we show the straight line 3 obtained by 
assuming that is small (i) 4 1; see Ref. 1 ) and the corre- 
sponding function w = 445i)a for a= 1.1. 

In Ref. 1 ., as a zeroth approximation Fourier substitut- 
ed into Eq. ( 10) the functions u(6) and *I({) calculated by 
neglecting dissipation, i.e., for a stationary wall; thus, 

(the superscripts 1 and 2 distinguish the two possible two- 
domain structures) and kl(b) coincides with ki."(i)). 

It is quite clear from Fig. 1 that traces 1-3 differ only 
slightly from one another in the range of values 3 ~ 0 . 5 ;  
therefore the value of the spin diffusion coefficient D does 
not deviate significantly from the number which is extracted 
from the experimental data on the basis of the calculation in 
Ref. 1, since most of these experiments were carried out for 
5 0.5. However, we can now extend the temperature limits 

of experiments to determine the coefficient of spin diffusion. 
The lower limit remains as before (on the order of 0.4Tc to 
0.5Tc ), since at lower temperatures the hydrodynamic ap- 

FIG. 2. Shape of the wall u(&) for three values of the parameter (the 
figures next to the curvescorrespond to values ofD)  and two types of wall: 
d@/du > 0 (solid curves) and d@/du < 0 (dashed curves). 

proximation is inapplicable; however, by lifting the old re- 
striction on i) we can approach closer to T,, as the ratio 
Dw,/cf cna be larger because cf goes to zero as T- Tc (c, ,  03 

[ l  - T/T,] ' I 2 ) .  

In Figs. 2 and 3 we show the shapes of the walls, i.e., the 
functions u (g) and $'(g), for several values of i) and for the 
two possible orientations of n in the static domain. From 
these figures it is clear that diffusion has a rather significant 
effect on the thickness and shape of the wall. For i) = 0 the 
shape u(6) is the same for both walls; as i) increases both 
walls are smeared out and begin to differ in shape: the wall 
with the larger translational velocity G2 also has the larger 
thickness. Our results are especially useful for investigating 
different types of two-domain structures, because we cannot 
even speak of one structure being energetically favored over 
another when dissipation is present as we can in a situation 
with spin influx. ' I  The experimental data2*3 lie essentially in 
the region where the difference of velocity of the two walls is 
not large. In principle, however, for sufficiently large 
i)(i) - 1) the difference in wall velocities can be used to 
observe the two types of wall. 

I am deeply grateful to I. A. Fomin for a fruitful colla- 
boration, and also to A. S. Borovik-Romanov, Yu. M. Bun- 

FIG. 1 .  The dependence of won b: l - d @ / d u  > 0.2-d@/du < O,3-the 
calculation of Ref. 1 .  

FIG. 3. The function $'(l) for two values of the parameter (the figures 
next to the curves) and two types of wall: d@/du > 0 (solid curves) and 
d@/du < 0 (dashed curves). 
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