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A four-wave mixing process is analyzed in a system consisting of a relativistic beam and a plasma 
whose electron density has chaotic inhomogeneities. Two of the waves are electromagnetic, while 
the other two are longitudinal; one of the longitudinal waves has a positive energy, one a negative 
energy. The velocity dependence of the mass of the beam electrons is known to lead to terms 
corresponding to a nonlinear frequency shift in the equations for the slowly varying complex 
amplitudes in such a system. The appearance of these terms leads in turn to saturation of the 
explosive instability. A system of stochastic differential equations in It8 form is constructed for a 
medium with inhomogeneities. A solution is derived for intermediate wave intensities. This 
solution indicates an exponential growth with increasing length of the region of the nonlinear 
interaction. The instability observed is termed "stochastic." It results from the diffusion of phase 
trajectories, itself a consequence of the random phase mismatch of the waves. 

An explosive instability can occur in a beam-plasma 
system if high-frequency waves have a negative energy, and 
low-frequency waves a positive energy (Ref. 1, for exam- 
ple). This instability reaches saturation if a cubic nonlinear- 
ity is incorporated in the initial equations, as the result of 
either a nonlinear frequency shift or a nonlinear absorption. 
The explosive instability in a system consisting of a relativis- 
tic electron beam and a "cold" plasma was studied in Ref. 2. 
It was shown that the nonlinear dependence of the mass of 
the beam electrons on their velocity leads to dynamic satura- 
tion of this instability, as the result of nonlinear four-wave 
mixing. Two of the waves here are plasma waves, one with a 
negative energy and one with a positive energy, while the two 
other waves are electromagnetic. It was also pointed out in 
Ref. 2 that direct conversion of beam energy into electro- 
magnetic radiation could occur (it was assumed that the 
waves were propagating along the direction of the beam ve- 
locity Vo). This conversion would be extremely important 
for practical applications in plasma electronics and astro- 
physics. 

Also clearly of interest is an analysis of the stability of 
an explosion which has already been stabilized by a nonlin- 
ear frequency shift in a medium with steady-state random 
inhomogeneities which cause a linear random deviation 
from matching in terms of wave numbers (or phases). A new 
instability in this nonequilibrium system is the subject of the 
present paper. We call it a "stochastic" instability. We show 
that the diffusive spreading of phase trajectories causes a 
destabilization of the explosive instability. In other words, 
the "explosion" is not shut off by a nonlinear frequency shift: 
The average wave intensities grow exponentially with dis- 
tance. This result is important from the standpoint of both 
the general theory of nonlinear waves and practical applica- 
tions, since the level of electromagnetic waves which are ex- 
cited may, by virtue of the randomization of phases, be sig- 
nificantly higher than that in a corresponding system 
without fluctuations. 

1. EQUATIONS DESCRIBING THE WAVE INTERACTION 

As the initial system of equations we use Maxwell's 
equations and quasihydrodynamic equations for the plasma 

electrons and for the relativistic monoenergetic beam: 

1 a H  
rot E = ---, div E=-$ne (n+n,-no), 

c at 
d v e 1 
- + ( v v ) v = - - ( E + -  at m [ V H J ) ,  (1 )  

C 

a n - + div ( n v )  =0, 
at  

an, - d t  + div (n.v.) = O .  

Here no is the density of the ions whose charge neutralizes 
that of the electrons. We can ignore the motion of the ions in 
the high-frequency case discussed below. Also, n, n,, v, and 
v, are the densities and velocities of the plasma and beam 
electrons, respectively, y,, = ( 1 - vt/c2) - ' I 2 ,  and c is the 
velocity of light. 

In the linear approximation, we can easily derive from 
( 1 ) dispersion relations for plasma waves and electromag- 
netic waves which are propagating along the direction of the 
unperturbed beam velocity V,,llx: 

Here mi, = 4m2N,/mg,  ui = 4?re2N/m, y = 

(1  - V;/c2) - ' I 2 ,  N a n d  N, are the equilibrium densities of 
the plasma and beam electrons, Z7& = 4n-e2Ns /m y ( y, 1, 
V, 5 c), and m is the rest mass of an electron. It was shown in 
Ref. 2 that when cubic nonlinear terms are taken into account 
in Eqs. ( 1 ) the following decay process can occur: 

In other words, two photons of the electromagnetic field in 
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one state and two quanta of the longitudinal field participate 
in four-wave mixing. The longitudinal plasma wave with the 
higher frequency, R,, has a negative energy under the condi- 
tions 

In this case the plasma wave of positive energy has a frequen- 
cy 0, = w,, + 6,  where 

It follows from (2)-(5) that the frequency w of the electro- 
magnetic wave which is excited is given by 

In other words, for a certain relationship between the pa- 
rameters N, / N  and y this frequency may be substantially 
higher than the plasma frequency of the plasma, wo. If there 
are random inhomogeneities in the plasma density, the 
wave-number matching in ( 3 )  will be disrupted, and the 
effect should be a random phase mismatch of the interacting 
waves. Let us assume that the inhomogeneities of the plasma 
electron density N are small, one-dimensional ( the variation 
is along the x axis), and large in scale in comparison with the 
wavelengths of these electrons: 

In the case of a weak nonlinearity, the corresponding wave 
perturbations for the electromagnetic and plasma waves can 
then be sought in the form 

where Ai  (x,?) are slowly varying complex amplitudes of the 
waves. In the linear case, expression (8 )  obviously corre- 
sponds to the well-known approximation in geometric op- 
tics. In this case Eq. ( 3 ) for the wave numbers becomes 

where A ( x ) = A q I ( x ) + 2 A k ( x ) - A q 2 ( x ) ,  and 
(A(x)  ) = 0. 

Analysis of (2)-(5) leads to the expressions 

.from which it follows that the phase mismatch of the waves 
is determined primarily by fluctuations in the wave number 
of the positive-energy longitudinal wave. 

Substituting (8 )  and (9 )  into ( 1 ), using (3 ) ,  and also 
using the asymptotic method of Ref. 3, we can derive a sys- 
tem of steady-state equations for the dimensionless complex 
amplitudes: 

dai/dx=-ioia2b" exp - i A ( x )  dx ( J  ) 
+ ia, ( a ,  1 a, 1 '+a2 I a2 !'+as !as 1') 7 

da2/dx=io2aib2 exp ( i 1  A ( x )  dx)  

-ia2(PiIa,12+P21a2(Z+ B3IasI2), 

da31dx=-iosa2ai*b* exp (- i A ( x )  d x )  

where a ,,,,, = A ,,,,, (mc'N, y) - ' I L ,  subscripts 1 and 2 refer 
to the longitudinal waves, subscript 3 refers to the electro- 
magnetic waves, 

and V, is the group velocity of the longitudinal wave of fre- 
quency R , . 
2. ANALYSIS OF THE BEHAVIOR OFTHE AVERAGE WAVE 
INTENSITIES 

From ( 11) we can easily derive equations for the real 
quantities, first making the substitutions a,,, =u, , ,  
(u1,2u3)-"2, a3 = uO(uIu2)  -112, x = x6 (u ,u2)  -Ii2, and 
u1,2,0 = ~ 1 . 2 . 0  ex~(i4)1,2.o 1: 

dUi ,  ,/dx=UOaU, sin 4 ,  dUo/dx=UoUiU2 sin 9, , , *, 

where 4 ( x )  = p2 - p , - 2p0 is the phase difference of the 
interacting waves. 

Equations ( 12) differ from the system of equations giv- 
en in Ref. 2 in the presence of the random quantity A(x)  in 
the last equation. The presence of this term is of fundamental 
importance, since it is this term which causes the phase dif- 
ference # (x )  and the amplitudes U ,,,,, ( x )  to  be stochastic 
quantities. We should accordingly analyze any moments of 
the field below. Clearly one of the most important character- 
istics is the average intensity of the interacting waves [the 
average here is over the ensemble of inhomogeneities A (x )  1. 
We accordingly introduce the quantities 
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which are proportional to the intensities. The equations for 
these new quantities take the form 

-= d J 2 0  h ( J )  sin B ,  
dx 

It follows from ( 14) that the first three equations have inte- 
grals: 

In other words, the wave intensities differ by only a constant. 
We turn now to a particular case, but one of fundamen- 

tal importance: that in which the wave intensities at the en- 
trance to the nonlinear slab (x  = 0 )  are equal, 
J1 (0)  = J,(O) = J,,(O) . It follows from ( 15) that under this 
initial condition the wave intensities become equal at any 
point in the slab: 

J ,  (x) ==Iz ( x )  =Io ( x )  = ] ( I ) .  (16) 

Equations ( 14) then simplify, becoming 

dJ/&=2J2 sin 56,  
dq5/dx=4J(cos 56-a/4) +A ( 2 )  , 

a=ho+h,+h2. 

It can be seen from ( 17) that under the condition A(x) = 0 
we have the integral 

The solution for J ( x )  is therefore bounded and furthermore 
periodic under the condition" a / 4  > 1. 

Figure 1 shows J versus the polar angle 4 .  We see that 
the function J2(q5) is asymmetric. It is shown below that this 
asymmetry gives rise in the case A(x)  $0 to diffusive dis- 
placement of the phase trajectories, which in turn causes 
exponential growth of theaverage intensity. The spatial peri- 
od is given by 

2n 

A=~/J-"~ J (a14 - cos 56 (19) 

Let us now assume that there is a random phase deviation 
[A(x)  #O]. In this case the quantity l? is not a constant. 
Along with 4, it is a realization of a two-dimensional Mar- 
kov random diffusion process (T,q5). We assume that A ( x )  

FIG. 1 .  Intensity squared versus the polar angle 4. 

is a 8-correlated Gaussian random process with a correlation 
function 

( (...) means a statistical average). The two-dimensional dif- 
fusion process (I?,#) then satisfies the It6 stochastic equa- 
tions4 

cJ2 ' dx+ro  
sin @ 

dl?=--I -  
a / 4  - cos 56 

d W*, 
2 a / 4 - c o s  56 ,-,, 

where 

realizes a Wiener random process: ( A  W , )  = 0, 
( (A  W, )?)  = AX. 

It is difficult to analyze-(21) in its general form, so we 
turn to the limiting case in which the random shift of the 
phase q5 over one oscillation period A is small": 

In this case we can ignore the second (fluctuating) term in 
the second equation of system (21 ), and we can assume that 
the variation of the phase q5 over one period is deterministic 
and is described by the equation 

while the quantity r ( x )  is a slowly varying random process 
which is described by the first linear equation in (21 ), whose 
solution is knowx4 

(z) =ro exp{$j [ cps 56 ( 5 )  
a / 4  - cos 9 (5) 

-,  
sin" (i) 

( a / 4 -  cos I 
sin 56 ( 5 )  dWr.  

+a! a14 - cos 4 ( 5 )  

The quantity qb(6) in (24) is the solution of Eq. (23) with 
l? = r,,. Taking the average of (24) by the well-knolwn It6 
procedure, and setting x = A, we find 

n 

cos 56 d56 ,o. 
( a / 4  - cos 56 ) " 

It follows from (25) that over a distance A the average value 
of ( l?(A) ) increases by a factor of e x p C 8 ~ )  with respect to 
its initial value T,, and that the quantity 8 can beinterpreted 
as the average drift of process r over a distance equal to the 
period A in the unperturbed problem. 

Strictly speaking, expressions (24)-(25) apply only at 
small distances (02x 9 1 ) . For large distances we can use a 
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cruder method involving an average over the period A. This 
cruder method can be summarized as follows: Since there is 
only a negligible diffusion of the phase 4 over a distance on 
the order of the period A, the drift and diffusion coefficients 
in the first equation of Eqs. (21 ) are replaced by their aver- 
age values over the period under the assumption that over 
the distance A the angle 4 varies in a deterministic way. The 
average value of the drift coefficient was found above: 

The average value of the diffusion coefficient is found from 

The "average" equation for r ( x )  becomes 

We write its solution in the following form, in accordance 
with Ref. 4: 

Firc exp {(&-DAZ/2) z+DndwX). (28) 

Using (28),  we can find all the moments of the random 
quantity T(x ) .  For example, the mean value ( T ( x )  ) is, as 
above, 

Consequently, the existence of random inhomogeneities in a 
medium, which leads to a stochastic phase mismatch of the 
interacting waves, causes an exponential growth of the quan- 
tity ( T ( x )  ) and thus of the average intensity [see ( 18) 1. A 
more general assertion can be made on the basis of this anal- 
ysis: In any physical system in which an "explosion" stabi- 
lizes in such a way that intensities vary periodically in space 
(or  time), a stochastic instability will occur because of the 
random phase mismatch of waves. 

We are indebted to B. S. Abramovich and V. Yu. Trakh- 
tengerts for discussions. 

"There is also a periodic solution in the case of three-wave mixing (with a 
nonlinear frequency shift) if the initial wave amplitudes are different.' 

"The replacement 4 - - 4 was made in ( 2  1 ) so that an increase in x 
would correspond to an increase in 4. 
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Translated by Dave Parsons 

652 Sov. Phys. JETP 70 (4), April 1990 Tamoikin eta/. 652 


