
Dynamics of high-frequency streamer 
V. B. Gil'denburg, I. S. Gushchin,* S. A. Dvinin,* and A. V. Kim 

Institute ofApplied Physics, Academy of Sciences of the USSR;* Moscow State University 
(Submitted 10 March 1989; resubmitted 13 October 1989) 
Zh. Eksp. Teor. Fiz. 97,1151-1 158 (April 1990) 

The space-time evolution of a small-scale plasma formation at a single ionization nucleating 
center during rfbreakdown of a gas is studied. Analysis and numerical simulation show that the 
quasispherical plasmoid which forms in the initial stage of the process subsequently stretches out 
along the direction of the field as the result of a strengthening of the field at the "poles" of the 
plasmoid. The polar axis runs parallel to the external electric field. The plasmoid then transforms 
into a rapidly growing "high-frequency streamer." 

1. An important question in the theory of rf discharges 
in gases is in the space-time evolution of small, isolated plas- 
ma formations (plasmoids) which form as a result of the 
development of independent (nonoverlapping) electron 
avalanches around discrete ionization nucleating centers.' 
The role of these centers may be played by isolated (widely 
spaced) electrons, liquid and solid aerosols, small-scale in- 
homogeneities which result from instabilities of the dis- 
charge, seats of artificial ionization, etc. 

Our purpose in this study was to derive an approximate 
analytic theory and to carry out a numerical simulation of 
the dynamics of a gas-discharge plasmoid in a linearly polar- 
ized field above the breakdown level. We assume that the 
dimensions of the plasmoid are smaller than the wavelength 
and the skin thickness. The physical factors which primarily 
determine the way in which the discharge propagates away 
from a primary breakdown region under the conditions of 
interest here are diffusion (free or ambipolar), electron-im- 
pact ionization of molecules, and the effect of the plasma on 
the rf field causing the breakdown. The initial system of 
equations includes an equation for the complex amplitude of 
the auasiharmonic electric field, 

inates the electron temperature from consideration, holds 
under the conditions of localization and instantaneous heat- 
ing of the electrons: 

Here 8,. is the fraction of its energy which an electron loses in 
a collision with a molecule, T and A are time and length 
scales of the amplitude variation, and I is the electron mean 
free path. 

2. Let us analyze the solution of Eqs. ( I ) ,  ( 2 )  which 
describe the propagation of ionization away from an initia- 
lizing center in a linearly polarized external field Eo which is, 
in the absence of the plasma, uniform. We assume that the 
functions N(r, t)  and p ( r , t )  satisfy the conditions 

N(r ,  O)=Nr6 (r) ,  
V q ( w ,  t)  =-x,E, .  

Here r = 1 r 1 is the distance from the origin of coordinates, xo 
is a unit vector oriented parallel to the unperturbed external 
field, and 8 ( r )  is the three-dimensional 8-function. Under 
the conditions 

No-AT,[ (vi-v.) /D]%<N,, a N o ~ v , - v , ,  
E(r ,  t) el"'=-Vcp (r, t) etWt , 

in the quasistatic (irrotational) approximation and the ioni- 
zation balance equation for the electron density N, 

Here E is the complex dielectric constant of the plasma, 
N,. = m (w' + v?/4ire', w is the angular frequency of the 
field, v is the effective electron collision rate, D and a are the 
diffusion and recombination coefficients, v, is the rate of 
ionizing collisions, and v, is the rate at which electrons at- 
tach to molecules. 

We treat the difference between the ionization and at- 
tachment rates as a given, rapidly increasing function of the 
field amplitude: v, - v, = f( (El ). Over a wide range of con- 
ditions, we can use a power-law approximation of this func- 
tional dependence: 

(E,, is the so-called breakdown field). The functional rela- 
tionship vi ( 1 E 1 ) we are assuming here, which formally elim- 

which usually hold during the formation of discrete ava- 
lanches at isolated initializing electrons, the evolution of the 
discharge in its initial state (while the conditions 
a N < v ,  - v,, I E  - 1 I 4 1 hold) is determined by the known 
spherically symmetric solution of linear equation (2 )  with 
a = 0, v, - v, = const ( ( V p  ( = E , , ) :  

N ,  r2 
N (r, t )  = 

8 (nDt) "' 

Except in the brief initial time interval t 5 (vi  - v, ) ' dur- 
ing which the function N (0,t) decreases to values N z N o  as 
a result of diffusion, this solution describes a rapid growth of 
the electron density [it is approximately an avalanche 
growth for r < 2 [D(v,  - v,) ] "'t.] 

The subsequent evolution of the discharge depends 
strongly on the predominant nonlinearity mechanism. If the 
density N can reach its recombination limit 
N, = (vi  - va )/a without perturbing the field [i.e., for 
IE(N,,) - 11 41 1,  the dynamics of the plasmoid which 
forms will be determined by a spherically symmetric solu- 
tion of Eq. (2)  with constant coefficients (since 
I Vp I = Eo = const ). At large t, the discharge is a quasiho- 
mogeneous sphere in this case, with an electron density 
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N z  N, . It expands at the known diffusion velocity' 

vo=2 [ D  (vi-v,) 1"'. ( 7 )  

In the case IE(N, ) - 1 1 $1, which is more interesting and 
also of more practical importance, the predominant nonlin- 
earity mechanism in this system is not recombination but the 
variation in the field and thus the ionization rate v ,  in the 
plasma which forms. The plasmoid cannot remain spherical- 
ly symmetric. Its configuration and structure depend 
strongly on the parameter v/w. We will focus on the case 
v/w $ 1, which holds in high-pressure discharges. 

In this case v/w $ 1 the field perturbations become sig- 
nificant when the density N at the center of a plasmoid 
reaches values 

(N, = mw2/4.sre'). Such a plasma is actually a conductor 
(E - 1 = - iwN/vNco ) in which the field amplitude de- 
creases with increasing N, so the avalanche velocity v, - v, 
decreases in the central region (with N >  vNm/m), and the 
density distribution N(r)  becomes progressively flatter (as 
in the recombination case). 

The avalanche velocity at the periphery, which actually 
determines the velocity at which the discharge propagates 
into the un-ionized region, depends on the local values of the 
amplitude, which in our case of large v/w (with a conduct- 
ing plasma) are strengthened in the "polar" regions of the 
plasmoid and weakened in the "equatorial" regions (the po- 
lar axis runs parallel to the external field ~($3~)). As a result, 
the discharge propagation velocity depends on the direction, 
and the plasmoid stretches out along the external field." By 
analogy with a similar effect accompanying discharges in a 
static field, we call this elongating plasmoid a "high-fre- 
quency streamer." 

3. Let us analyze the dynamics of a high-frequency 
streamer with the help of a qualitative model based on the 
following simplifying assumptions: 

1 ) The plasmoid is a homogeneous ellipsoid of revolu- 
tion with a sharp boundary (the width of the transition re- 
gion at the boundary is much smaller than the radii of curva- 
ture of the boundary. 

2) The rates (velocities) at which the major semiaxis 
(parallel to x,,) and the minor semiaxis of the ellipsoid grow 
agree with the corresponding local values of the propagation 
velocity of a one-dimensional discharge with a plane bound- 
ary. 

With the help ofthe results of Ref. 2, these velocities can 
be calculated approximately from ( 7 ) ,  in which the value of 
v ,  at the poles is determined by the amplitude of the normal 
field component outside the plasma, while its value at the 
equator is determined by the amplitude of the tangential 
component, which is continuous at the boundary. 

The system of equations describing the evolution of a 
plasmoid under these assumptions (and with a = 0 )  is writ- 
ten in the form 

db 
-- dt = 2{D[v i  ( E , )  -v,] I%, (11) 

Here E, is the electric field in the ellipsoid; En is the ampli- 
tude of the external field at the ends (poles) of the ellipsoid, 
which is greater by a factor of ( E I  than the amplitude in the 
equatorial region, E,; a and b are respectively the major and 
minor semiaxes of the ellipsoid; and n, is the depolarization 
coefficient in the xO direction, which depends on the ratio 
a/b (Ref. 5, for example). In particular, in the case a b we 
have 

As can be seen from (8)  and ( 12), the behavior of the 
functions E, ( t )  and E,, ( t )  and thus the entire nature of the 
evolution in which we are interested here is determined by a 
competition between two factors: the increase in I E I  and the 
decrease in the depolarization coefficient n, due to the in- 
crease in the ratio a/b. It is easy to see that if the function 
vi ( lEI ) increases sufficiently rapidly (as it usually does in 
the region IEI 2 E, ) the asymptotic behavior of the solution 
ofEqs. (8)-(12) afteralongtime (with I E I ~  1 anda$ 1) is 
such that 

In particular, for the power-law approximation (3 )  with an 
exponent B >  1 (for air, we should have /3-3-5 at 
5Ec > IEl> E, the asymptotic solution (t-  cc ) is 

where 

v,=2[Dvi(E0) I" ' ,  vb=2 (Dy)" ,  
~=vio-v., V ~ O = V ~  (Eo) . 

We see that the propagation of a high-frequency 
streamer along the direction of Eo occurs with an exponen- 
tially increasing velocity v , ,  (which is determined by the field 
at the head of the streamer, E,, ). The rapid decrease in the 
depolarization coefficient n, which occurs in the process 
maintains the field in the plasma, E, ,  at the level of the un- 
perturbed field E,,, so the avalanche ionization within a plas- 
moid continues at a nondecreasing rate. This process (and 
the increase in the velocity u,, along with it) may be termin- 
ated by some effect which we have ignored here, e.g., recom- 
bination, the decrease in the exponent fl at large E,, to values 
of less than unity, or the skin effect for the field in the plas- 
ma. 

The most important condition for the existence of solu- 
tion (15)-(18) is that the velocity be a sufficiently strong 
function of the field amplitude (u i  a E f, B > 1 ). This solu- 
tion thus remains the same in form if the discharge propa- 
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FIG. 1. Distributions of (u ,b)  the density and (c,d) the field 
amplitude in the longitudinal direction (x )  and the transverse 
direction ( y )  with respect to the external field E,, at various 
dimensionless time t :  1-t = 3.2; 2-t = 4.3; 3-t = 6.0. 

gates by some other mechanism (other than the diffusion 
mechanism). For example, it would remain the same in form 
for a regime in which the head of the streamer was a source of 
ionizing UV radiation; this regime occurs in strong fields 
and leads to fairly high velocities.' 

At low collision rates, Y<U, the evolution of the dis- 
charge becomes complex, and an analytic description of if 
(even at the level of qualitative models) is a separate, inde- 
pendent problem. Here are the three most important aspects 
of this case: 

1 ) The field intensifies (more precisely, its component 
parallel to VN does) near the plasma-resonance surface 
N =  N,). 

2 )  A general dipole (or multipole) resonance of the 
plasmoid can occur.2' 

3) The maximum of the external field on the plasmoid 
boundary (in a certain interval of average values N-N, ) 

shifts away from the polar regions to the equator. This cir- 
cumstance may be related to the appearance (in a certain 
intermediate stage of the evolution) of a tendency for the 
plasmoid to expand predominantly in the direction perpen- 
dicular to Eo (in a process accompanied by the formation of 
an oblate ellipsoid). In the subsequent stages, however (for 
N) N, ), the field maxima must nevertheless shift toward the 
poles, and the evolution of the discharge should evidently 
occur as described above (for the case v/w ) 1 ). 

4. A numerical simulation of the dynamics of a high- 
frequency streamer has been carried out for the two-dimen- 
sional case p = p(x,y,t),N = N(x,y,t) under the following 
initial and boundary conditions: 

The boundaries x = + L ,  , y = + L, are far from the ioni- 
zation region, so the solution found must correspond closely 
to the asymptotic condition (5)  over the entire time interval 
of the calculation. 

The system of equations ( 1 ), (2 )  has been solved itera- 

tively by Newton's method with the help of relationship (3)  
in finite-difference form on a rectangular mesh with a non- 
uniform step. We solved the system of linearized difference 
equations by tridiagonal inversion. The results of the nu- 
merical calculations for the parameter values p = 4, a = 0, 
N, /N, = 10W2, I (Y, /D) ' /~  = 1 , v / ~ = 1 0 ,  and 
go = E,,/Ec = 1.3 are shown in Fig. 1 as plots of n = N / N ,  
and the field amplitude 8 = I E I /E ,  versus the longitudinal 
( x )  and transverse (y) coordinates at various times t .  The 
time and length units of these figures are respectively the 
reciprocal of the attachment rate, Y; I ,  and the attachment 
diffusion length L, = (D /Y, ) (for convenience, we have 
introduced the dimensionless variables t - v,, t ,  x+x/L,, 
y -y/L, 1. 

It can be seen from this figure that the picture of the 
discharge evolution drawn by the numerical solution is close 
to that predicted on the basis of the qualitative model dis- 
cussed above. In the initial stage of the process, while the 
condition I E  - 1 / 4 1 holds, the numerical solution is close to 
the known symmetric solution [similar to ( 6 )  ] of the initial- 
value problem for a linear two-dimensional diffusion equa- 
tion. For t 2 l ,  with I E  - l I R l ,  the symmetry is disrupted: 
The field becomes significantly stronger in the polar regions, 
and the discharge stretches out along the exterrlal field E,,. In 
particular, at the time t - ,  6 the ratio of the longitudinal di- 
mension a and the transverse dimension b of the region at 
whose boundary the density has decreased to half its maxi- 
mum value is a/b=: 10. The time dependence of the longitu- 
dinal and transverse velocities [ da/dt = v, ,  ( t ) , 
db /dt  = u, ( t )  ] found through the numerical calculation 
agrees satisfactorily with expression ( 7 ) ,  in which the ioni- 
zation rate Y, should be understood as its maximum value in 
the corresponding part of the boundary region of the plasma. 

The asymptotic regime in ( 15)-( 18), which apparently 
requires an extremely large amount of computer time to 
reach, is not reached over the time interval of these calcula- 
tions ( t<6) .  We observe some deviations from the model of a 
uniform ellipsoid: 1 ) The boundary of the ellipsoid remains 
blurred to a comparatively large degree, and small density 
maxima in which Nis  roughly 10% higher than the value at 
the center appear near the ends of the plasmoid 
(y = 0, x = 25) at t z 6 .  2)  The maxima of the field ampli- 
tude at the ends do not reach the values determined by ( 12), 
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E,, = I E I  E,,  and in the central region the field amplitude de- 
creases slightly as time elapses (although for t>4 this de- 
crease, which does not exceed EO - E,, essentially comes to 
a halt). 

5. In conclusion, we present some numerical estimates 
and discuss the conditions under which these dynamic struc- 
tures might be realized in the laboratory. Evidently a suffi- 
cient condition for the formation of high-frequency stream- 
ers which are isolated (i.e., which do not interact with each 
other) during the breakdown of a gas is that the electron 
diffusion length L, = (DT) I / *  be small in comparison with 
the average distance between the primary initializing elec- 
trons, L,  = N, - ''j: 

Here T = (via - v, ) I In (RIN,,) is the time over which 
the electron density increases to the level R- (v/w)NCO, 
which corresponds (with v > w to the appearance of strong 
field perturbations, NO a [ (vi - v, )/D ] "' is the value of N 
found from ( 6 )  at the time t a (vi  - v,) I; and N ,  is the 
density of initializing electrons in the gas. 

Using data in the literature6.' to estimate the values of 
the quantities involved here for various types of rf and mi- 
crowave breakdown of gases, we find that condition (21) 
can be satisfied at source power levels which are quite feasi- 
ble (which provide a sufficiently high ionization rate v , ~ )  
and at moderate initializing densities, N, - 1 cm - '. 

In particular, under the experimental conditions of Ref. 
1, where a discharge produced by short, intense microwave 
pulses was studied (the field frequency was w z 6 .  10lo s - ', 
the field amplitude was Eo=: lo4 V/cm, and the pulse length 
was T,, =: 10 s ) ,  for a gas (helium) pressure P z 5 0  torr 
(V/W 2 2),  and for N, - 1 cm - ', we find 

vio-lo8 P=5.10\-I, D=lOT/P-2. 10' cm2/s , 
In ( m l N , )  -20. L,= (Dt) "-0,03 cm<N,-'Im. 

the density reached the level N=: R,  and no small-scale plas- 
moids were observed (at  least in the early stages after the 
breakdown, before the onset of ionization instabilities). 

The theoretical model of a high-frequency streamer in a 
cold gas which we have examined here for external field am- 
plitudes above the breakdown value (E,,/E,. > 1) cannot be 
used directly to describe the corresponding effect in fields 
below the breakdown level (with respect to the unperturbed 
gas) .4,'1 In the latter case, the discharge occurs because of 
an external agent alone, and the discharge is sustained by the 
heating and thermal expansion of the gas (which lower the 
breakdown threshold). Nevertheless, the very fact that the 
field amplitude and the discharge propagation velocity in- 
crease on certain regions of the curved plasma boundary 
could evidently play a dominant role again in this case, lead- 
ing to a rapid elongation (or branching) or plasmoids which 
are initially produced in the discharge (as a result of, for 
example, an ionization-thermal in~ tab i l i ty '~~"  ) and which 
are stretched out along the field. 

Possibly it was this mechanism (an ionization-thermal 
instability followed by a rapid growth of plasma filaments 
which formed as a result of the field intensification at their 
ends) which was responsible for the evolution of the 
"branching," "streamer," and "multifilament" discharges 
which were described in Refs. 4, 11, and 14. A comprehen- 
sive and reliable theoretical description of the dynamics of 
the corresponding processes will of course require more 
elaborate analytic and numerical models. 

"That this effect might play a role in an rf discharge was also mentioned 
in Refs. 1 and 3 in connection with a discussion ofexperiments in which 
plasmoids elongated along the field were observed. These plasmoids 
were generated by breakdown at isolated electrons.' An externally sus- 
tained "branching" discharge was also observed in fields below the 
breakdown level in those experiments.' 

"For a homogeneous sphere, the resonance condition for the m-th multi- 
pole is Em + m + 1 = 0 ( m  = 1,2,3, ... ) .  In homogeneous formations, 
the resonances are strongly suppressed by the loss near the plasma- 
resonance surface. 

It is in this region of parameter values that a discharge con- 
sisting of a multitude of small plasmoids, stretched out along 
the field (with dimensions b-0.2-0.5 cm and a - 1-2 cm),  
was observed in Ref. 1. For these experimental conditions, 
we can estimate limiting parameters of process ( 15 )-( 18 ) , 
which are determined in this case by the decrease in the 
steepness index of the v, ( /El ) curve to values < 1. These 
estimates yield 

These limiting values are reached [the asymptotic re- 
gime in ( 15 )-( 18) reaches saturation] in an extremely short 
time, Atz2/v,,, =: 1 ns, which is required for the density to 
increase from ;?i to N,,,,, . 

In the same experiments,' when the initializing density 
was deliberately increased to N, - 10' cm - ', and also in 
Refs. 9 and 10, where a discharge was produced moderately 
far above the breakdown threshold (v, - v, - 10'-10's-I), 
the condition L ,  2 L,, which is the opposite of (21 ), held. In 
this case the primary avalanches were able to coalesce before 
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