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A consistent theory for the slowing down of neutrinos by an arbitrary stable homogeneous 
isotropic material medium is developed. The neutrino energy losses are reduced to five (in place 
of the two for the case of a charged particle) properties of the medium, including the axial 
generalizations of its permittivities. A number of general properties of these characteristics (in 
particular, the relevant sum rules) permit thedetermination of a rigorous and universal upper 
bound on the neutrino energy losses. Consequently, the neutrino energy losses are less than a 
value on the order of the collision limit and can never be anomalously large. 

1. INTRODUCTION 

In passing through matter a fast particle transfers to it 
the energy Q per unit time. A rough estimate of such energy 
losses (EL)  is given by the so-called "collision limit" 

do 
~ . = n v J  d w o  -. 

0 do 

Here u is the cross section for scattering of the particle by a 
particle of the medium at rest with energy transfer w below 
the kinematic limit o,, = 2E2/ (2E  + m ) ;  E and u are the 
energy and velocity of the particle in the rest frame of the 
medium, slowly changing along the particle trajectory due 
to the assumed weakness of its interaction with the medium; 
m and n are the mass and number density of the particles of 
the medium; here and below f i  = c = 1. 

The true energy losses Q may differ significantly from 
Q,, due to collective effects of the medium, connected with 
the interaction and correlations of its particles. Thus, for the 
EL of a charged particle these effects suppress the contribu- 
tion of distant collisions and "cut o f '  the divergence of Q,,, 
due to the long-range Coulomb forces, through the screening 
of the particle charge by the medium (the Fermi density 
effect'.'). The description of the contribution of the collec- 
tive effects constitutes the central point of the EL theory for 
any type of particle. 

In this paper we discuss the EL ofthe neutrino-a parti- 
cle, whose action on the medium is restricted to the weak 
interaction, which cause the quantity ( 1.1 ) to be small (for 
neutrinos of not too high energy). This leads to the main 
question for the theory of the EL of the neutrino, which is the 
question of the possible existence of a medium in which the 
collective effects substantially enhance the size of the EL, 
giving rise to the inequality 

Up until now the answer to this question has not been 
clear. The situation described above for the case of a charged 
particle speaks against the possibility that the inequality 
( 1.2) could be satisfied. On the other hand, it has been repea- 
tedly asserted in recent years theoretically and experimen- 
tally that the neutrino suffers anomalously large EL, sub- 
stantially larger than ( 1.1 ) (see, e.g., Refs. 3 and 4) .  

The main goal of this paper is to obtain a definitive 
(negative) answer to this problem (see also the comment of 
the authors of Ref. 5). This requires the development of a 

systematic theory of neutrino EL, which results in a rigorous 
and universal upper bound on Q, coinciding in order of mag- 
nitude with ( 1.1 ). This result leaves no hope for a noticeable 
increase of neutrino EL due to collective effects of the medi- 
um. 

The plan of the article is as follows. In Sec. 2 the general 
theory of EL in a medium in thermodynamic equilibrium is 
discussed in application to the most important case when the 
interaction Hamiltonian of the fast particle with the parti- 
cles of the medium has the form of "current X potential" or 
"current x current". Section 3 contains the formulation of 
the theory of EL of a charged particle taking into account 
recoil, spin effects, and also nonzero temperature of the me- 
dium. In Sec. 4 the theory of neutrino EL is formulated. The 
microscopic approach to the calculation of the characteris- 
tics of the medium that enter this theory are discussed in Sec. 
5, while in Sec. 7 these same characteristics are discussed 
from the point of view of the general theory of response func- 
tions. Section 6 contains an illustration of the general rela- 
tions for the example of the simplest model of a medium, 
giving rise to ( 1.1 ) . In Sec. 8 the expression for the upper 
bound on the neutrino EL is obtained. Finally, in Sec. 9 a 
general summary of the article is given. For simplicity we 
consider only nonrelativistic, homogeneous and isotropic 
media. 

2. GENERAL RELATIONS 

The expression for the EL of a particle has in general the 
form 

where H,, is the particle Hamil tonian,~ is the density matrix 
of the "particle + medium" system, the dot denotes differ- 
entiation with respect to time, the bar denotes a time average 
over a large (compared to characteristic times of the medi- 
um) interval, during which the velocity of the particle is 
practically constant. 

In the interaction picture the quantity p obeys the equa- 
tion 

ib= [H', p] 

with the initial conditionp =p,g,  for t -  - CO, wherep,, is 
the polarization density matrix of the particle and p ,  is the 
density matrix of the medium. The Hamiltonian for the in- 
teraction of the particle with the medium is taken in the form 
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H T =  - dxj" ( x )  A,, ( 2 )  , (2.2) 

where x = ( t ,x) ,  j is the particle current vector, A is a field 
conjugate to it, which for a charged particle coincides with 
the electromagnetic potential in the medium, and for the 
neutrino coincides with a linear combination of the vector 
and axial vector currents of the particles of the medium (see 
Sec. 4, below). 

To lowest (second) order in H ' the expression (2.1 ) can 
be brought to the form 

where we have introduced the correlators 

(k,, is the 4-momentum transferred by the particle to the 
medium). Equation (2.3) can also be obtained from the 
expression for the imaginary part of the mass operator for 
the particle in the medium (see Ref. 6 ) .  

By introducing eigenfunctions of the Hamiltonian of 
the medium with 4-momentum pi: the correlator x [see 
(2.4) ] can be brought to the form 

where the density matrix of the medium with temperature T 
and free energy F has the form 

p~,=exp [ (F-Em) IT]. 

This correlator is connected with the retarded Green's func- 
tion of the field A 

by the relation that follows from the fluctuation-dissipation 
theorem,' 

As a result of current conservation the correlator K [see 
(2.4) 1 satisfies the transversality conditions 

If the external particle is a fermion with vector current 

then the correlator takes on the form 

wherep,, is the particle momentum 4-vector and 

are vacuum expectation values of free field operators. 
Substitution of Eqs. (2.7) and (2.9) in the general for- 

mula (2.3) gives the relation that explicitly defines the EL of 
the fermion that interacts with the medium according to the 
law (2.2). It is convenient to extract from the expression for 
the EL the part that does not explicitly depend on the tem- 

perature' 
0, 

The remaining temperature-dependent addition, vanishing 
for T = 0, has the form 

QT = J d4k(ko  c th(k0/2T)  - I k ,  1 ) Kpv 1, D,,. (2.10') 

The absence of contributions from negative k,, in (2.10) is 
connected simply with the fact that the medium in its ground 
state cannot emit energy. 

3. LOSSES BY A CHARGED DlRAC PARTICLE 

The simplest application of the general formulas of Sec. 
2, of interest in its own right and simplifying the passage to 
the case of the neutrino, is to the problem of EL of a charged 
particle, when A coincides with the potential and (2.6) coin- 
cides with the Green's function of the photon in the medium. 
In covariant form this function looks as follows (g,,, is the 
metric tensor, u,, is the 4-velocity of the medium as a whole) 

where the dots stand for terms proportional to k,, or k,. that 
do not contribute to (2.3) [see (2.8) 1 .  In the rest frame of 
the medium (u,, = 1, u = 0 )  we have 

where the longitudinal and transverse components of the 
Green's function equal 

and E, (E, ) is the longitudinal (transverse) dielectric per- 
mittivity. 

The quantities needed for the evaluation of the correla- 
tor K have the form 

where e,, and M is the charge and mass of the particle (unpo- 
larized, for simplicity). Then Eq. (2.9) gives 

2ne2 
K p v  = -10 (E-ko) 6 (k"2pk) Bcv ( k )  

E 

with E =p,, = (p' + M ' ) ' ~ '  and 

=2p"pv-p'kv-k"pv+ ( p k )  gp. (3.5) 

When Eqs. (3.1 ), (3.2), and (3.4) are substituted into 
the relations (2.10) and (2.10') it is convenient to go over to 
new variables w = k,, and t = - k ', the energy transfer and 
the negative of the square of the 4-momentum transfer. In- 
troducing the notation 

Z=Bw 11m D,, (3.6) 

and taking into account the equality Im D,,,. ( k )  = - Im 
D,,,. ( - k ) ,  which follows from Eq. (2.6),  we arrive at the 
following expressions for the "cold" part of the EL 
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E - M  1, medium given by 

and the temperature-dependent addition' 
E M  m 

where p = (E " M ') ' I '  and 

[for a massless particle t = 0, 1,  = 4 E ( E  - w) hold for 
w < E l .  According to Eqs. (3.1) and (3.5) we have 

For a classical particle, whose energy and momentum 
are large compared to o and t 'I2, the effects of recoil, spin, 
etc., can be neglected. 

Substitution into (3.7) of the relevant formula for Z 

leads to the familiar expression for the EL following from 
macroscopic  electrodynamic^.^ Therefore for a classical par- 
ticle we have 

as is directly seen from the fact that the integrand in (3.7') is 
odd in w. 

This is in contradiction with the recent results in 
Pardy," who gives a temperature-dependent modification of 
the factor a = v' - l/n' in the Tamm-Frank formula for 
Cherenkov radiation [ n  (w) is the index of refraction of the 
medium] : 

a=cth (nwl2T) ( v2 - l /n2 ) .  

The correct ( to  terms linear in w/E) modification 

corresponds to (3.9), and for T = 0 the condition a>O coin- 
cides with the quantum condition for Cherenkov radi- 
ation. "' 

4. NEUTRINO LOSSES 

When considering the massless two-component neu- 
trino one may assume that the momentum transfer in the 
interaction with themedium is small compared to the masses 
of the intermediate bosons. Therefore the Hamiltonian for 
such an interaction has the 4-fermion form and is described 
by Eq. (2.2) with the neutrino vector current in its standard 
form (Sec. 2)  with 

and the field A for the interaction of the neutrino with the 

Here I,, V = qy,, $ is the vector, and 1; = &,, y,$ is the axi- 
al vector electron current, C ,  = _+ 1 + 4 sin'@,., 
C, = + 1 (upper sign for the electron neutrino, lower sign 
for the muon neutrino), 0, is the Weinberg angle, G is the 
Fermi constant, and the letters a, b, ... combine the Vand A 
indices with summation over repeated indices understood. 
The interaction of the neutrino with the nucleon has an anal- 
ogous form, as does the interaction of the antineutrino with 
the electron and the nucleon. 

The neutrino EL is described by the general Eqs. (2.10) 
and (2.101), as well as by the Eqs. (3.4), (3.6), (3.7), and 
(3.7') after the replacement of e,,' by G2/2 and after setting 
M = 0. In particular, in a "cold" medium, to which we con- 
fine attention from now on, the neutrino EL has the form 

The limits of integration in this formula reflect directly the 
kinematics of the act of 4-momentum transfer k,, from the 
neutrino to the medium. 

To determine Z [see (3.6) ] it is necessary to repeat the 
derivation of the expression for the tensor (3.5), having re- 
placedj + M b y j r  in Eqs. (3.3) that determine the density 
matrix and the vacuum averages. This gives 

= 2pVv-pup- kvpv+ ( p k )  gw- ie"O0kOp,. (4.3) 

The tensor D,,,. is, according to Eq. (4.1 ), equal to the quan- 
tity C,C,,D ,,,. ab, where 

DuVab=i0 ( t )  < [Z,"(x), I? (0) ] ). (4.4) 

The components diagonal in the a, b indices have the form 
(3.1) 

while the off-diagonal ones are represented in the form ( m  is 
the electron mass) 

In the rest frame of the medium 

The meaning of the quantities d that enter here will be ex- 
plained below. 

Substitution of Eqs. (4.3)-(4.7) into (3.6) gives 

where the quantities T , are defined by Eq. (3.8) and T,- 
= 1 - w/2E. ~ ~ u a t i o n s  (4.2) and (4.8) together determine 
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the neutrino EL, which is thus described by five characteris- 
tics of the medium R ';,, , R ,  or d ;I,, d, (in contrast to the two 
characteristics needed for the description of the EL by a 
charged particle; see Sec. 3 ) . A special microscopic calcula- 
tion is needed to determine these characteristics; only two of 
t h e m - d  [-expressible in terms of d,, can be borrowed 
from standard macroscopic electrodynamics. The increase 
in the number of the characteristics of the medium needed to 
describe the neutrino EL is ultimately connected with parity 
nonconservation: for a charged particle it is sufficient to 
know the vector-like reaction of the medium to the vector 
interaction, while for the neutrino axial currents also enter 
the picture. 

Of greater importance in practice is the difference 
between the neutrino and charged particle EL due to the fact 
that the former increases with energy like a power, while the 
latter increases only logarithmically. This fact reflects the 
nonrenormalizability of the 4-fermion interaction. 

5. MEDIUM CHARACTERISTICS 

The two alternate sets of medium characteristics-R 
and d, determining the EL, have different meaning: the first 
set plays the role of response functions (see below Sec. 7 ) ,  
the second is directly connected to the microscopics of the 
medium and can be calculated with the help of familiar 
methods of many-body theory. 

The quantities d are connected by the relations (4.5)- 
(4.7) to the Green's functions (4.4). Its D "" component 
coincides (accurate up to the factor 7 = 1/4re2) with the 
photon self-energy part, expressed in terms of the compact 
self-energy part (polarization operator) and the Green's 
function of the photon (3.1). The same applies to the re- 
maining components Do", which may be expressed in the 
form (see Fig. 1 ) 

where the polarization operator P i s  a closed loop with vec- 
tor or axial vertices ( e  is the electron charge): 

ab P,. =Inie2 d4p Sp[r ;G ( p + k )  Y . L G ( ~ )  1, (5.2) 

Here G and r" are the exact electron Green's function and 
vertex parts, yt' = y,., f = y,.y5. It is precisely the quantity 
(5.2) that is calculated in one or another approximation in 
many-body theory. 

The quantity P Oh,  just like D "", may be parametrized by 
five scalars P:,, PC with the help of relations similar to 
(4.5)-(4.7). The quantities d of interest to us are given in 
terms of these scalars and the components of the photon 
Green's function (Sec. 3 ) with the help of Eq. ( 5.1 ) : 

where 

dl=-4n/  (k2+Pi'), PiV=k2 (c1-  I), 
(5.4) 

d ,==-4n/ (k2+PtV) ,  Ptv=I;02 (ci- 1 ) .  

The quantities Im d that enter the EL (4.8) describe the 
excitation of the medium by the energy lost by the neutrino. 
Since the imaginary part of the Feynman diagram corre- 
sponds to processes whose diagrams are obtained by all pos- 
sible cuts, the first term in (5.1 ) (cut 1 in Fig. 1 ) describes 
the process of "particle-hole" pair production by the weak 
neutrino-electron interaction. The second term in (5.1) 
adds to this the processes of indirect pair production 
through polarization of the medium induced by the weak 
interaction (cut 2),  as well as the production of collective 
excitations-plasmons, excitons, phonons, etc. (cut 3).  The 
collective effects discussed in the Introduction correspond 
to these last two types of processes. These processes can be 
described with the help of a neutrino electromagnetic form 
factor, reflecting the appearance of a charge and current dis- 
tributions3 induced by its weak interactions" 

G Y @ ~ C , P , , " ~ / ~ ' ~  (5.5) 

(see the dashed rectangle in Fig. 1 ) .' 
In the case of a nonrelativistic medium its characteris- 

tics d f , ,  d,, which do not appear in ordinary macroscopic 
electrodynamics, may be expressed through the spin mag- 
netization operator 

(u, are Pauli matrices). Introducing the operators j' 
= V x M (spin current) and T = V.M and making use of 
(4.4) one may verify that the quantities 

diAe2k4/4m2ka2, dtAe2k2/2m2, -dCe2kZ/2m2 

coincide respectively with the expectation values of the re- 
tarded commutators of the pairs of operators (T,T), ( j ,  'j,') 
and 0, ', j, '), with summation over i and 1 to 3 and with j' 
the vector current. 

6. THE COLLISION LIMIT 

The simplest model of a medium illustrating the con- 
tent of the previous Section is provided by a degenerate 
weakly nonideal electron gas with homogeneous positive 
substrate. The Green's function and vertex parts in (5.2) 
may be viewed as free in such a model: 

(p,.  is the Fermi momentum, ,u is the chemical potential). 
Passing to the nonrelativistic limit one obtains the following 
expressions for the components of the polarization operator 
of the nonrelativistic medium in its rest frame: 

~~~k~~ p 1 ~ = - 2 - -  < ( p k )  / L > .  
k2 

FIG. 1. Here w,' = 4n-ne2/m is the square of the plasma frequency, 
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rC2=[k2+2(pk)]/2m is the excitation energy, 
L = k,,' - R" iisk,,, and the angular brackets refer in this 
case to averaging over the momentum p inside the Fermi 
sphere. The quantities PL are given by the expressions of 
ordinary macroscopic electrodynamics. 

We shall not present the unwieldy expression for the 
neutrino EL that results from the substitution of (6.1) into 
(5.3), (4.8) and (4.2) but confine ourselves to the consider- 
ation of the formal limit when the electron concentration n 
tends to zero. A11 collective effects disappear in that limit 
and the EL coincides with the collision limit ( 1.1 ) . Indeed, 
as n-.O,the relations (5.3) take the form d = VP (with ap- 
propriate indices), which after going to the variables w, t 
yields4 

As a result the neutrino EL takes the form 

where w,, = 2E '/( 2E + m and 

Precisely the same expression is obtained on substitution in 
( 1.1 ) of the familiar formula for the inelastic we-scattering 
cross section,'%hich confirms the existence of the equality 
Q = Q,, as n-0. 

It is important to emphasize that this derivation of 
(6.2) has a purely formal meaning since at low density the 
electron gas is strongly nonideal: The Coulomb energy is 
large compared to the kinetic energy and crystallization of 
the system takes place (into a Wigner crystal). Correspond- 
ingly the collision limit itself serves, generally speaking, only 
as a formal measure of the scale of the neutrino EL. 

However the quantity ( 1.1 ) acquires real meaning at 
relatively high neutrino energy, when the energy transferred 
to the medium, which is of order of a,,, is large compared to 
the characteristic energy E o g m  of the particle of the (non- 
relativistic) medium 

which permits the neglect of the initial motion of that parti- 
cle. On the other hand, when (6.3) is satisfied the momen- 
tum / k (  transferred to the medium is of order E (on the 
"Bethe comb" t a mw; see above) and is large on the scale of 
internal characteristics of the medium. Consequently the 
neutrino scattering process is of individual, rather than col- 
lective (close collisions), character and therefore when 
(6.3) is satisfied the EL coincides with the collision limit 
(1.1): 

Consequently the collective effects of the medium 
manifest themselves only when the condition (6.3) is violat- 

ed, i.e., in any event in the region E < m .  In this region, to 
which we confine the discussion from now on, we have 

7. RESPONSE FUNCTIONS OF THE MEDIUM 

The calculation of the characteristics of the medium 
that determine the EL in a more or less realistic model is a 
very difficult problem ( the model of Sec. 6 is extremely ide- 
alized). A special role is therefore played by those general 
properties of the characteristics of the medium that are inde- 
pendent of a specific model.'"t is these properties that will 
be considered in the present Section. 

The Green's function (4.4) satisfies the condition of 
relativistic causality vanishing for t<  1x1 due to the presence 
of the 0-function and the vanishing of the commutator out- 
side the light cone, i.e., for t '<x2. This leads to a number of 
general properties, possessed by any response function of the 
medium R(w, k )  that satisfies the indicated condition (see 
Ref. 14 and the Appendix). Namely the quantity 
R (w, k + US), where s is an arbitrary vector with s = 1, is 
analytic for fixed k as a function o f o  in the upper half-plane 
of that variable. From this we get the Leontovich dispersion 
relation 

rn 

2 
R (o, k + o s )  = R .  + - 5 d65 Irn R ( 5 ,  k+@) / (6'-a'-ism), 

0 

where R,, is the limit of R ( o ,  k + ws) as o- 03 .  If R is a 
scalar quantity referring to an isotropic medium then, upon 
setting (ks)  = 0, we have 

R  (o ,  k + o s )  =R [o ,  ( k 2 + 0 2 ) ' ! ' ] .  

Therefore in terms of the variables w, t the quantity R is 
analytic in w for fixed t ,  and the following relation is valid 

At high frequencies the response function has the 
asymptotic behavior 

Considering the corresponding limit in (7.2) we arrive at the 
sum rule 

As is shown in the Appendix, these properties of the re- 
sponse function are true not only of the tensor D$', as a 
whole, but also of the scalars R R, that parametrize it and 
which therefore obey the relations (7.2 )-(7.4). 

Another general property of the characteristics of the 
medium, relating to the sign of their imaginary parts, is for- 
mulated more conveniently in terms of the set d ;I,, d,. From 
(2.5)-(2.7) and (4.4) follows the relation 
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[ I  i- cth (I;,IZT) ] Im I!),,:* 

= @!m (z,:(o) ) ,,,,, (I:(o) ) ,,m64 ( / i~/l , , , -g, , ) ,  
l i i , t l  

which leads to the obvious inequality 

with arbitrary f: These quantities are subject below to the 
condition k: = 0 and therefore the terms omitted in (4.5) 
make no contribution to (7.5). 

Below we obtain from (7.5) three inequalities for the 
quantities Im d,  and correspondingly we choose three sets of 
coefficientsj The first two sets are different from zero for 
only one value of a and therefore only the diagonal tensor 
D "" will enter (7.5). The first set corresponds to f g, = 1, f :,, 
= k,,k,/k2 (index j = l ) ,  and upon substitution of (4.5) 
and (4.7) into (7.5) only the quantity Im d '; remains. The 
second set corresponds to f g ,  = 0, f", = 6, - kikj/k2 
(j = 1,2,  3) ,  and after the same substitutions only the quan- 
tity Im d y remains. This leads to the inequalities 

whose meaning is that of stability conditions for the medi- 
um. The third set has the form (with an arbitrary param- 
eter) 

and the substitution of (4.5)-(4.7) into (7.5) results in the 
inequality 

From (7.6) and (7.7) it follows, in particular, that for a 
cold medium 

(such a medium is incapable of emitting energy). Indeed, 
the first term in the second square bracket in (4.8) in larger 
than zero in view of (7.6) and the positive sign of T- in the 
integration region [see (3.8), (4.2)]. On the other hand the 
remaining terms reduce to the inequality (7.7) by the choice 
6 = (2E - w ) '  and add up to a positive quantity also. 

8. UPPER BOUND ON THE NEUTRINO ENERGY LOSS 

The general relations of the previous section lead to a 
number of universal results applicable to any medium of the 
type here considered. By these means we have previously 
obtained a universal formula for the EL of a charged ultrare- 
lativistic particle.' On the other hand application to the neu- 
trino leads to a determination of a universal upper bound on 
its EL. 

We start from Eqs. (4.2) and (4.8) for the neutrino EL. 
It was already remarked at the end of Sec. 6 that only the 
region E < m  need be considered, where the quantity Q 
differs from Q(,. In this region the contribution of the last 
term (containing C ,  C ,  ) in the square brackets in (4.8) is 
small in the parameter E / m  because the quantity D " is 
linear in y, [see (4.4)] .  Omitting this term and keeping in 
mind that in the region of integration T + < 1 + t /4E2 in 

(4.2) [see (3 .8)] ,  one readily obtains with (7.6) taken into 
account the following inequality: 

Z< (2EZ+t/2)C.2 Im R,". (8.1) 

Its right side is larger than zero for all w so that when (8.1 ) is 
substituted into (4.2) we only strengthen the inequality by 
extending the integration over w to infinity. The sum rule 
(7.4) now gives' 

It remains to determine the function a in the asymptotic 
behavior (7.3) of the functions R '2'. For a = V we obtain 
from Eqs. (4.7), (5.3), and (5.4) 

Making use of the familiar asymptotic behavior of the per- 
mittivity 

we find 

The denominator of this expression describes the effect of 
screening by the medium of the induced neutrino charge, 
suppresses the contribution of distant ( t  < w P 2 )  collisions 
and in the case of a charged particle gives rise to the density 
effect. 

The asymptotic form (8.3) (linearity of E - 1 in the 
coupling constant e') reflects the fact that at high frequen- 
cies interaction effects in the nonrelativistic medium are 
small and correspondingly the polarization operator may be 
calculated to lowest order in the perturbation. The same ap- 
plies to the axial quantity, RzA,  whose calculation with the 
help of (4.7), (5.2), and (5.3) leads to similar results. How- 
ever, now effects of screening (the second term in (5.1 ) and 
the last term in the expression (5.3) ford ,  ' ) are absent, since 
in the region E < m  the quantities P ' ' and P " are small 
together with D " (see above). This gives 

Substitution of (8.4) and (8.5) into (8.2) leads to the 
final expression for the upper bound on the neutrino EL in 
the region E 4  m: 

FIG. 2. 
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where the function 
I 

is equal to 5 for x = 0 and falls monotonically to zero with 
increasing x.  The resulting decrease in the EL is of the same 
nature as the density effect (see above). The dependence on 
the neutrino energy of the ratio g = Q /Q,, of the neutrino 
energy loss to the collisional limit is shown in Fig. 2 based bn 
Eqs. (6.3)-(6.5) and (8.6); the dashed region indicates al- 
lowed values of v. 

9. CONCLUSION 

The main result of this paper is the construction of a 
systematic quantitative theory of the EL of a neutrino mov- 
ing in an arbitrary stable, homgeneous, isotrcpic medium. 
Just as the EL of a charged particle is expressed in terms of 
two characteristics of the medium (it permittivity), the EL 
of the neutrino is determined by five such characteristics. 
They are the permittivities describing the longitudinal and 
transverse vector responses of the medium to the vector in- 
teraction, the longitudinal and transverse axial responses to 
the axial interaction and the mixed axial response to the vec- 
tor interaction. The calculation of these characteristics is 
carried out by standard methods of many-body theory. 

The main qualitative conclusion of the paper reduces to 
a negative answer to the central question of the theory of 
neutrino EL formulated in the Introduction [see ( 1.2)] : are 
there stable media in which the EL exceeds substantially the 
collision limit ( 1.1 ), corresponding to neutrino scattering by 
isola~ed stationary particles of the medium? According to 
the rigorous and universal upper bound on the neutrino EL 
found in this paper the corresponding ratio g (see Sec. 8 )  
equals 1 at high neutrino energies, and at lower energies does 
not exceed 1 (for the muon neutrino) and a number varying 
between 0.6 and 2.8 (for the electron neutrino). This conclu- 
sion excludes the possibility of existence of a medium that 
slows down neutrinos with anomalous strength. This applies 
directly to "cold" media, however, without a doubt the tem- 
perature of the medium will make no qualitative difference 
in the situation. 

The authors are grateful to participants in seminars led 
by V. L. Ginzburg, A. A. Komar and A. E. Chudakov, and 
also the L. B. Leinson, V. N. Oraevskii, V. B. Semikoz, Ya. 
A. Smorodinskii and V. N. Ursov for discussion of the work. 

APPENDIX 

If the response function R (t,x) = 0 for t < 1x1 then the 
quantity 

R(o ,  k+,,s)= 1 d4xR(t, x)exp[iw (t-xs) -ikxJ, Is1 C l  

is described by an integral convergent in the upper half-plane 
of w (in the region of integration t - xs>O) and therefore 
analytic in w in that region. From this the Leontovich rela- 
tion (7.1 ) follows by standard methods. 

We prove that this relation is satisfied not only by the 
tensor D,",:, itself [see (4.4)], but also by the scalars R de- 

fined by (4.5) and (4.6). To this end we restore the terms 
proportional to k,, or k,. that were omitted from (4.5): 

D,,oa=-R,ag,,+R2au,u,+ A"Ic,kv/k2+B" (k,u,+u,k,)/2 ( u k ) .  

( A l l  

This implies that in the rest frame of the medium the relation 
(7.1) is satisfied by the (0,0), (0,i) and ( i j )  components of 
( A l )  ( i j =  1, 2, 3): 

By writing out the relation (7.1 ) for (A4)  and contracting it 
with the tensor - s,s, and k,k,  one readily finds with 
/sI = 1, ks = 0 taken into account that the quantities R ,"and 
A" satisfy the relations (7.1 ), (7.2). Application of the same 
procedure to (A3)  with multiplication of the result by k, 
and s, shows that the quantity B " also satisfies the Leonto- 
vich relations. Substitution into (A2)  leads to the same con- 
clusion for also the quantity R,". Lastly, it follows from the 
Leontovich relation for (4.6) that what has been said above 
also applies to R,. 

1 ) The medium characteristics that enter the Green's 
function (2.6) depend implicitly on the temperature. 

2)  We note that at low temperatures the quantity Q,. is 
proportional not to T', as might be expected, but to T 4 .  

3)  We emphasize that the form factor (5.5) describes 
only part of the action of the neutrino on the medium, since 
the first term in (5.1 ) is also important. The role of the latter 
is particularly significant for media for which the quantities 
E ,  and P, " [see (5.3) ] have a pole in the upper half-plane of 
the frequency:" only the expression (5.1 ) as a whole is free 
of this inadmissable singularity due to exact cancellation 
between the poles of the two terms of (5.1 ). 

4)  The 6-function reflects here the kinematics of scat- 
tering on a stationary free electron, corresponding to the so- 
called "Bethe comb". 

5 )  The fact that for a charged particle this procedure 
gives not an upper bound but the EL itself has to do with its 
logarithmic dependence on the energy, as opposed to a pow- 
er-law in the case of the neutrino (see end of Sec. 4) .  There- 
fore for the EL of a charged particle one may obtain upon 
application of the sum rule a result valid to logarithmic pre- 
cision. 
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