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A theory is developed of the conductivity of one-dimensional disordered metals at temperatures 
low compared with the intrinsic frequency of localized electrons. An adiabatic form of 
perturbation theory for one-electron Green functions, and a functional representation of elastic 
fields in a crystal, are used to obtain an expression for the conductivity in the case of a rapidly 
converging series of powers of the phonon frequencies. A special technique is used for 
asymptotically rigorous averaging ofthe terms of the series over the states ofimpurity and 
phonon fields. An analysis is made of the role of phonons in the localization and delocalization of 
electronic states. 

1. INTRODUCTION 

The localization of electronic states in one-dimensional 
( ID) disordered metals, predicted in Ref. 1, has stimulated 
many investigations of the structure of wave functions and 
kinetics of electrons in such compounds. Simple physical 
ideas of M ~ t t , ~ , '  confirmed by rigorous calculations of Bere- 
z in~ki i ,~  have proved very fruitful and still provide the basis 
for the description of many phenomena in low-dimensional 
conductors. 

One of the most complex problems in the kinetics of 
electrons in 1D conductors is the interaction of electrons 
with thermal lattice vibrations. Various attempts to allow 
for this interaction have been made on many occasions. The 
first qualitative ideas were put forward by Mott5 and they 
apply to the case of extremely low temperatures when 
phonon-assisted electron transitions between different local- 
ized states can be regarded as quite rare. According to Mott, 
the static conductivity at a temperature T low compared 
with the characteristic binding energy of localized electrons 
To should be 

o ( T )  cx exp [- (T, /T) '"]  (1)  

[a simple and clear derivation of Eq. ( 1 ) can be found in Ref. 
61. A similar dependence, though deduced using different 
ideas, was obtained in Refs. 7 and 8. The temperature depen- 
dence of the conductivity similar to that given by Eq. ( 1 ) is 
also predicted in Ref. 9 for samples of finite dimensions. 

It must be however pointed out that in all these investi- 
gations the Mott law ( 1 ) is obtained using some variant of 
percolation theory and the characteristics of this theory in 
the 1D case make it necessary to view the results critically . 
In particular, the results may be affected significantly by 
strong fluctuations of the local electric field. lo  Subject to a 
number of additional assumptions, we find that instead of 
Eq. ( I ) ,  the usual activated dependence is generally ob- 
ta i r~ed.~.~ ' 

A more rigorous analysis of the conductivity of 1D met- 
als at low temperatures obeying TT, < 1 (T; ' is the frequen- 
cy of impurity scattering of electrons), for which Mott ori- 
ginally obtained the dependence ( 1 ), was applied in Ref. 12. 
A method developed in Ref. 13 was used in Ref. 12 to obtain 
a a( T) dependence close to the power law 

o (T) T4 In4 T T ~ .  (2)  

The ideas put forward in Ref. 12 were used in Ref. 14 to 
analyze the temperature and frequency dependences of the 
conductivity of 1D compounds at frequencies corresponding 
to the pair approximation. 

It should be stressed that the treatments given in Refs. 
12 and 14 rely strongly on the assumption that the phonon 
contribution to the conductivity is due to electron hopping 
between distant and, therefore, poorly correlated localized 
states. However, it was shown in Ref. 16 that hopping over 
long distances can be regarded as a set of a large number of 
jumps between closely spaced states with strongly correlated 
energy levels. This gives rise to a strong correlation also of 
the states located far from one another, as pointed out in Ref. 
14 for the case when T = 0; moreover, this correlation fol- 
lows from the very nature of calculations of the zero-phonon 
conductivity carried out by BerezinskiL4 

It should be pointed out also that the treatments in Refs. 
12 and 14 ignore a number of important features of the elec- 
tron-phonon interaction in 1D metals. They are, firstly, a 
strong Coulomb screening of the interaction of electrons 
with phonons in the long-wavelength part of the spectrum. " 
The usual deformation potential of such phonons vanishes, 
so that the main role is played by much weaker interaction 
mechanisms, such as the inertial (Stewart-Tolman) and 
cross-deformation mechanisms associated with the vibra- 
tional motion of impurities. Secondly, the frequency of the 
scattering of electrons by phonons was calculated in Ref. 12 
allowing for the three-dimensional nature of the phonon sys- 
tem, whereas because of the law of conservation of momen- 
tum the 1D electrons can interact only with a one-dimen- 
sional phonon s~bsys tem. '~  Finally, the role of the 
short-wavelength phonons in the localization of electronic 
states was ignored in Refs. 12 and 14. It was pointed out in 
Ref. 19 that, in principle, such a role is possible, but a rigor- 
ous analysis of the problem was not attempted. 

Our aim will be to allow for all these factors. We shall 
develop an adiabatic theory which makes it possible to de- 
rive an asymptotically rigorous expression for the dissipative 
conductivity Re a allowing for the dispersion in time and 
space at low temperatures defined by the inequality 

where T, is the frequency of the elastic backscattering of 
the 1D electrons. The proposed method is based on a descrip- 
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tion of the interaction of electrons with a classical time-de- 
pendent random Gaussian field, which is used instead of the 
quasiparticle picture of the electron-phonon interaction. In 
view of the inequality ( 3 ) ,  the characteristic frequencies of 
this Gaussian field are low, compared with the "binding en- 
ergy" T, ' of the localized electronic states. This makes it 
possible to construct an adiabatic series of electron Green 
functions and a corresponding series for the conductivity o. 
The dissipative part of the series consists of a "zero-phonon" 
term which disappears in the limit w -0 and a temperature 
correction governing the static conductivity. The tempera- 
ture dependence of the latter is similar in form to Eq. (2) ,  
but it contains different powers of the temperature itself and 
of its logarithm. 

2. FORMULATION OFTHE PROBLEM AND INITIAL 
EQUATIONS 

We shall model a 1D metal by a three-dimensional crys- 
tal consisting of parallel conducting atomic chains oriented 
along the x axis. We shall assume that the energy spectrum 
of electrons is rigorously one-dimensional and that the po- 
tential of defects (impurities) distributed at random over a 
crystal is of the short-range type. 

According to the linear reaction theory, the conductiv- 
ity u(k, w) can be expressed in terms of the Fourier trans- 
form of a retarded Green function of the currents2' (k  is the 
wave number along the chains). In the analysis of this linear 
reaction in the specific case of 1D metals it is convenient to 
use an approach proposed in Ref. 2 1. Since the kinetic pro- 
cesses in metals are governed by electrons originating from a 
small part of the Fermi surface (which in the 1D case con- 
sists oftwo planesp, = +_ p,), in the proposed approach the 
Schrodinger electron field operators are simplified by retain- 
ing only packets of harmonics with momenta close to + p , :  

Here, L is the size of the conductor along the x axis, which 
we shall regard as infinite whenever this will not cause any 
normalization problems. The vector form of the field opera- 
tors (4) allows us to define the current density operatorj as 
follows: 

where v is the Fermi velocity of electrons, 

and the outer brackets denote contraction of the vector in- 
dices a = f . 

The retarded Green function of the currents can be 
found conveniently using the temperature technique fol- 
lowed by analytic continuation of the results from the com- 
plex Bose frequencies w,, = 2n-inT(n > 0 )  to the real fre- 
quency axis. The formalism of the generating  functional^^^,^' 
makes it possible to represent the temperature Green func- 
tion ofthe currents Yj (x, T; x ' , ~ ' ) ,  averaged over the impu- 
rity positions, in the form of the following functional inte- 
gral: 

$ j i ( ~ ,  T ;  x', 7 ' ) =  - (eu)' 6 -  6 
'33 

A ,  A )  ( A ( ) *A+ (x ,  r )  

X 
8 .. 6 

SA ( x l ,  z') 6A+ (x', z r )  
Z(A+,  A ) . )  ( . (6)  

A*-A=O 

Here, 

$(x,T) and $+ ( x , ~ )  are the Fermi fields corresponding to 
the operators of Eq. (4 )  considered in the temperature rep- 
resentation of the interaction; A (x, r) and A + (x, T )  are the 
Fermi sources (fields) which anticommute with one another 
and with the fields i j  and ij+; So$+, $ is the complete Eu- 
clidean (in the interval [O, 81 ) action functional for elec- 
trons (8 = T '). The products of the fields in Eq. (7) are 
scalars in the two-dimensional space x-T and the symbol Tr  
notes a trace with an unperturbed phonon density matrix,6gh 
and with averaging over the realizatio%s of the random po- 
tential of the impurities. The operator T:h performs "time" 
ordering of the r phonon creation and annihilation operators 
(in the temperature representation of the interaction) which 
are contained in SB. 

Equations (6)  and (7)  allow us to go over from the 
quasiparticle description of the electron-phonon interaction 
to the interaction of electrons with a time-dependent classi- 
cal random phonon field the realizations of which should be 
averaged. The correlation functions of this field can be deter- 
mined only if we specify the form of the Hamiltonian of the 
electron-phonon system. It follows from the results of Refs. 
17 and 24 (see also the review in Ref. 25) that the interaction 
of electrons in 1D metals is very different for short- and long- 
wavelength phonons. In the case of phonons with the mo- 
menta of the order of the Debye value the electron-phonon 
interaction can be described by the usual deformation poten- 
tial A, whereas in the case of long-wavelength phonons the 
Coulomb screening causes the potential to vanish and we 
have to allow for weaker types of coupling such as the cross- 
deformation interaction associated with modulation of the 
static field of impurities by the lattice vibrations and the 
inertial interaction due to the Stewart-Tolman effect. Con- 
sequently, the interaction Hamiltonian can be represented 
by a sum 

where the terms differ in respect of the ranges of the phonon 
wave numbers and in respect of the interaction constants. 

The operator structure of all the terms in the Hamilto- 
nian (8 )  is the same: the terms are linear in respect of the 
phonon creation and annihilation operators. Therefore, 
averaging over the equilibrium state of phonons in Eq. (7)  is 
carried out exactly and the result is that 

where 9 ( x  - x'; T - TI) is the correlation function of the 
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electron-phonon interaction consisting of the three terms 
corresponding to three terms of the Hamiltonian (8) .  The 
explicit form of these terms will be given later. 

It follows from the representation (4)  that the density 
functionalp(x, T)  contains only the "Fermi" components of 
the Fourier fields $+ and $. For this reason the argument of 
the exponential function in the system (9)  is dominated by 
the spatial harmonics of the correlation function 9 (x  - x'; 
T - T') with the momenta close to zero and + 2p,. The 
long-wavelength harmonics describe the forward scattering 
of electrons, without a change in the sign of the momentum, 
whereas the short-wavelength harmonics correspond to the 
backscattering (we shall label these processes by the indices 
1 and 2, respectively). Neglect of the remaining harmonics 
represents essentially averaging over the fast phases in the 
Fokker-Planck equations for the probability densities of the 
quantities being averagedZ6 or selection of the effective dia- 
grams in the Berezinskii technique.4 

Since the system of equations (9)  contains only the 
"resonant" parts of the correlation function 9 mentioned 
above, we can now represent the exponential function of the 
quadratic form of p as a functional integral containing the 
effective action and characterized by a Hamiltonian repre- 
senting the motion of electrons in external time-dependent 
random fields, the realizations of which are averaged out: 

e f f  
= q (x, r) + &+% (x, r) + &b+ (x, r), 

Here, ~ ( x ,  T )  are the real, whereas ((x, T)  and ( + ( x , T )  are 
the complex Bose fields with a Gaussian statistics, zero aver- 
age values, and the following nonzero binary correlation 
functions: 

<q (x, a)q(xr, r') >= [acdl(a-al)+Btni (r-z') 16 (x-x') , 

< 5 ( ~ ,  T)~+(x', T')>=B~~(z-T')~(x-x'). (11) 

The functions gC,, , g,,, , and gA, are the amplitudes of 
the corresponding resonant Fourier components of the cor- 
relation function 9 ( x  - x'; T - T') in the system (9) :  

a,,, (a-r') = (rn,v~)~~-'F(r-a'), (12) 

v a,, (T-r') = -[Tzp0 (7-77 +9-2Po(rr-r) I. 
%A 

Here g2 - 1 is the cross-deformation interaction con- 
~ t a n t ; ~ ~ ' ~ '  rf, is the frequency of the forward scattering of 
electrons by impurities; m, is the mass of a free electron; s is 
the velocity of sound; ij is a typical value of the momentum of 
long-wavelength phonons; T, '-Rw,,,Aq,,/q, is the fre- 
quency governed by the strength of the deformation interac- 
tion of electrons with phonons characterized by a momen- 
tum 2p,; Aq,/q, is the relative spectral width of a packet of 
such phonons (q, is the limiting phonon momentum); 
R - (X/E,)' is the deformation coupling constant; E,  is the 
Fermi energy; 

N is the number of atoms in a one-dimensional chain; M is 
the mass of a unit cell. The symbol Fq (T - T') denotes the 
Matsubara Green function of phonons: 

where 8(7 - T I )  is the 6 step function. 
Some comments must be made about Eqs. ( lo)-( 13 ) . 

Firstly, they are derived allowing for the fact that, because of 
the momentum conservation, the 1D electrons interact only 
with the subsystem of one-dimensional phonons. Conse- 
quently, the density matrix j5gh in Eq. ( 7 )  can be factorized 
and the averaging is carried out over its one-dimensional 
part which includes phonons characterized by q, = 0. 

Secondly, the 8-type nature of the correlation-with re- 
spect to the coordinate x-of the fields v, (, and ( + in the 
system of equations ( 10) means in fact that the correlation 
radii of these fields are short compared with the localization 
length of the electronic states, which is governed by the elec- 
tron backscattering time T,. In the case of phonons with a 
momentum close to 2p, this condition reduces to the in- 
equality 

and in the case of long-wavelength phonons it sets the lower 
limit on the temperature of a metal: 

Therefore, we have passed from the operator form of the 
averaging of the generating functional (7 )  over the state of 
the phonon system to the function form of the averaging over 
the c-number Gaussian random fields with the correlation 
properties described by Eq. ( 11 ). In addition to these fields, 
which govern the effective Hamiltonian of the electron- 
phonon interaction ( lo) ,  the complete electron Hamilto- 
nian includes also the impurity part which is identical with 
Eq. ( lo) ,  but does not contain the dependence on the "time" 
T (Refs. 21 and 27). The correlation functions of the impuri- 
ty fields considered on the assumption of weak scattering 
[Eq. ( 15) ] are again 6-function-like: 

We shall now transform Eq. (6 )  by functional differen- 
tiation allowing for the vector structure of the fields A and 
A +: 

= ( e ~ ) ~ ( T r [ 0 ~ 3  (2, r; x', 7') 0~8 (x', a'; z, z)]  >. ( 18) 

Here, 9 (x,T; x',T') is the exact Green function in the Bloch 
equation [in accordance with the representation given by 
Eq. (4), this function has the structure of a 2 x 2 matrix] : 

where X ( x ,  T) is the complete Hamiltonian function of an 
electron, which includes the impurity and phonon fields, the 
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symbol Tr denotes a trace of the matrix indices, and the 
angular brackets denote averaging over the whole set of ran- 
dom fields. 

3. ADIABATIC EXPANSION OF GREEN FUNCTIONS 

Representation of the current correlation functions of 
Eq. ( 18) in terms of the Green functions of particles moving 
in classical random fields is intended to facilitate the use of 
the averaging technique developed in Refs. 16 and 24. How- 
ever, this technique can be employed only in the case of a 
static external field, whereas the phonon fields in the system 
of equations ( 10) cannot be regarded as such fields. We can 
overcome these difficulties by expressing the conductivity in 
terms of the Matsubara Green functions of electrons calcu- 
lated in random external fields corresponding to "instanta- 
neous" realizations of the true time-dependent fields. In the 
operator (along the coordinate x )  form these functions are 

h 

where c, = i(2m + i)r/P (m is an integer) and %(T) is 
the complete Hamiltonian of an electron at a moment of 
"time" r. A combination of these functions makes it possible 
to describe the conductivity by an adiabatic series, the con- 
vergence of which is determined by the rate of change of the 
Hamiltonian with time. 

We shall apply the formal Fourier transformation func- 
tions of Eq. (20) with respect to the variable {,,, and thus 
find two types of unperturbed functions which depend on the 
variables T and 7': 

m 

These functions make it possible to transform the differen- 
tial (in respect of the variable T)  equation (19) into two 
integral equations differing in respect of the free terms and 
the sequence of the factors in the integrands: 

6 

9 (1.1') = 3, (T, TI) + pi J d ~ *  B (T, I") 
0 

m 

Iteration of Eqs. (22) and (23) allows us to represent 
the function 9 (T, 7') in tJhe form of functional series in 
terms of the derivative a%(r)/ar. Hence, we obtain an 
adiabatic series for the correlation functions of the currents 
given by Eq. (18) and, consequently, for the conductivity 
a(k ,  a). One of the Green functions in Eq. ( 18) should be 
iterated by a series that follows from Eq. (22), whereas the 
other by a series that follows from Eq. (23). In this way we 

find the physically justified zeroth approximation for the 
conductivity in the limit T-0, which is identical in form 
with the expression obtained in Refs. 4, 16, and 28. 

The problem of convergence of the adiabatic series for 
the conductivity can be solved in a manner similar to that 
adopted in traditional quantum-mechanical theory of adia- 
batic perturbations (see, for example, Ref. 29). Here, in fact, 
the relevant small paraFeter is the ratio of the rate of change 
of the Hamiltonian d R ' / a ~  to the square of the separation 
between the electronic energy levels. In our case this separa- 
tion can be estimated as equal to the frequency r; ' govern- 
ing the binding energy of localized states in the 1D system. 

In the temperature range defined by Eq. ( 3 )  it is suffi- 
cient to retain only the first two terms from the whole iter- 
ation series for the conductivity. We shall consider that term 
in Eq. (IS),  which is obtained when the exact Green func- 
tions are replaced with 9, (r ,  r1)2nd 9 , ( r ,  7') and which 
does not contain the derivative a%/ar. In the Fourier rep- 
resentation, this term is of the form 

Here and later, Sp denotes the trace over all the matrix in- 
dices: pseudospinor and coordinates. The next term in the 
conductivity dO'(k,w) is an analytic continuation of the cor- 
relation function of Eq. (24) from imaginary frequencies w, 
to real ones, and it is exactly identical with the general 
expression obtained in Ref. 4 in the limit T = 0. We shall not 
consider this term in detail, because all these features have 
been analyzed in detail in Refs. 16 and 28 for arbitrary values 
ofk  and w. 

We must however point out an important property of 
Eq. (24) : it contains the Green functions of Eq. (20), which 
are defined by the Hamiltonian of electrons at the same mo- 
ment of "time" r. This is equivalent to a calculation of the 
conductivity in a static random field which represents a sum 
of the impurity and phonon fields frozen at this moment. 
The correlation functions of this combined field no longer 
depend on T, and an eigenfrequency of localized electronic 
states r 2 - I  is then a sum of the impurity backscattering fre- 
quency T~;' = g n / u  and the phonon correction r$i 
= 9 ,,2 (O)/u: 

The phonon term in Eq. (25) is related solely to the momen- 
tum dissipation of electrons by interaction with the lattice 
and represents in fact renormalization of the electron mass. 
The magnitude of this term is easily estimated if we bear in 
mind that the backscattering of the Fermi electrons involves 
a narrow packet of phonon modes, the relative number of 
which is 

It is this number that provides a measure of the randomness 
of the static phonon potential acting on electrons and, conse- 
quently, determines its small role in the localization of the 
electronic states. Using the relationships described by Eqs. 
( 12) and ( 14), we find that the total elastic electron back- 
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scattering frequency allowing for the short-wavelength 
phonons is given by the expression 

Apart from small corrections, this quantity is identical-in 
the adiabatic temperature limit (3)-with the frequency of 
electron scattering by impurities, which is consequently the 
main process that determines the localization length of the 
electronic states. 

We shall now consider the second term in the correla- 
tion function of th$currents proportional to the first power 
of the derivative dX/d r .  Simple transformations can reduce 
it to the following form: 

I3 m 
(ev)" 3g' (k ,  wn) = - - 5 1 d r  dr l  q exp [UI (r' - r)l 
LB3 I=-m '4 

Analytic continuation of the function (27) to the real fre- 
quency axis yields the corresponding term in the conductiv- 
ity ~ " ' ( k ,  a ) .  This procedure is similar to that adopted in 
Ref. 30 and it is described schematically in the Appendix I. 

In view of the fairly complex structure of Eq. (27), the 
result of its analytic continuation along the frequency axis is 
difficult to see (before averaging) because of a large number 
of terms. Since the expressions simplify somewhat as a result 
of averaging, we shall describe briefly the averaging proce- 
dure employed in the present study before giving the final 
results for d l ) ( k ,  w). 

4. AVERAGING OVER REALIZATIONS OF RANDOM FIELDS 

Our averaging method is based on a special representa- 
tion of a one-particle retarded Green function of an electron 
in an arbitrary static field. In the approximation of Eq. (4)  
this function is a 2 x 2 matrix, the elements of which can be 
described by a combination of a finite number of functions of 
one spatial variable of the causal type (blocks), which are 
functionals of the external fields. The explicit form of the 
matrix Green function is obtained in Refs. 16 and 24 allow- 
ing only for the fields [ and < + which can scatter an electron 
backward. We must allow also for the forward scattering 
associated with the field rl because the Green functions in 
Eq. (27) depend on the various "time" arguments r and 7'. 

The appropriate expressions for the matrix elements of the 
retarded Green function are given in the Appendix 11. 

One of the main features of the representation given by 
Eq. (112) of the Green function in terms of < , I-": , and y+ 
is the circumstance that in the case of the &correlated (with 
respect to the spatial coordinate) random fields the averag- 
ing of the functionals of the "plus" and "minus" types is 
carried out independently. This follows directly from Eqs. 
(113)-(116): the ( + ) blocks are governed by the random 
fields ~ ( x ' ) ,  < (x'), and < + (x') with the coordinates x' > x, 
whereas the ( - ) blocks have the coordinates x' <x.  

In the averaging of the blocks composed of functionals 
of the same "sign" we must allow for the fact that the func- 
tional dependences of the average quantities on the real field 
7 and on the complex fields [ and [ + are fundamentally 
different. For example, it follows from Eqs. (112) and (115) 
that any blocks composed of the functionals r + and ii- + 

contain random fields only in the combinations 
-, 

A special feature ofthe new fields f (x, T) and f + (x, T) is the 
vanishing of their corre1;tion function for different "times": 

where 

a, (0) =aiz+~b2 (0). 

The relationship (29) permits a change from the aver- 
aging over < and < + to the averaging over 6 and f + and thus 
allows us to perform this operation in Eq. (27) separately for 
the functions dependent on T and T'. Moreover, bearing in 
mind the Gaussian nature of the random fields [ and [ +, we 
find that the conductivity $"(k, o) is described by a rela- 
tively compact expression which contains only the terms 
that do not vanish as a result of the averaging: 

m 6 

iez 
d l )  ( k ,  o)  = --- I d c [ n . ( e - a ) -  n F ( e + o )  ill d r d r p  

2nfiZvo -_ 
0 

where 

and 

x G,' (E, ,  r') eikf63GOa ( E  - o ,  z)]), (3 1 ) 

iv3 
@a ( T ,  T') = - ( S p  [53e-ik*Goa ( E  - Q,, r )  L 

X G,' ( E ,  r')  eik*S3G,," ( E  - 0, r ) ] ) .  (32) 
The operation of averaging of Eqs. (31) and (32) can 

be carried out in several stages. The first stage involves aver- 
aging the +-dependent Green functions over the fields f and 

+. Then, only the diagonal components of these functions 
remain finite: 

i 
= - - 0 ( x - y ) e ~ ~ { [ i ~ - ( 2 ~ ) - ~ ]  ( x - y )  

v V 

(33) 

Yu. V. Tarasov 599 599 Sov. Phys. JETP 70 (3), March 1990 



The next stage requires averaging of the fields ~ ( x ,  r) and 
~ ( x ,  7'). After several transformations these fields are con- 
tained only in the phases of the exponential factors of the 
matrix elements of G :' in Eq. (112) and then the averaging of 
the realizations of these fields can be carried out using an 
easily verifiable relationship 

where 
A B , = a ,  ( 0 )  - a ,  ( T - z ' )  . 
In the final stage we have to average r-dependent binary 

combinations of the Green functions in Eqs. ( 3  1 ) (32) of the 
fields and 4 +. This operation is carried out using recur- 
rence relationships derived in Ref. 16. In view of the complex 
structure of the quantities being averaged, the averaging 
procedure is very cumbersome and we shall not describe it 
completely. The final result of the averaging is as follows. 

The correlation functions (31 ) and (32) are represent- 
ed by infinite series of auxiliary correlation functions: 

ee 

where the symbol (k-  - k )  describes the previous expres- 
sion in which the sign of the wave number k is reversed. The 
functions of a discrete variable n in Eq. (36) satisfy a system 
of coupled finite-difference equations: 

2i (or+o) T , R , + ~  (Rn+l+Rn-l-2R,) =O, & = I ;  (38 ) 

- ( n + l ) Z I K n + t  (k ) -Kn(k)I  +nZ[Kn(k)-Kn-t(k)  I 
-2 in(or+o)  zZK, (k)+i [kJz- (or+  o ) ~ z I  Kn(k)  

=Lz[Pn ( k )  -&,I ; (39) 

- n { ( n + I )  [ O n + i ( k ) -  B n ( k )  I -  n [ P n ( k ) - Z n - t ( k )  I )  
-2in (ol+o) z z P ,  ( k )  

+ i ( k l Z - ~ r 2 )  19. ( k )  - ItRn; (40) 

The equations for x , ,  K,, p,,, and 2'" differ from Eqs. 
( 38)-(41) because of the replacement w - - w and because 
of some modifications of the right-hand sides. One of the 
boundary conditions for the functions K,,  ,Y ,,, , and A',, is a 
fairly rapid fall in the limit n -- cc,. The following comments 
should be made about the values of these functions when 
n = 0: The expression for Y o  follows from Eq. (40) and 
from the boundary condition for Eq. (38),  whereas the cor- 
responding condition for KO and LA', allows for the fact that 
these functions are finite irrespective of the values of the 
parameters in the equations. 

With the exception of the exactly soluble equations tbr 
R,, and R,,  (see Ref. 4 ) ,  the remaining equations can be 
solved only approximately and the asymptotic behavior of 
the solutions is determined by the parameter 

where the plus sign corresponds to Eqs. (38)-(41) and the 
minus sign to the equations for the quantities with a tilde. 

We shall consider the most interesting range of low fre- 
quencies < 1 (if WT2 4 1, the localization effects are un- 
important and the conductivity can be calculated on the ba- 
sis of the transport equation given in Ref. 28). In this case 
the dissipative conductivity is calculated bearing in mind 
that in the summation of l terms in Eq. (30) the most impor- 
tant is the range corresponding to Icr , I 6: 1. We shall intro- 
duce in this range the self-similar variablep = ncr + . Then, 
assuming that la + 1 < 1, we can replace approximately the 
sums over n in E ~ S .  (36) and (37) with integrals and the 
finite-difference equations with differential equations. In the 
self-similar approximation the first terms in Eqs. (36) - and 
(37) balance out mutually, and the functions .kp, -4, as 
well as Y p  ( k ) ,  3, ( k )  are pairwise identical. They satisfy 
the differential equations 

d d 
[-P,P,+P 

where R (p )  = 2 p ' i ' ~ ,  (2p"') [K,. ( x )  is the Macdonald 
function], which have the following solution 

Allowing for the fact that, because of the difference 
between the constants of the interactions of electrons with 
long- and short-wavelength phonons, the ratio A2Z ,/ 
2 9 , ( 0 )  is always small 

we find that the conductivity c"' considered in the self-simi- 
lar (SS) approximation is described by 

u:!'(k, o) v:," ( O . O ) / [ l +  (k12)z12, 
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Here, a,- ne2r2/m is the characteristic value of the conduc- 
tivity of a three-dimensional metal (allowing for the role of 
phonons in T; I), d, is the coefficient in front of the function 
F(T  - T') in the sum of the correlation functions ( 12) repre- 
senting the inelastic forward electron scattering: 

The coefficient d, is governed by the competition between 
the inertial and cross-deformation electron scattering mech- 
anisms and it generally depends on temperature. 

5. ANALYSIS OF RESULTS 

In the preceding sections it has been shown that in the 
quasistatic temperature range defined by Eq. (3)  the con- 
ductivity of a 1D metal can be represented by a rapidly con- 
verging adiabatic series. The first term in that series, which is 
a'"'(k, w), is governed by the Green function of Eq. (24).  
This term manifests most clearly the effects associated with 
the elastic scattering of electrons by random impurity and 
phonon fields. It is known that such scattering in 1D metals 
results in the localization of the electronic states, i.e., the 
term aiO'(k, W )  is identical with the expression for the con- 
ductivity at T = 0 derived and analyzed earlier.4,21.2x,31 One 
difference between the results obtained in the present study 
and the expressions obtained earlier is the renormalization 
of the electron mass as a result of the scattering of electrons 
by short-wavelength phonons. However, it is clear from Eq. 
(26) that the influence of these phonons on the localization 
of the electronic states is weak compared with the influence 
of the impurity scattering. This is due to the following cir- 
cumstance: although the phonon field can as a whole be re- 
garded as a random time-dependent Gaussian potential of 
electrons, the localization effect is not influenced by the 
whole spectrum of harmonics of this field, but only by cer- 
tain (resonant) packets of harmonics with the momenta 
lql -2p0. The random nature of the field created by these 
harmonics is due to a slight disturbance of the translational 
invariance of the crystal lattice by the presence of impurities. 
Therefore, the degree of deviation of the phonon potential 
from the regular form is governed by a small parameter 
(q, li ) - < 1 and a significant influence of phonons on the 
localization of the electronic states is impossible in terms of 
the approximation described by Eq. ( 3 1. 

Apart from ai"'(k, w), all the other terms of the adiaba- 
tic series describing the conductivity are related to the delo- 
calization of electrons because of the inelasticity of the elec- 
tron-phonon scattering processes. In the limit (3 )  the 
dominant term among the remaining part of the series is 
a"'(k, w ) ,  described by Eq. (46). Its temperature depen- 
dence is governed by the relationship between T and a,. 

We shall first consider the temperature range where 
T<w, . Since, as demonstrated by Eq. ( 13), the characteris- 
tic value of the momentum of long-wavelength phonons gov- 
erning the correlation functions of the forward scattering in 
Eq. (12) is of the same order as T/s, the following value of 
a"' is obtained from Eq. (46) : 

0"' (0,O) 

The upper part of Eq. (48) represents the case when the 
inertial electron-phonon interaction mechanism predomi- 
nates, whereas the lower part corresponds to the cross-defor- 
mation mechanism. 

The self-similar approximation used to derive Eq. (48) 
in fact corresponds to the zeroth approximation in terms of 
the parameters of Eq. (42). Allowing for their finite nature 
and, consequently, for the discrete relationships (36)-(41) 
we obtain only small complex corrections to u:A. Unimpor- 
tant small corrections appear also on inclusion of the contri- 
bution of the nonself-similar range of summation of I terms 
in Eq. (30), where the absolute values of the parameters a .  
exceed unity. 

In the temperature range T >  w, the condition of rapid 
convergence of the adiabatic series describing the conductiv- 
ity is now no longer given by Eq. (3) ,  but 

Bearing in mind that the interaction of electrons with phon- 
ons at temperatures T >  w, is purely of deformation nature, 
we find that in this case the term a"'(0, 0 )  is given by the 
following approximate expression: 

This expression is derived on the assumption that the in- 
equality (3 )  defining the temperature range does not change 
to the opposite but stronger inequality. However, if Tr2 $1  
[which is, in fact, incompatible with the condition of Eq. 
(49) 1, the situation becomes strongly nonadiabatic. In this 
case the correct results for the conductivity can be obtained 
by the diagonal method used in Ref. 3 1 (see also Refs. 32 and 
18). 

We shall conclude by noting the following circum- 
stance. The term ui"(k, w) associated with the inelastic scat- 
tering of electrons by long-wavelength phonons, cannot be 
derived by a simple qualitative analysis of the kind proposed 
by Mott5 and based on the concept of electron hopping 
between weakly correlated localized states. This is clearly 
related to the critical role of the interference effects in the 
formation of the localized states themselves4 and in the dy- 
namics of these states, which must be followed continuously 
allowing for the slow [described by the inequalities (3)  and 
(49)]  changes in the phases of the "bare" Bloch electron 
functions. This point of view is supported by the fact that all 
(without exception) terms ofthe adiabatic series for the con- 
ductivity can be represented by sums of the type described by 
Eqs. (36) and (37) and typical of interference phenomena 
that appear as a result of multiple scattering of the 1D elec- 
trons. 

The author is grateful to A. A. Gogolin, D. E. Khmel- 
nitskii, S. A. Gredeskul, R. I. Shekhter, and V. A. Slyusarev 
for discussing this work and critical comments, and to L. V. 
Chebotarev for valuable discussions during this work. 

APPENDIX I. ANALYTIC CONTINUATION OF THE FUNCTION 
.9::'k 0,) 

An analytic continuation of Yi l ' (k ,  a , ,  ) from complex 
frequencies w,, ( n  > 0 )  to the real axis w + iO can be made by 
going over from summation ofs terms in Eq. (27) to integra- 
tion with respect to the complex variable E:  

601 Sov. Phys. JETP 70 (3), March 1990 Yu. V. Tarasov 601 



The integration contour C in Eq. (I1 ) is a set of circles 
of infinitesimally small radius covering in the positive direc- 
tion the poles of the function n. (E)  Further transformations 
are determined by the actual form of P(E). 

We shall consider, by way of example, the quantity 
m 

which occurs in the first term of Eq. (27). The fact that all 
the singularities of the function Y,,(E) are, on the basis of its 
definition (20), simple poles lying along the real axis 
( E ~ R )  permits us to deform the contour C in the integral 
( I  1 ) into a contour C' consisting of six straight lines located 
quite close to the lines E- R, E = R + w,, , and E r R - w ,  , as 
shown in Fig. 1. Substitution of variables can be used to 
reduce an integral over a contour C ' to an integral along the 
real axis where, without altering the analytic properties of 
the integrand, we can now make the substitution 
w,, -w + iO. Bearing in mind that the term with w ,  = 0 is 
missing from Eq. (27), we find that the required quantity 
I(w + iO, w, ) is described by 

Here, G ~ " ( E )  = Y(](E +_ iO) are the retarded and advanced 
Green functions for a fixed instantaneous realization of the 
external fields. 

The expression (13) can be simplified by considering 
separately the cases when I >  0 and I < 0. This specifies the 
analytic properties of the functions 9 ,(E + w l  ) : they are 
now functions of a specific (retarded or advanced) type. 
Averaging causes vanishing of the terms in Eqs. (13) con- 
taining functions ofjust one analytic type. Bearing this point 
in mind, we obtain the following expressions for I (w + iO, 
w,  1: 

X 
(Sp[Gor (e+at) Gor (e) Gf (E-a) ] ), E>O; 

{ - (Sp[Gi(e+a,) Gor (8) GI(E-a) 1 ), K O .  (I4) 

An analytic continuation ofthe second term in Eq. (27) 
is obtained in a similar manner. Then, allowing for the char- 
acteristic features of the averaging procedure described in 
Sec. 3, we obtain Eq. (30) for a"'(k, w). 

APPENDIX II. MATRIX REPRESENTATION OFTHE GREEN 
FUNCTION 

The vector form of the wave function of Eq. (4),  used in 
the weak scattering case [Eq. ( 15) ] leads to a matrix Green 
function of electrons. The factors $+ ( x )  in Eq. (4)  are con- 
tinuous functions of the coordinate; and the characteristic 
scale of changes in these functiolis is determined by the local- 
ization length, which is of the order of I,. The continuous 
parts of the matrix elements of the retarded Green function 
corresponding to these factors are found by inversion of the 
operator 

F (8) =e+ivu,alax-9 (x, T) .- 5 (2, T) B+ 

-f'(x, z) h (111) 

(Im e>O) 

in the coordinate and pseudospinor spaces. This procedure is 
exact for arbitrary functions 7, <, and + and it is described 
in detail in Ref. 16 for the case when 7 = 0. Inclusion of the 
field 7 simply complicates this procedure, so that we shall 
give only the final results. The expression for the retarded 
Green function in the case of an instantaneous (correspond- 
ing to a fixed value of T) realization of the random fields is": 

G," G," 
x e x p i - K J  v ..- q ( x ~ ) c i z ~ ] ) - i (  G," G," ) ,  (112) 

where 

e+o  
G2" = i exp [-i - 

u 
(x-y) 

n-a ( x )  + I j  9 G ~ ) ~ X J H  O(~-Z) -  
Y a-" (Y) 

FIG. 1. 
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solution of the boundary-value problem, it can be expressed 

The matrix elements in Eq. (112) are constructed from 
one-coordinate functions or blocks 71; (x) ,  (x)  and ./: 
(x), which are functionals of the random fields ~ ( x ' ,  r ) ,  
{(XI, T )  and 5 + (x', 7),  which means that they depend para- 
metrically also on 7. These blocks satisfy the equations 

I'+"(x)+ O for x+w; (113) 

dr-" ( x )  o 1 
ak 

= 2 i - I ' - u ( x ) + - ~ ( x ) e x p  
v v - m 

I'-Y(x)+ o for x+-m; (114) 

n+'(x) + i for x+m; (115) 

d l  r- ' (x)  f + ( 4  --=----- 
& n-" ( x )  n- . (x)  v e x p [ - P j  - x q ( z l ) h ' ] ,  

n-"(x)+1 for x+-00; (116 

Y**(x)  = r * m ( ~ ) n * u ( ~ ) .  (117) 

The most important feature of the representation given 
by Eq. (112) is that, although the Green function itself is the 

in terms of the functionals 7j; , r'j; and ./+ , which satisfy 
the conditions of the dynamic caisality. The averaging of 
these quantities can (under some conditions) be carried out 
exactly, which in the final analysis makes it possible to in- 
clude the interference effects associated with the multiple 
scattering of electrons. 

"The time arguments of the random fields 7,6, and 6 + and of the func- 
t ional~ of these fields are omitted from Eqs. (112)-(117) in order to 
avoid overloading these expressions. 
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