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The integrodifferential equation which determines the shape of the strong-absorption wavefront 
in an optically bistable medium is analyzed. For an optically thick wave, this equation is similar to 
the familiar equation in the theory for the growth of a needle-shaped dendrite from a supercooled 
melt. The propagation of flames and laser combustion are described by similar equations. Within 
the laser pump beam, the shape ofa wavefront in steady-state motion is degenerate; there is a 
family offronts, which are elliptic paraboloids (or parabolas, in the two-dimensional case). A 
condition which relates the unknown wave velocity v and the unknown principal radii of 
curvature of the tip of the paraboloid,p, andp, (or v andp, in the two-dimensional case), is found 
from the solution. There is the problem of a velocity selection for a given pump intensity. The 
electron-hole plasma which is excited plays the same role for the wave as is played for a dendrite 
by an anisotropy in the kinetics of the solidification of a melt. The theory ofdendrite velocity 
selection in an anisotropic medium as it exists today is not satisfactory. 

INTRODUCTION 

A strong-absorption wave in an optically bistable or 
very nonlinear extended medium can be excited by a laser 
pump in gases,' semicond~ctors,~~' and  insulator^.^,^ This 
wave can propagate either independently or in association of 
waves of other types such as melting, e~aporat ion,~ combus- 
tion,' etc. The mechanism for the propagation of a strong- 
absorption wave might run as follows: The optical absorp- 
tion coefficient in the bistable medium of interest depends on 
the temperature T. The absorption is strong if the tempera- 
ture exceeds a certain critical or characteristic value To; in 
this case, an electron-hole (e-h) plasma forms (for definite- 
ness we will discuss semiconductors below). The recombina- 
tion of this plasma causes a heating of the medium, and this 
heating propagates as a result of (for example) thermal con- 
ductivity. Let us assume that, by virtue of the initial condi- 
tions, the temperature profile along the light beam, T(z), is 
already nonuniform, so that the value TO is reached at a cer- 
tain point z, ,  and thereafter T(z) is higher than T,,: 
T(z) > T,,, z <z, .  The front of the wave, which is initially at 
the point z = z,,  then moves opposite the beam, since the 
evolution and transfer of the heat raise the temperature 
ahead of the front. There is usually also a trailing edge 
T(zz) = T,,, z2 < z,,  if the beam is bounded in the transverse 
direction. A strong-absorption wave has a threshold in terms 
of the pump intensity, J, >J,, . The threshold value J,, is 
determined by the excitation conditions and the properties 
of the medium. 

Experiments have been carried out on wave propaga- 
tion in the interior of a medium,'-' on the localization of a 
wave at the front bo~ndary ' .~ and the rear boundary'of a 
medium ("front" and "rear" from the standpoint of the 
light), and on localization near the focus of a laser beam.'.-' 
Localization at boundaries gives rise to a variety of dynamic 
regimes: the ejection of kinks,' self-oscillations, autowaves,' 
a period-doubling of self-oscillations,%tc. 

The theory of strong-absorption waves which has been 
derived for gases' and transparent is semipheno- 
menological and essentially similar to the classical theory of 
combustion  wave^.'^^ A one-dimensional description has 

been adopted for the fields of the temperature, T(z), the 
light intensity J ( z ) ,  and the plasma density n (z) along the 
beam. Because ofenergy conservation, a solution in the form 
of a one-dimensional wave which is moving at a constant 
velocity v has no threshold: 

v=G, F=I,/c (To-T,)  . (1 )  

Here c is the specific heat at constant volume, and T, is the 
temperature of the medium far from the wave. A transverse 
relaxation of the temperature, which leads to a threshold, 
has been taken into account by means of a phenomenological 
term ( T  - T, )rT. This term is interpreted in the following 
way: The three-dimensional Laplacian is written as consist- 
ing of a longitudinal part d2/dz2 and a transverse part 
r -  ' (d/dr)  [ r (d/dr)  1. By virtue of an assumption of the 
model, the thermal field has a transverse dimension on the 
order of the beam radius R , ,  so the transverse part of the 
Laplacian is replaced by a relaxation term, where 
r, = AR '/A. The coefficient A  is a number on the order of 
unity which is used as an adjustable parameter, and A is the 
thermal diffusivity. Not infrequently, the size of the thermal 
field turns out to be considerably greater than that of the 
beam. The difference itself, of course, depends on the nature 
of the dynamic 

Nevertheless, this one-dimensional description has 
made it possible to explain most of the experimental facts 
and to reach an agreement between semiquantitative esti- 
mates and measured quantities within an order of magni- 
tude.' A more accurate agreement has been prevented by the 
choice of a single value of the coefficient A.  

Experiments have been interpreted on the basis of the 
model of a thermal wave which was summarized at the be- 
ginning of this paper, and in which the motion of the front is 
associated with thermal conductivity. The ambipolar diffu- 
sion of the e-h plasma (as a transport process) and the plas- 
ma-density dependence of the optical absorption edge (as a 
nonlinearity) could in principle "create" similar nonther- 
ma1 wavesh 

In this paper we analyze a system of equations for the 
shape of the strong-absorption wavefronts for the three-di- 
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mensional ( 3 0 )  and two-dimensional ( 2 0 )  cases. Further 
progress toward an analytic theory is possible (Secs. 1 and 
2)  for an optically thick wave, in which case the optical ab- 
sorption length is short in comparison with the dimensions 
of the problem, and also for an optically thin wave, in which 
case the absorption (and refraction) of the light is ignored 
altogether. If the beam is not bounded in the transverse di- 
rection, the equation for the shape of the front of an optically 
thick wave is the same as that for a needle-shaped dendrite or 
combustion front. A solution in the form of a wave in steady- 
state motion (Sec. 3 )  yields only one condition on the three 
unknowns involved here: the velocity u and the radii of cur- 
v a t u r e , ~ ,  andp?,  of the tip of the wave (or  u a n d p  in the 2 0  
case). A so-called Ivantsov continuum of possible steady 
states arises.9-' For a needle-shaped dendrite this condition 
corresponds to a functional dependence u cc max (pi I), 
apparently because as time elapses the front branches out, 
reaching small values of p and large velocities u. For a 
strong-absorption wave, the same condition yields 
u = E[l - O(p, I )  - O(p; I )  1,  and the highest velocity cor- 
responds to the largest radii of curvature: those of a plane 
front. The difference in behavior stems from the circum- 
stance that the heat evolution (the power of the sources) at 
the front of a dendrite is proportional to the normal velocity 
of the front at each point, while in an absorption wave the 
power of the sources does not depend on the velocity. The 
equations are identical because the motion of the front is 
uniform. 

In Secs. 4 and 5, we call on the theory of velocity selec- 
tion which has recently been derived for dendrites. Consid- 
erations regarding the maximum velocity u(p, ,p,) do not by 
themselves imply a selection of any sort, and the time-vary- 
ing problem should be studied. I t  was thus a natural step to 
analyze the theory, which has recently been developing very 
rapidly. In this theory, the following assertions have been 
made, originally on the basis of local  model^'^.'^ and later on 
the basis of a complete integrodifferential equation (Refs. 
14-19; see also the review by Kessler et ~ 1 . ~ "  ) .  

a )  The addition of perturbations (of the surface tension 
and/or the kinetics at the solidification front) to the equa- 
tion completely erases the Ivantsov continuum. This and the 
following assertions are made on the basis of a singular per- 
turbation theory. 

b)  The incorporation for these perturbations of a spe- 
cial anisotropy 

where& is the small parameter of the anisotropy, and $is the 
angle between the z axis and the normal to the front at the 
given point, makes it possible to reconstruct a countable set 
of solutions from the continuum which has been erased. 

C )  Among the solutions which are reconstructed, that 
which corresponds to the maximum growth rate is singular- 
ly stable (in the linear sense). 

In this paper we show that incorporating the rapid dif- 
fusion of plasma in the wave over the recombination time r, 
leads to corrections of the same kind as in the nonequilibri- 
um kinetics at a crystallization front. In this case the func- 
tion B($) takes the form 

and at small E we can use the approximation B($) =1 B l  ($). 
This approximation, incidentally, is valid only at the real 
axis. For complex $, expressions (2a)  and (2b) have differ- 
ent singularities, while assertions a)-c) are associated with 
specifically the behavior of B($) near singularities." We 
show in Sec. 5 that for the anisotropy in (2a)  there is a veloc- 
ity selection, while for that in (2b) there is not. 

This distinction, according to which the selection is cri- 
tically sensitive to an arbitrarily small change in B($),  is 
nonphysical. On the one hand, it is not amenable to experi- 
mental test. On the other, a microscopic calculation ofB($) 
itself unavoidably involves perturbation theory. The use of 
perturbation theory should now become systematically sin- 
gular, and that situation is essentially meaningless. Putting 
aside the question of the mathematical validity of the theory 
of anisotropic corrections, we will content ourselves with the 
assertion that this theory is not applicable to the existing 
anisotropy B($) in (2b).  This theory is equally inapplicable 
to other nonlinear systems. 

A strong-absorption wave is a new entity, used to study 
the formation of nonequilibrium structures similar to sys- 
tems with phase  transition^,^,'^ to systems with viscous li- 
quids which displace each other,2' etc. 

1. DERIVATION OF EQUATIONS FOR THE SHAPE OF 
STRONG-ABSORPTION WAVEFRONTS. THREE- 
DIMENSlONAL(3D) WAVE 

We consider the thermal wave of Ref. 6, in which the 
nonlinearity of the refractive index is associated with the 
temperature, a ( T), while the wave motion is associated with 
the thermal conductivity. The fields of the temperature T 
and the intensity J obey the equations 

Ttl=hAT+a ( T )  Jlc, 

J,'=-cc ( T )  J .  

The light propagation direction coincides with the negative2 
direction of the cylindrical coordinate system {= (z,r) ,  
r = (r,p); refraction of the light is ignored; and c is the spe- 
cific heat of the medium at constant volume. The boundary 
conditions on Eqs. (3a)  are 

Let us assume that a ( T) is a very simple bistable func- 
tion a ( T )  = a H ( T  - T,,), where H ( x )  is the unit step func- 
tion. The connected spatial region in which the condition 
T(f , t )  > T,, holds is then called a "strong-absorption wave." 
We are interested in a solution T(z  - ut,r), J ( z  - ut,r) 
which moves at a constant velocity u, under the assumption 
that the wave is formed by the two fronts z ,  ( r )  and z 2 ( r ) ,  
z ,  ( r )  )z2 ( r )  . We define the unit of length to be p ,  which is 
one of the radii of curvature of the front at the z axis; we 
define the unit of time asp/u; we define the unit of intensity 
as J7 ; and we put the origin of the temperature scale at T, 
and express the temperature in units of Jz /uc. In terms of 
these dimensionless variables, Eqs. (3a)  and (4a)  become 

where p =pu/2R is the Peclet number, y = ap ,  
19,) = ( T,, - T _  )uc/J, , and the fields O({,t) and j (6 , t )  are 
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the dimensionless temperature and the dimensionless inten- 
sity. Substituting the solution of the second equation in (3b) 
into the first, and transforming to the argument z-z - t, we 
have the following analytic equation for 6 ( f ) :  

(2~)-'AO+O,'+yim ( r )  exp (-7 [ z ,  ( r )  -zl ) H(0-e0) =0, ( 5  ) 

Here we are assuming 6 ( f )  = 6,, at f = [z,,, ( r ) ,  r, p ] .  Us- 
ing the Green's function for (3b) or ( 5 ) ,  we can write explic- 
it integral equations for the functions z,., ( r ) :  

The integration over d 'r' is carried out in the plane perpen- 
dicular to the z axis, over the ( r , p )  region in which the rela- 
tion 6 ( r )  >8,, holds; 

R : , ~ = R ~ ~ +  [ ~ ~ , ~ ( r )  -z'iZ, 

R,2=P+r'2-2rr' cos cp. 

The right side of (6 )  is a constant when considered as a 
function o f f .  Consequently, a solution, if one exists, is not 
unique. System (6 )  for z,,, ( r )  is complicated. We will dis- 
cuss two limiting cases in terms of the value of the parameter 
Y. 
Optically thick wave 

In this case all the incident light is absorbed just behind 
the front, and the parameter y is large. In Eq. (6 ) ,  we can 
carry out the integration over dz', 

P 
xexp{ - U [ ~ L 2 +  ( z  ( r )  - Z  (r') + t ) 2 ] ) ,  

where z ( r )  =z,  ( r ) ,  and then the integration over dt: 

0. = JL J J k r ' j m  ( r f )  R-' exp i -p~-p  (z  ( r )  -z ( r f )  ) I ,  
2n 

R2=RL2+[z ( r )  - Z  ( r ' )  1'. 
(8b) 

The position of the trailing edge is obviously not important 
now. In Sec. 3, for example, we discuss the situation with 
j, ( r )  - 1, in which there is no trailing edge at all. In this 
case the solution of Eqs. (8 )  is known from the theory of 
dendrite growth and was derived within the Ivantsov ansatz 
(Sec. 3).  

Optically thin wave 

We assume that the optical absorption length is larger 
than all the length scales which determine the behavior of 
the wave; the parameter y is small. Integrating over dz', we 
find, for the front, z ( r )  -z, ( r ) ,  

(D 

The absorbed radiant energy is evolved as heat uniformly 
everywhere within the front z ( r ) ,  so the temperature differs 
from point to point within the front. This circumstance rules 
out the use of the Ivantsov an sat^,"',^^ which is valid for Eq. 
(8 ) .  Beginning in Sec. 3 below, we discuss an optically thick 
wave. 

2.20 WAVE 

For a 2 0  wave we introduce the Cartesian coordinate 
system 6 = (z,x), with z axis running opposite the beam di- 
rection, as before. The boundary condition on the light in- 
tensity now takes the form 

JIZ-. .=Jm ( x )  = l m j m ( x ) .  

The equations analogous to ( 6 )  are 
m m 

where the quantities R ,,, are as in ( 7 ) ,  but with 
R : = ( X  - x ' ) ~ .  For an optically thick wave we find the 
equation [cf. (8a)  ] 

P x e x -  - z )  Z X )  + ) + R ~ ]  } ( I l a )  2t 

or [cf. (8b ) l  . 

where KO(z) is the modified Bessel function. A solution of 
Eqs. ( 11 ), like a solution of Eqs. (8 ) ,  is known for j_  ( x )  r 1 
(Sec. 3) .  Finally, in the case ofan optically thin wave we find 
from (10) an equation to which we can apply the same 
words that we applied to its 3 0  analog, (9 ) :  

3. PARABOLIC SOLUTIONS FOR OPTICALLY THICK WAVE 

We set j, ( r )  = 1 in Eq. (8b).  Now, the solution may 
not be axisymmetric. As Horvay and Cahn have shown 
(Ref. 23; see also Ref. 14), there exists a solution of Eq. (8b) 
in the form of an arbitrary elliptic paraboloid 
~ ( r )  = - x2/2 - vy2/2, where (x,y) = ( r ,p ) ,  and the prin- 
cipal radii of curvature are 1 and v ' (in dimensional units, 
p ,  = p ,  pz =p/v) .  Substituting this solution back into Eq. 
(8b),  we find a condition on the parameters 6,,, p, and v: 
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present paper, 

For a circular paraboloid ( v  = 1 ) we find 

Let us analyze condition (13a) at large and small Peclet 
numbers. Using the explicit expressions for the parameters 
O,, andp, and solving the equations for the velocity, we find 

v=F [I- (44-V) Alp], 

u= ( a l p )  exp [-2v'"h/5p]. 

In ( 13b) [and in ( 15b) below] the second term is a small 
correction to the first. The regions in which asymptotic ex- 
pressions ( 13b) and ( 13c) are valid are the same as those for 
asymptotic expressions ( 13a). 

In the 2 0  case there is the analogous solution 
Z ( X )  = - x2/2, for which the wavefront is a parabola. The 
corresponding condition on the parameters 8,) and p is 

Oo= (np) "eP erfc (p") = (15a) 

Hence 

v=5-Alp, p B l ,  
v=npFzj2h, p e l .  

Analyzing the convergence of the integrals in Eq. (Sb),  we 
find a convergence radius on the order of [max( 1, v -.- , p,  
p/v) ] I . On this basis we can assert the assumption j ,  = 1 
is valid near the "bow" of the wave if the radius of the light 
beam, R,,  is greater than the convergence radius. In dimen- 
sional units, this assumption is valid if the condition 

holds or (for the 2 0  case) if th,e condition 

Rl>min [p, h/5] 

holds. 
We see that Eqs. ( 13)-( 15) determine only a certain 

combination of the velocity v and the radii of curvaturep and 
p/v, depending on the external conditions ( v  andp  in the 2 0  
case). There is the problem of the selection of a single veloc- 
ity. 

If we seek the maximum velocity by varying the radii of 
curvature, we find from ( 13 )-( 15 ) that the maximum is 
reached for a plane front, with p , ,  pl = CQ. In this case we 
have v = E. 

Comparison with the lDmodel 

Let us compare these results with the 1D model. For an 
optically thick wave we find the following from Eqs. ( 14) 
and ( 15) of Ref. 6: 

Here we have switched to the dimensionless variables of the 

while in dimensional units we would have 

where the threshold intensity is J t l ,  
= 2Rc(T,, - T, ) / A  ' I2 R. In this notation, applicability 

condition ( 16) becomes specifically J ,  % J,, . 
We thus see that until we solve this velocity selection 

problem we cannot decide how well the 1D model agrees 
with the exact solution. All that we can do is assert that the 
threshold in the 1D model arises at the same intensities (if 
the values ofp ,  andp, are not too far apart) as those at which 
the validity of the derivation of conditions ( 13)-( 15) breaks 
down. Far from the threshold, J, > J , ,  , the 1Dmodel yields 
the expression v = E for the velocity. This result corresponds 
to a plane front and a maximum velocity. 

4. EFFECT OF EXCITED PLASMA. THEORY OF ANISOTROPIC 
CORRECTIONS 

In this section of the paper we calculate the singular 
corrections for the finite lifetime of nonequilibrium carriers, 
T, . In general, the band gap of a semiconductor, E, , which 
determines the optical absorption edge, depends on not only 
the temperature but also the density of the excited plasma; 
i.e., we have E, ( T,n ) . In the ( T,n ) plane there is according- 
ly a line which divides regions of strong and weak absorp- 
tion. In the linear approximation, the critical values To and 
no are related near the edge by the relation 

where h is the photon energy, which satisfies h - E,q 
E, . We are assuming that the plasma is nondegenerate and 

that the partial derivatives dE,/dT and dE,/dn are nega- 
tive. Using ( IS),  we can write the following expression for 
the parameter O,,, which characterizes the dimensionless 
temperature at the front: 

Here n = no - n, , and S T  is the heating which would be 
required if the effect of the plasma were ignored. 

Let us now calculate the density n, so that we can use 
the parameter in (19) in Eq. (8b).  We assume that an e-h 
plasma is excited in an optically thick wave and that this 
plasma is capable of propagation by ambipolar diffusion and 
also capable of recombination.' The wave has no trailing 
edge (j, r 1).  Since r, is short, the plasma is in a narrow 
layer near the front, and we are to find a description of its 
profile along the normal to the front. For this purpose we 
have the 1D equation 

Dn"-n/~,+ (aJ,lho) exp (--al/cos $) =0, (20) 

where 1 is the coordinate directed into the wave, opposite the 
outward normal to the front. The origin of the scale of this 
coordinate is at the front. The angle 1C, is the angle between 
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the z axis and the outward normal, and D is the diffusion 
coefficient. The drift term associated with the translational 
motion of the wave has been discarded on the basis of nu- 
merical estimates. For example, some experiments' with 
ZnSe involved the values D- 10 cm2/s, T, - 10-lo s, 
u - 10-100 cm/s, and a - lo4 cm - ' , and the diffusion length 
(DT, ) "' = 3.10 cm -a ' was comparable to the opti- 
cal absorption length. The drift length UT, - 10-9-10-8 
cm, on the other hand, was negligible. 

Solving Eq. (20) with the boundary conditions 
n ( + CQ ) = 0, we find the density at the front, 

'" cos $ 
e-'=a ( D T ~ )  '", 

and the parameter O,,, 

tlo=Bo-~B ($) cos $, B0=vc~TIJ,, 

where B($) has the form in (2b).  In the theory of dendrite 
growth there is a correction bB,, ($)cos$ to Eq. ( l l b ) ,  
where B,, ( I ) )  has the form in (2a) (see Refs. 24 and 25 in 
this connection). We find the same expression when we in- 
corporate the anisotropic kinetics of the solidification at the 
front. Under the condition fig 1, we seek a solution in the 
form c ( r )  = z ( r )  + r2/2, where f ( r )  is a small correction to 
the Ivantsov paraboloid, for Eqs. (8b),  ( 1 lb ) ,  with 8,, from 
(21) (for simplicity we are treating the axisymmetric case, 
with v = 1; in the 2 0  case we would have to replace r by x ) .  
In the singular-perturbation method, the correction f ( r )  
consists of a regular part and a singular part. The regular 
part is found from the solution of the equations with the 
derivatives ignored. From dendrite theory we know that it is 
an exceedingly complicated problem to derive the regular 
part of c ( r ) .  This problem has been solved in the 2 0  case for 
surface ten~ion"~" and for kinetics.24 No selection arises in 
this case. I would like to call attention to another circum- 
stance related to the calculation of the singular correction. 
For this calculation, one studies an equation with derivatives 
near the singular p ~ i n t . ' ~ . ' ~  For example, in the limit of 
small Peclet numbers ,~  < 1, an equation with a single param- 
eter arises near r = i (x  = i )  for the 3D(2D) problem: 

where r = i - i ~ "  /2 (x  = i - i ~ ' t  /2), and < = e4q, /4. For 
comparison, here is the equation near the singular point for 
the case B, ($) = 1 - ECOS$: 

The anisotropies B($) and B ,  ($) are approximately the 
same if E < 1. Equations (22a) and (23a) are of course com- 
pletely different, as are the results of the "selection." 

5. ANALYSIS OF SINGULAR EQUATIONS 

Equations (22a) and (23a) have a solution 
p ,  = (A * )  ' t "', at large t. This solution serves as an in- 
homogeneous solution if the equations are linearized. In the 
analysis we need to select those values ofA * ( v )  for which, by 
integrating from + iv or - iv, v$ 1, to the real axis in the 

plane of the complex variable t, with the initial condition 
q, = pN,  we find there the real solution Im[q,(Imt 
= 0 )  ] = 0. The unknown values R * = l i d  * (v )  are then 

found in the limit v-. C Q .  

A numerical integration yields the spectrum of un- 
known A * for Eq. (23a); the smallest positive value is 
R * = 0.016 ... There are no such values of A * in the case of 
Eq. (22a). T o  see just what happens, we consider the linear- 
ized versions of Eqs. (22a) and (23a), which have the same 
properties: 

A solution of (23b) is 

This solution is defined in the t plane, with a cut along the 
negative part ofthe real axis. In order to join with the regular 
solution, we need to suppress the exponential growth of q,(t) 
in (24) along the lines a rg (q )  = f n-. For this purpose, we 
choose the integration constant C to be 

and we impose the requirement of symmetry. In other 
words, we require q,(t) b real on the positive part of the real 
axis at t > 4 [the integral q ( t )  in (25) has a singularity at the 
point t = 41. This requirement selects the parameterA *. The 
integrals are evaluated explicitly under the assumption 
A * $1. The integral in (26) is then governed by the region 
It I < l,inwhichwehaveq(t) = - A *t3/3,witharg(q) = a 
along the ray 2n-/3, and arg(C) = 4n-/3. On the real axis, the 
expression in square brackets in (24) is therefore propor- 
tional to [ - e4""' + 1 ] a e""' ; taking into account the 
imaginary part of q ( t )  in (25), which stems from the cir- 
cumvention of the pole at the point t = 4, we find the select- 
ed values A * = ( k  + 5/6)/64, k = 0, 1, 2 ,... . 

In the case of Eq. (22b), the selection condition is 
Im(C)  = 0, since q ( t )  has no singularities at It / #O, CQ [the 
notation C, q has been introduced for (22b) by analogy with 
(23b); see (24) and ( 2 5 ) l .  We find 
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where u = 42 *. We make the further assertion that expres- 
sion (27) cannot hold at any positive value of u. We have 
been able to prove that I(u) is positive at u- 1 only by nu- 
merical methods. The asymptotic expressions for [(a) are 

5-''5r ('is) sin (4n/5) a-"5, a< I 

and have the same sign. 
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