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A generating Dominicis-Peliti functional is derived: It  generates time correlation functions for a 
melt of a system of polymer chains interacting with the Edwards Hamiltonian. The Gaussian 
approximation is used to obtain an expression for the correlation functions and susceptibilities. 
The concept of a local anisotropy of the mutual repulsion of chains is substantiated, together with 
the susceptibilities which are tangential or lateral relative to a profile of a polymer chain. A 
nonlinear approximation for the lateral self-diffusion coefficient is obtained in the principal 
approximation describing the interaction of a test chain with a polymer medium. It is shown that 
this equation has a solution corresponding to a localized state and that the localization length 
plays the role of the order parameter. In the limit of long chains the new theory is equivalent to the 
tube model. An explicit expression is obtained for the thickness of a tube expressed in terms of the 
chain characteristics. 

1, INTRODUCTION tube it is a rigorously defined and readily described concept. 

Modern dynamic theory of polymer melts relies strong- 
ly on the concept of chain cross-links formed because the 
chains do not intersect. The main model a~sumpt ion ' .~  is 
that cross-links prevent the motion of a chain at right-angles 
to the line of its contour; a chain moves along its contour 
inside a tube formed by the cross-links (the motion of a chain 
then resembles the creeping motion of a snake and is known 
as reptation). 

The microscopic reason for the concept of a tube is the 
local anisotropy of the mutual repulsion between chains, 
first pointed out in Ref. 3. The local anisotropy of this inter- 
action is a consequence of the invariance of this energy in the 
course of translation of a macromolecule along its contour, 
i.e., the interaction force is orthogonal to the chain contour. 

We shall develop these ideas in the present paper in a 
fairly general form and then apply them to investigate the 
self-diffusion coefficient of a macromolecule in a melt. This 
will be done by the Lagrangian formulation of the dynamic 
problem of a system of polymer chains interacting in accor- 
dance with the Edwards Hamiltonian (Sec. 2 ) .  The princi- 
pal (leading) approximation will be used to obtain expres- 
sions for the complete density correlation function. The 
concept of a local anisotropy of the bulk interaction, intro- 
duced in Sec. 3, leads to the idea of longitudinal and trans- 
verse (relative to a polymer chain profile) susceptibilities. 
The diffusion approximation describing the longitudinal 
motion and generalizing the corresponding equation for a 
primitive chain2 will be derived. The skeleton theory of per- 
turljations (Sec. 4 )  will be used to obtain an equation for the 
coefficient D1(k,z) of transverse diffusion causing disper- 
sion. It will be shown in Sec. 5 that this equation describes a 
dynamic transition of the localization-delocalization type, 
which in the case of polymers represents a transition from 
the Rouse behavior to reptation. We shall use here the ideas 
and representations developed earlier within the framework 
of nonlinear fluctuation hydrodynamics employed by 
G o t ~ e . ~ , ~  Localization occurs for a certain critical chain 
length N,.  We shall analyze expressions for the localization 
length do at right-angles to the chain contour. The localiza- 
tion length tube do clearly corresponds to the tube thickness 
in the reptation model of Refs. 1 and 2, but in contrast to the 

The quantity do can be expressed in terms of the characteris- 
tics of a test chain, the interaction potential, and the correla- 
tion function of a polymer medium. The final result is ob- 
tained for the case when a test chain is moving in a frozen 
polymer medium, but the theory can be applied also more 
generally. We shall assume that in the case of the system 
under consideration we can ignore the hydrodynamic inter- 
action, so that we shall not discuss it here. 

2. LAGRANGIAN FORMULATION OF FLUCTUATION 
HYDRODYNAMICS FOR A SYSTEM OF INTERACTING 
CHAINS 

We shall adopt a continuum model of a chain of length 
Nand  describe its position in space by specifying the func- 
tion R ,"(r,t) representing the radius vector of an element of 
thea  th chain at a moment t located at adistance r (O<r<N) 
from its end. The stochastic dynamics of a system of n inter- 
acting chains is then described by 

d 
- Rja ( T ,  t )  = 

6H{Rj) + f F ( ~ , t ) ,  a=$,.. . ,n ,  
at  6Ria ( z ,  t )  

where go is the "unrenormalized" (bare) friction coefficient 
of a chain segment; f,"(r,t) is a random Gaussian force with 
the zero average, and the Hamiltonian H{R, }  has the Ed- 
wards form:6 

(2.2 

where the length of a Kuhn segment I is taken to be unity. 
The first term describes the elastic energy of the interacting 
chains and the second the mutual repulsion between them 
(the actual nature of the interaction will be discussed in 
greater detail later). 
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A fluctuation hydrodynamics of a system described by we find that integration with respect t o p  and T, gives the 
Eqs. (2.1 ) and ( 2 . 2 )  will be based on the results of Refs. 7  compact form 
and 8 where a generating functional is obtained for the time- 
dependent Ginrburg-Landau model. Integration in the gen- Z{. . .}= 1 DQa exp { n  ln K @ } -  Iqa(1) UaB-i (1, 2 ) q B ( 2 )  }, 
erating functional is c~rried out over a field R ; ( r , t )  and 1.2 

over an auxiliary field R ; ( r , t ) ,  whereas the effective action ( 2 . 6 )  
for the problem described by Eqs. ( 2 . 1 )  and ( 2 . 2 )  is 

where 
n 

A { R p  Rja}= dt ~ T { - ~ ~ T [ I ) P I ~  K {Qa)= ( exp { - i  j d ~  dt Ra (T ,  t ) q a  (RAT, t )  ) } ) - , 

dRjU d2Rj" 
+ ~ A ~ " [ S . ~ -  3- d z2 and the four-matrix is 

n ( 2 . 6 b )  +'/,z j dr'J $ i k j ~ ( k ) e x p { i k [ ~ " ( T ,  1 )  
8-1 Moreover, we can quite simply find the exact relationship - - 

between the correlation functions of the observed variable 
p, and the auxiliary variable 6, : 

( 2 . 3 )  
The diagrams generated by the action ( 2 . 3 )  contain two 
types of line: correlationlfunctions (R Y ( r , t )  R  f ( r ' , t  ') ) and 
the response functions ( R  : ( r , t )  R  f ( r t , t  I ) ) ,  where 

< A P ( T ,  t )Rje(z f ,  tr))=O. 
The Jacobian which appears in the functional integral can be 
ignore5 if we also ignore the diagrams containing a closed 
loop ( R  : ( r , t )  R  y ( r , t ) )  .'*" 

We shall be interested in the space-time correlation 
functions of the density and in the corresponding suscepti- 
bility. We shall therefore adopt local densities 

Then, the generating functional with the action defined by 
( 2.3 ) becomes 

The relationships ( 2 . 6 ) - ( 2 . 7 )  are generalizations, to the 
case of dynamics, of the expressions obtained for the parti- 
tion functions of a semidilute polymer solution.' Following 
Ref. 9, we find that an analysis of the dimensionality shows 
that expansion of In K{$,} in powers of $, gives rise to 
perturbation theory expressions with the parameter of the 
expansion v,$V - "'2 for the fixed value of n*v,,N ', where v, 
is the excluded volume, d is the dimensionality of space, 
n* = n/O, and R is the volume of the system. 

In particular, if we use the Gaussian approximation, we 
obtain 

n l n ~ @ a } ~ - n *  J $ a ( i ) ~ ~ ( 2 ) r a , ~ ( i ,  2), (2 .8)  
1 ,? 

where 

r.6 (1 ,  2 )  =='/a (231)~s (ki+kd t , ,  ta) 
(. . .I - D R ~  Dllra D Z ~ ~ B [  p  (r, t )  

n 

where A,,CR;,R;} is the action of a system of free chains. 
Using the integral representation for the S functions 

and going over to four-dimensional variables 

and (...),, is the average for a system of free chains. 
Using the Gaussian approximation of Eq. ( 2 . 8 )  in Eq. 

( 2 . 6 ) ,  we find from Eq. ( 2 . 7 )  that 

h 

The four-matrix T m B ,  which describes completely the dy- 
namics of an isolated chain, has the block structure 
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Combining Eqs. (2.13) and (2.13a) and applying the time 
Fourier transformation, we obtain 

f a 
-- roo ( k ,  o )  =ikirOj(k,  a )  -ikjri0 ( k ,  a ) .  (2.14) 

T 
Moreover, in view of the stationary nature of the correlation 
functions, we have where 

r, q = l ,  2, 3; rTq=o. 
The correlation matrix of Eq. (2.9) is kn fact, a pair of Gaussian random fields Rj"(r,t) and 

R JI(r,t) is described by the following expression dealing 
with separation of the correlation functionsI0 

where zero means the 3 x 3 matrix, the element (p( 1 )p(2)  ) 
is a density correlation function, (5 ( 1 )p(2)  ) is the retard- 
ed susceptibility, and (p(1)  n-, ( 2 ) )  is the advanced suscepti- 
bility. As usual, the susceptibilities are obtained if Eq. (2.1 ) 
is supplemented by an external force x, (r , t) :  

where 9 { R  7 )  is a generating functional; repeated indices 
imply summation. Then, applying twice Eq. (2.1 I ) ,  we ob- 
tain 

Prq=-k,k, d r  d ~ ~ ( R , ( r , ,  t , )  A . ( rz ,  t , )  X 

and if the source term 

is added in the expression describing the action. We then 
have X ( R , ( r 2 ,  tz) A q ( ~ t ,  t i )  )a 

xexp {-'lakZ( [R(.tt, t i )  -R(r2, t , )  ]2>o), .  

The identity given in Eq. (2.10a) then follows from the de- 
layed nature of the response functions: 

The remaining diagonal and off-diagonal terms of the matrix 
(2.10) are related by expressions that follow from the fluctu- 
ation-dissipation theorem ( F D T )  described in Refs. 7 and 
8 : 

In the case of the density correlations the external force is 
usually the pressure p, where xj = - V,p. Then, the den- 
sity-pressure susceptibilities become 

If we separate the correlation functions again by means of 
Eq. (2.1 1 ), we obtain 

and the matrix of Eq. (2.10) is replaced with the following 
2 X 2 matrix 

ik, a 
- R ( r z .  t z ) 1 2 ) 0 )  = -- roo ( k ;  tt-tz),  tt<tz 

~ k ~  a t ,  The interaction matrix of Eq. (2.6b) also becomes a 2 x 2  
matrix and in the k-representation it is described by 

[the FDT of Eq. (2.12) is used here]. 
Similar transformations give 

Inversion of the matrices in Eq. (2.9) and separation of the 
nonzero diagonal element, gives the following expression for 
the density correlation function 

iki a rjo (k; t i-t ,)  = - -- roo ( k ;  t t - t z ) ,  
T ~ Z  a t ,  
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Similar calculations for the off-diagonal elements give the 
following expressions: 

Gj(+)  (k ,  a) =2n*ro,[l-in'Vkjroj] -', (2.20) 

Gj(- )  ( k ,  o )  =-2narjo [I-in'Vkjorj0] -', (2.20a) 

G i + )  (-o) =-Gj(-) ( a ) .  (2.20b) 

We can see that the FDT for isolated chains [Eq. (2.14) 1 
guarantees the Gaussian-approximation FDT for a melt: 

ia -- ~ ( k ,  o)  = i k , ~ A + )  (k ,  o )  +ik,~k-' ( k ,  a ) .  (2.21 ) 
T 

Using the thermodynamic sum rule 

we can obtain directly the expression for the static correla- 
tion function 

2n'roo (k ,  t=O) s,, ( k )  = 
I+n'V ( k )  roo (k ,  t=O) IT 

' 

If we introduce the direct correlation function 
@(k)  = - V(k)/2T used in the theory of liquids," we find 
that Eqs. (2.20) and (2.22) are analogous to the results ob- 
tained in the mean-field approximation.'23'3 

3. LOCAL ANISOTROPY OF THE REPULSIVE INTERACTION 

The tube concept in the reptation model'.2 reflects an 
intuitively obvious fact that the mobility of a chain in a poly- 
mer melt is locally anisotropic. A chain moves along the line 
of its contour practically unhindered because segments from 
other chains cannot penetrate between a pair of adjacent seg- 
ments. This is true also of computer modeling of the repta- 
tory r n ~ t i o n . ' ~ " ~  However, the motion in the lateral (i.e., 
normal to the line of the chain profile direction) is greatly 
hindered by the mutual repulsion of the chains. Although 
the motion along the chain profile is accompanied by fluctu- 
ations of the interaction energy, we shall consider that the 
motion is averaged over these fluctuations and postulate that 
the averaging scale is much smaller than the length of a sta- 
tistical chain segment. 

Following Ref. 3, we shall introduce the components of 
the radius vector R, (7)  which are tangential 

Ri" ( 7 )  = (R[  ( T )  el ( r )  ) ei ( T )  (3.1) 

and normal 

to the chain contour and assume that a unit tangential vector 
at the point R, (T) is 

ei ( T )  =aT& ( 7 )  llarRi ( T )  1 .  (3. lb)  

Then the condition for unhindered motion of a chain along 
the line of its contour is equivalent to the invariance of the 
exchange interaction energy in the Hamiltonian of Eq. (2.2) 
in the case of an infinitesimal transformation of the coordi- 
nates of a test chain 

~ ~ " ( 0 )  +Rta (o )  -ea ( o )  b'.Rta ( 0 ) .  (3.2) 

We can easily show that in the case of an arbitrary infin- 
itesimal function E ~ ( u )  the condition of Eq. (3.2) gives zero 
value for the tangential component of the force 

Then the term corresponding to the bulk interaction in Eq. 
(2.3) becomes 

where the force projection operator in the normal direction 
is 

and the additional projection operator 

~ , R , ( T ,  t )  arRl ( z ,  t )  
Ajl1I ( T ,  t )  = I a,Rl (z7 t )  l 2  

has the following properties: 

+ I ,  ( A )  A ,  ( A ) ,  0 , ( 3 . 4 ~ )  

Infinitesimal displacements of the chain elements in the nor- 
mal direction give rise to tangential displacements of a high- 
er order of smallness. Since tangential displacements are re- 
lated solely to the elastic forces, it follows that in the 
harmonic approximation of Eq. (2.2) we can assume that 
the normal and tangential variables are separable. In this 
case the total susceptibility of Eq. (2.16a) can be represent- 
ed in the form 

where 

The expression for the tangential generating functional 
is unrelated to the bulk interaction and is of the form 

Calculations of the normal generating functional Z ,  {x,  , X I ,  
the form of which is determined largely by the bulk repulsive 
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interaction, will be reported in the next section. 
We can demonstrate more clearly the nature of the tan- 

gential (curvilinear) motion of a test chain by obtaining the 
diffusion equation representing such motion.' We shall con- 
sider the tangential susceptibility of a test chain 

=--- I a ( [ R j  h l ,  t,) - Rj h2, t312)0 {(a,' ~ X P  [. . .lo) 6T at, ~ 

- <ikjaT,2R (r, ,  t , )  exp [. . .]),I, (3.7) 

where the rule for separation of the Gaussian fluctuations of 
Eq. (2.1 1 ) and the FDT of Eq. (2.12) are used. Since 

it follows that the second term in the braces in Eq. (3.7) 
must vanish. 

The averaging in Eq. (3.7) involves the tangent and 
curvature at the point T = r 2 ,  SO that we cannot transpose 
the operations of taking the second derivative 13 2,. and aver- 
aging 

Therefore, the averaging procedure of Eq. (3.8) must be 
represented as consecutive integration in the normal and 
tangential subspaces: 

where 

<. . .):I = J DR;~ DR;~. . . exp { - A ~  { R ~ ,  1 ,  (3.9a) 

The operations and (...)?) can be transposed, because 
integration in the tangential subspace does not result in the 
loss of the tangent and curvature at the point ;. = r2.  On the 
other hand, since the motion of a chain in the normal sub- 
space is localized on a scale equal to the tube thickness (see 
Sec. 5) ,  the averaging described by (...):) is in fact carried 
out over the bends of the real circuit near the average line of 
the tube representing a primitive chain (using the terminol- 
ogy of Ref. 2 ) .  Such averaging is carried out over the times 
t < ~ ~ ~ ~ ~ ~  - N  '. 

Therefore, the first term in the braces of Eq. (3.7) be- 
comes 

<d,:(exp(ikj[ R j ( r2 ,  t2) -R,(r l ,  t , )  j )  >oll>,L 
=a~,2(exp(iki[Rj(E~, t2)-Rj(El, t l )  I)),ll (3.10) 

where 5 is the contour variable of the primitive chain, where 
6, = l1 ( r l )  and l2 = g2(r2) .  Thus, Eq. (3.7) yields 

Do dZ 
G"(k;  71, rz; ti, tz)= - - - r I (k ;  E i ,  &; tl, t , ) ,  

T 852 

where 

and 
a 

DO='/, tz ( [Rj ( ~ i ,  t i )  -Rj ( r2 ,  t 2 )  1 ' )  (3.11b) 

is the Rouse self-diffusion coefficient. In the low-frequency 
limit we have Do = D, /N, where E,, is a quantity of the 
order of the self-diffusion coefficient for a monomer melt. 

On the other hand, the FDT for the tangential suscepti- 
bility gives 

a 11. G1'(k; ~ i ,  T Z ;  ti, tz) = - -- (3.12) 
T at* 

A comparison of Eqs. (3.11) and (3.12) yields the diffusion 
equation for a primitive chain2 

The expression for the Laplace transform of a tangential cor- 
relation function of the density in the hydrodynamic (low- 
frequency) limit'' is of the form 

m No No 

s l1(k ,  z ) =  j d t  eizt j d t ,  Jd t ,  n ( k ;  E,,  1,; t )  
0 0 0 

- - '/sSat(k) 
-iz+k2Dl1 ( k ,  z )  ' (3.13) 

where No - N is the length of a primitive chain; D li(k,z) is 
the self-diffusion coefficient of a chain undergoing reptatory 
motion and described in the low-frequency limit by 
D = D,,/N ' (Refs. 1 and 2); S,, ( k )  is the static density 
correlation function. The explicit expressions for the La- 
place transform n (k;{,,{?,t) and for the dispersive self-dif- 
fusion coefficient D I1(ks) can be found in Ref. 12. 

In addition to the tangential (reptatory) motion, we 
have to consider also the normal (lateral) motion. In partic- 
ular, it follows from Eq. (3.5) that the total susceptibility G 
consists of the tangential G and normal G susceptibilities. 
In the hydrodynamic limitIh this representation becomes 

G (k ,  z )  =GIt (k ,  z )  +GL (k ,  z )  . (3.15) 

Here, 

k2D, ( k ,  2.) 
G ( k , z ) =  . -zz+k2D, (k ,  z )  

Gst ( k )  , 

k2D" (k ,  z )  
G" (k ,  z )  = 

-iz+k2DII (k ,  Z )  
. l/SGSf ( k )  , 

G-L (k ,  z )  = 
k2DL(k, Z )  

-iz+kZDL(k, z )  
. 2/&.r(k), 

where G,, ( k )  = S,, (k)/T,D, (k,z) is the self-diffusion coef- 
ficient of a test chain and D '(k,z) is the coefficient repre- 
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senting the motion of segments of this test chain along the 
normal directions. In the next section we shall show that 
vanishing of D ' (k,z) represents a transition from the Rouse 
motion to reptation. It follows from Eqs. (3.15)-(3.15~) 
that a similar representation applies to the autocorrelation 
density functions 

S  ( k ,  z )  =S" ( k ,  z )  +SL ( k ,  Z )  , (3.16) 

where 

S ( k ,  Z )  = 
Sat ( k )  

-iz+k2D, ( k ,  z )  ' 

S" ( k ,  z )  = 
l/SS$t ( k )  

-iz+k2D" ( k ,  z )  ' 

It should be noted that the total susceptibility should be ad- 
ditive [see Eq. (3.15) ] and not multiplicative, as in Ref. 3. 

4. EQUATION FOR THE LATERAL SELF-DIFFUSION 
COEFFICIENT 

As pointed out above, the motion of a test chain in the 
lateral direction is limited by a strong mutual repulsion by 
the chains in the medium. In calculating the susceptibilities 
of a test chain and the lateral self-diffusion coefficient 
D '(k,z), we shall use the formalism of the generating func- 
tional developed in Sec. 2. 

The diagram technique associated with the generating 
functional is analogous to that encountered in the equilibri- 
um theory of Ref. 9, except that now the lines and vertices 
correspond to the relevant 2 x 2 matrices. This resembles the 
Keldysh technique for nonequilibrium systems." The inter- 
action is described by anharmonic terms of the expansion In 
KC$,,) in powers of $,,. In particular, the screened intra- 
chain interaction in the test chain is described by a fourth- 
order vertex. Then, applying the Dyson equation, we can 
write the expression for the normal component $correlation 
function in the following symbolic form: 

Here, in the Gaussian approximation the 2 X 2 matrix is 

< i j a ( k ) i j p ( - k )  )oL='/zU,zr [ l+n*f"-U] rB- l l  (4 . la)  

and the self-energy part in the one-loop approximation be- 
comes 

where k = (z,k), q = (s,q), and 

1 = j bq d s l  (Zn) '. 

The fourth-order vertex function F4' (k ,  q )  is defined by an 
obvious generalization of Eq. (2.8a), where following Ref. 9, 
we have 

(k ,  q) = F4) (Q, 0, k )  + F4) (Q, + k ,  k) 

It is clear from Eq. (4. l b )  that the total fourth-order vertex 

FC4) ( k ,  q )  ~ 3 ' )  ( k ,  q )  - P ( k )  F(q) (4.3) 

is strongly non-Gaussian, i.e., the unconnected contribu- 
tions are excluded from the vertex. 

Using Eqs. (4.1) and (4. l a ) ,  as well as Eq. (2.7), we 
obtain the following expression for the 2 x 2 matrix of the ,Z 
correlation functions 

which yields the normal component of the correlation func- 
tion of the test chain 

We may conclude from Eq. (4.5) that, by analogy with the 
screening of the interaction in the equilibrium theory, '' in 
the dynamic case the influence of the polymer medium on 
the test chain can be reduced to the substitution 

However, the screening is a collective effect which occurs on 
a time scale considerably greater than the reptation time 
T , , ~ , .  Figure 1 shows a series of the Edwards diagrams de- 
scribing the screened interacti_on,Ix where the continuous 
lines correspond to the matrix r ' and the dashed lines to the 
matrix U. We can readily see that the time dependences of 
the terms in the series are described by the function 

( t I ~ r e p t ) ~ - l  exp ( - t / ~ ~ , , t ) ,  

where m is the number of the continuous lines in the dia- 
gram. Therefore, if t <r,.,,, , we need consider only the dia- 
gram shown in Fig. lb. In this approximation the correlation 
matrix of the two-component $,, field of the medium is 

FIG. 1. Series of Edwards diagrams for the_screened interaction. '' The 
continuous line corresponds to the matrix r1  and the dashed line to the 
matrix U. 
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where G:,$ ' and Si,,, are the normal components of the 
susceptibility and of the correlation function of the chains in 
the medium. 

We shall now consider in greater detail the fourth-order 
vertex function. In the hydrodynamic approximation we can 
assume the vertex function to be factorized into hydrody- 
namic pole terms and one of the poles then applies to internal 
variables (which are used in the integration procedure) and 
the other pole to external variables. Then, elements of the 
total vertex, which make contribution to the convolution 
with the matrix of Eq. (4.7), are given by 

- - (k? q )  - ' s t  ( k )  'st (q)1tT 
[- iz + kBDL (k)]  [- is + q20' (q)]  " 

where 

f::) (k, q )  = F::' (q,  0 ,  k )  + f:;' (q .  q  + k ,  k )  

h 

and ri;" (q,p,k) is the static fourth-order density correlation 
function. In the case of the static second- and fourth-order 
correlation functions a direct calculation gives the following 
dependences:' 

i?!? (Q) -N2J (Q8), (4.9) 

where 

e-"- l +x 
J ( x )  = 

x2 ' 

P = p l ( ~ / 6 ) ' 1 2 ,  Q = q I ( ~ / 6 ) " ' ,  and K = kl(N/6) ' I 2 .  

It therefore follows that if we limit the influence of the 
medium on the test chain to the interaction shown in Fig. lb, 
we find from Eq. (4.5) the following expression for the den- 
sity correlation function of the test chain: 

S' (k)  = 2 ? 0 0 ~  ( k )  + n* 
[ q 2 v  (q)]' [&' (k l  q )  - iz + k2D' (k )  

+ (4.10) 
- is + q2D' (q) 

We recall that the function S 1 ( k )  is given by Eq. ( 3 . 1 6 ~ ) .  
In the next section we shall show that Eq. (4.10) has a 

solution describing a transition of the localization-delocali- 
zation type in the case of a test chain. A similar problem for a 
particle diffusing in a medium of static scatterers (Lorentz 
model) was considered in Refs. 4 and 5. Similar problems 
are encountered also in the study of the diffusion of low- 
molecular impurities (or their self-diffusion) in a glass- 
forming liq~id.20.2' 

5. LOCALIZATION-DELOCALlZATlON TRANSITION 

The localized state is usually defined in terms of fluctu- 
ation hydrodynamics as f o l l o ~ s . ~ . ~ . ~ '  A mean-square dis- 
placement of a diffusing particle considered over a long time 
is 

a 
<P ( t )  >=6tD (z=O) + 6 - D ( z )  I ,-0. a ( - i z )  (5.1) 

We can see that if 

then in the limit t -  oo, we have ( r ' ( t ) )  = d i, i.e., the state 
of a diffusing particle is localized and do is the localization 
length. 

A distinguishing feature of macromolecules is the fact 
that the localization in the lateral direction does not repre- 
sent the total localization: transition takes place from the 
Rouse motion to reptation. For simplicity, we shall consider 
the case when a test chain exhibits reptation through a fro- 
zen polymer medium. We then have 

The direct correlation function corresponding to the hard- 
sphere potential is of the form 

4n 
( q )  = - -(sin oq-oq cos aq) , 

q  
(5.4) 

where @ ( q )  = - V(q)/2T (see Sec. 2 ) .  
For convenience in further calculations we shall use the 

following approximations. l 9  We shall represent the function 
(4.9b) in the form 

and the correlation function (4.9a) in the form 

?::' ( P ,  Q,  K )  =N4J(P2)  J ( Q 2 )  J ( K 2 ) .  (5.6) 

The approximation (5.5) is valid to a high degree of preci- 
sion and the expression (5.6) is satisfied approximately for 
pulses which are not too close to one another. 

Using the approximations (5.5) and (5.6), we shall 
consider the vertex function in Eq. (4.10). We can see that in 
this case we have 
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We shall assume that in Eq. (4.10) the wave vector satisfies 
the inequality 1 ' k2<  1, so that the measured quantity is in- 
dependent of details of the chemical structure of the chains. 
We shall consider two limits. 

1. In the case of short chains I 'k 'N4  1 the greatest con- 
gibution to the vertex function comes from the term 
r:P'(K,K + Q,K) [see Eq. (4.8b)], since the term 
r:P'(K,K + Q,Q), exhibits an excess negative power of a 
large parameter N if, for example, we integrate with respect 
to q. Then, using all the previous approximations in Eq. 
(4. lo) ,  we find that in the case of the Rouse (delocalized) 
motion considered in the limit of low frequencies (z-O), the 
diffusion coefficient is given by 

where D A = (2/3) D,,, r i  = 12N/6 is the mean-square radi- 
us of inertia of a macromolecule, and c is the concentration 
of the segments. 

The final expression for D ' ( z  = 0 )  in the Rouse phase 
is 

where the critical chain length is defined by 

and vO = (4/3).rru3. 
If N >  N,, then D '(z = 0 )  = 0 and the lateral motion is 

localized. We shall seek the solution of Eq. (4.8) in the form 
(5.2). Then, we obtain 

where 

iV ( IlN, old,) 

At the transition point N = N, we have the real solution 
u/do = 0 and a further increase in N increases the root of the 
equation, i.e., the localization length d, disappears. Near the 

transition we have u/d, < 1 and rg/do 4 1. Expanding the 
function (5.9a) near the transition apart from the first order 
with respect to a/do, we obtain the following solution of Eq. 
(5.9): 

where 

2. In the case of the opposite limit of low chains charac- 
terized by 1 'k *N> 1 (on the assumption that I 'k ' < 1 ) the 
greate2t contribution to the vertex function comes from the 
term r:;' (Q,K + Q,Q) -K - 2 .  We shall once again seek 
the solution of Eq. (4.10) in the form (5.2). Then, the equa- 
tion for the square of the localization length becomes 

x4 (sin X/X - cos X )  ' 
1 = 3 2 . 6 3 c o ' ( ~ ) - ) .  d r  

o [x2+6 (o/d,)  '1 [x2+2 (olr,) ' 1  ' 

In the range under consideration we have do <rg, so that in 
the integrand the function l / [x2 + 6(u/d0)*] varies much 
more slowly than 1/ [x2 + 2(a/rg )'I ! This allows us to ob- 
tain directly the solution of Eq. (5.11 ) in the form 

where 

It follows from Eq. (5.12) that the localization length 
do plays the role of the thickness of a tube in the sense used by 
de Gennes,' where N ,  is the length of a chain segment be- 
tween cross-links. It is worth noting that there is also a weak 
dependence of N ,  on N: the longer the chain, the stronger is 
its localization in the lateral direction. The value of N ,  
reaches its limit for N much greater than at the transition 
point. The traditional reptation model'.2 postulates that N ,  
is independent of N. A more important difference is the ap- 
pearance of a crystal length N, =:2N,, at which the localiza- 
tion effect begins. However, true reptatory motion occurs 
for much longer chain lengths when 1 'k IN> 1. 

It is interesting to note that the dependence (5.12a) 
allows us to refine our earlier estimate of the total reptation 
time T,,,,, . The reptation model gives the familiar estimate 
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FIG. 2. Schematic dependences of D '(2 = 0) ( 1 ) and d (2) on the chain 
length N I) Rouse phase; 11) reptation phase. 

In our case, instead of Eq. (5.13), we obtain 

which can account fully for the experimentally observed law 
T,,,,, a N3.4 (Ref. 22). 

The dependence of N, on the segment concentration c 
agrees with the experimental results of Ref. 22 where mea- 
surements of the compliance modulus in the high-elasticity 
plateau region yielded N ,  a c - '. The influence of the chain 
rigidity parameter ( I / a )  is described, in accordance with 
Eq. (5.12a), by the law N, a An analysis of the ex- 
perimental data for a large number of polymers shows that 
N, a P (Ref. 23). The discrepancy may be due to the fact 
that the result given by Eq. (5.12a) still applies to the motion 
of a test chain in a frozen polymer medium. 

These results are shown schematically in Fig. 2. If 
N < N,., the Rouse motion is observed. At the point N = N,. a 
chain becomes localized in the lateral direction. Further in- 
crease in N alters the localization length do which varies (as 
in the region of the percolation threshold) from infinity to its 
asymptotic value d,, = (when N -  co ). The reptation 
model of Refs. 1 and 2 is valid qualitatively in this limit. 

Expressions (3.15) and (3.16) representing the additi- 
vity of the density susceptibilities and correlations are de- 
fined by the self-diffusion coefficient D, in terms of D and 
D ". 

In the reptation phase, we have 

ah 
S(k,z)=- 

-iz + -iz+k2Dlt ( k ,  z )  ' 

In the limit z-0 the self-diffusion coefficient is 

1 -- a, 1 + --- 1 (5.16) 
k2D. a ( i )  3(1-a,) 'k2Dl1 ' 

It follows from Eq. (5.15) that the spectrum consists of the 
elastic part with the Mossbauer-Lamb factor a, and the 
quasielastic Lorentzian part with the width of the peak gov- 
erned by the diffusion coefficient D I of reptation. 

6. CONCLUSIONS 

It is shown that the polymer localization is governed by 
two factors: the linear connectivity of the cross-links be- 
tween the macromolecules and the local anisotropy of the 
repulsive interaction. The linear connectivity is manifested 
by the fact that if some of the cross-links of a macromolecule 
are already localized, the others become localized more 
readily. This characteristic collective effect is responsible for 
the critical behavior of the localization length d,, considered 
as a function of N (Fig. 2 ) .  However, although the transition 
does occur for N = N,. , from the experimental point of view 
the "strong" reptation begins only in the region where 
d,, = INf.". This can smear out greatly the transition point. 

The author is grateful to I. Ya. Erukhimovich for valu- 
able discussions. 
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