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The field dependence of the critical current through a large, nonuniform Josephson junction is 
found. In weak magnetic fields, in the region of a sparse soliton lattice, the pinning of an 
individual Josephson vortex is independent of the pinning of others, and the critical current does 
not depend on the field. As the field is increased, the pinning becomes collective, and the critical 
current begins to decrease sharply. When the distance between vortices reaches a value on the 
order of the Josephson penetration depth, a plateau appears on the field dependence of the critical 
current. An independence of the critical current from the field in strong fields is characteristic of 
disordered Josephson junctions of any size. The effect of thermal fluctuations in the lattice and of 
the self-magnetic field of the external current on the critical current is also studied. A plateau of 
the critical current in strong fields has been noted in numerous experimental studies of the field 
dependence of the critical current of ceramic high Tc superconducting samples. 

1. INTRODUCTION sin (ncDlcDo) 
ic ( H )  = j C o  

n@/Oo ' The properties of the vortex structures in Josephson 
junctions have recently attracted considerably more inter- 
est, primarily because of the active research on the new su- 
perconducting ceramics. It has now been established reliably 
that these ceramics are a set of grains weakly linked by Jo- 
sephson junctions. Evidence for this model comes from the 
huge difference (several orders of magnitude) between the 
transport critical current and the current found from mag- 
netic measurements; further evidence comes from the sharp 
decrease in the transport critical current with increasing 
magnetic field.'-' Dimos et U I . ' . ~  have reported direct evi- 
dence that the grain boundaries are Josephson junctions. 
Furthermore, there is the possibility that single crystals are 
also broken up into domains which are linked by Josephson 
junctions. 

This model implies a certain hierarchy in the macro- 
scopic magnetic properties of high Tc superconductivity. In 
particular, in fields below the critical field H,, for penetra- 
tion into grains or domains, the magnetic, transport, or mi- 
crowave properties of superconducting ceramics or single 
crystals are governed by vortex structures which form at 
grain boundaries or twin boundaries. One can work from the 
typical fields which suppress the critical current or which 
increase the microwave absorption of dense ceramic high T, 
superconductors ( - 10-50 Oe) to estimate the typical Jo- 
sephson penetration depth: 6, - 1 ,urn. This figure is about 
an order of magnitude smaller than the typical grain size 
L - 10,um. One would thus expect that the Josephson junc- 
tions which form at the grain boundaries in dense ceramics 
are "long." 

Our purpose in the present study was to learn about the 
behavior of the critical currents through a long, nonuniform 
Josephson junction as a function of the field and the tem- 
perature. The field dependence of the critical current density 
through a Josephson junction has been studied in many 
places (there is a fairly comprehensive review of this work 
in, for example, the book by Barone and Paternolo). In a 
uniform junction with linear dimensions much smaller than 
the Josephson penetration depth 6, (a  "short" junction), 
the well-known "Fraunhofer" dependence holds: 

where j ,  is the critical current density at H = 0, Qo is the 
quantum of magnetic flux, and Q is the flux through the 
junction. In a short junction with random variations in 
the density of the Josephson critical current, 
jd ( r )  = jd + Sjd ( r ) ,  the current jc does not vanish with 
increasing magnetic field; it instead reaches a constant val- 
ue10,12 

where ro is a typical size of the fluctuations, and S is the 
junction area. In a long, uniform junction, the existence of a 
nonvanishing critical current in a magnetic field is a conse- 
quence of the existence of a surface barrier for the penetra- 
tion of vortices into the junction. This problem was studied 
numerically in Ref. 13. 

In the case which we are discussing here, that of a long 
nonuniform Josephson junction, the critical current is deter- 
mined by the pinning of the vortex structure in the junction. 
To estimate the critical current, we will use methods which 
have been used by Larkin and Ovchinnikov for a lattice of 
Abrikosov vortices.14315 An important feature of the curves 
of jc (H) which are found is the appearance of a plateau in 
strong fields, as in the case of a short disordered junction. In 
the case at hand, the current density jc is independent of Hin  
strong fields because various factors which determine the 
collective pinning of the soliton lattice cancel out. It is inter- 
esting to note that a saturation of the j, ( H )  curves in strong 
fields has been observed in several studies of ceramic high Tc 
superconductors.4~7 

In a previous study by Feigel'man and one of the pres- 
ent authors,I6 it was shown that the short coherence length 
of the high T, superconductors and the high superconduct- 
ing transition temperature promote thermal fluctuations of 
the vortex structure to a governing role in shaping the field 
and temperature dependence of the critical current. Ther- 
mal fluctuations sharply reduce the effective pinning force. 
The method developed by Larkin and Ov~hinnikov'~ has 
also been used to estimate the critical current; when thermal 

547 Sov. Phys. JETP 70 (3). March 1990 0038-5646/90/030547-07$03.00 @ 1990 American Institute of Physics 547 



fluctuations are taken into account, the critical current is 
reduced to an extent which depends on the ordinary Debye- 
Waller f a ~ t o r . ~  We will show that thermal fluctuations in the 
soliton lattice strongly influence the critical current of only 
small Josephson junctions. In an infinite junction, in con- 
trast, thermal fluctuations have a completely negligible ef- 
fect on the temperature dependence of the critical current. 

2. FORMULATION OF THE PROBLEM 

The energy of a planar, nonuniformly distributed JO- 
sephson junction is given by l 7  

where 6 = 6 ,  - 6, is the gradient-invariant phase difference 
between superconductors which are in contact, 
EJ = &/2e ( j, is the average critical current density at 
H = O), 6, = (c@,,/8?AJd is the Josephson penetra- 
tion depth, A = d + 2R. ( d  is the thickness of the junction, 
andil is the London penetration depth), H,, = 2@,)/?ASJ 
is the Josephson critical field, j i s  the current density through 
the junction and u(r) is a random potential associated with 
spatial fluctuations of the critical current density j,. The 
statistical properties of the random potential are described 
by the correlation function 

where q is the amplitude of the current fluctuations, and r,, is 
a typical length scale of the fluctuations. We direct the z axis 
along the magnetic field H, and we direct the x axis perpen- 
dicular to H; the xz plane is the plane of contact, and r is a 
vector in this plane. 

In the absence of this random potential, the equilibrium 
phase distribution O0(x) is given byI7 

where am(x) is the elliptic amplitude, and k is the elliptic 
modulus. With 0 < k < 1, this formula describes a soliton lat- 
tice with a period a = 2kK(k)S, [K(k)  is the complete el- 
liptic integral of the first kind]. The relationship between the 
parameter k and the external magnetic field is not universal; 
it is determined by the particular geometry of the sample. If 
we choose a thin-plate sample, and if we direct the field par- 
allel to the plate, we can ignore the demagnetizing factor, 
and the parameter k will be related to the external magnetic 
field by 

where E(k) is  the complete elliptic integral of the second 
kind. In this simple case the lattice period a is related to the 
external magnetic field by 

where 

and k l 2  = 1 - k is the conjugate modulus. In this case the 
magnetic field penetrates into the junction as a chain of vor- 
tices which lie in the contact plane. We assume that the cur- 
rent is low and the disorder slight: 

In this case the phase distribution in the junction is slightly 
deformed and can be described by 

where the length scale of the variation in u (r , t)  is far larger 
than the lattice period. In contrast with a lattice of Abriko- 
sov v o r t i c e ~ , ' ~  any monotonic phase distribution can be de- 
scribed by ( 8 )  if the function u (r,t) is chosen appropriately. 
In the case of a weak perturbation of the phase, on the other 
hand, this function has the meaning of the displacement of 
the soliton lattice. 

Substituting ( 8 )  into (3) ,  we find the effective Hamil- 
tonian 

where 

and cn(x)  is the elliptic cosine. 

3. CRITICAL CURRENT AT T=O. DIMENSIONALITY 
ESTIMATE 

The critical current at absolute zero can be found on the 
basis of simple dimensionality considerations, as in the case 
of the collective pinning of a lattice of Abrikosov vortices." 
We assume strong magnetic fields H )  H,, . The interaction 
with the random potential destroys the long-range order in 
the soliton lattice, while a short-range order survives within 
a correlation area S, = R,, R ,  , where R,, and R,, are corre- 
lation radii. The critical current in this case is determined by 
the equality of the Lorentz force and the pinning force acting 
on the correlation area:I5 

where n is the density of pinning centers, f is the average 
force of the interaction between a pinning center and the 
soliton lattice, and c is the velocity of light. In strong mag- 
netic fields we would have f- U/a, where Uis a characteris- 
tic potential [ Uand n are related to the parameter y in ( 4 )  by 
y = U 'n]. The correlation radii R ,  and R,, can be found 
from the balance condition involving the strain energy and 
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the energy of the interaction with the random potential. The 
result is the estimate 

Substituting this estimate into ( l o ) ,  we find the following 
expression for the critical current: 

ic-cy/4@,Caz. (12) 

Using values of the parameters C =  H2i1/2r and 
a = @,/2/1H valid in the strong-field limit, we can express 
j, and R,,, in terms of physical characteristics of the prob- 
lem 

Note an important aspect of this result: In strong fields 
H)H,, the critical current does not vanish and instead 
reaches a constant value. 

This estimate is valid if the spatial dimensions of the 
junction are greater than the correlation length R,. If, on the 
other hand, the size of the junction in the direction of the 
magnetic field, L,, is smaller than R, (a  "one-dimensional" 
junction), a similar analysis yields 

From ( 13 ) and ( 14) we find the useful relation 

Re-6, (jco/ic)" 

between the correlation radius and quantities which can ac- 
tually be measured. 

In the case of a point contact (L,, L, &Rc ), on the oth- 
er hand, we find 

This result was derived previously'0-'2 for a short, disor- 
dered junction (L,, L, 46, ). We see that the random poten- 
tial causes the correlation length R, )a, to replace the Jo- 
sephson depth 6, as the length scale which distinguishes 
long Josephson junctions from short ones. Note also that the 
critical current j, remains independent of the magnetic field 
in the strong-field limit in all three cases. 

We now consider a sparse soliton lattice (a  $8, ). In 
this case the pinning is determined by centers at the cores of 
Josephson vortices, and the typical force exerted by one pin- 
ning center on the lattice can be estimated as f- U / S , .  The 
density of these effective centers is n,, = (6,/a)n and the 
critical current satisfies 

The correlation lengths R, and Rcz are determined by 
equating the rms displacement ( ( u ( r )  - ~ ( 0 )  )2)"2 to the 
typical range of the random potential, which is 6, in this 
case: 

Hence, 

Re, - (a6 JCi iq*~44%/T)  

Using 

as the values of the elastic moduli for a sparse lattice soliton 
vortices, we find 

The condition for collective pinning, R, )a, means 

If condition ( 19) is not satisfied, the pinning of one vortex 
occurs in a process which is independent of the pinning of the 
others, and the critical current reaches a constant value 

jc nws-j,o[q(r~18~)V]". (20) 

Corresponding estimates can be made for a one-dimen- 
sional junction, with 

L, tRcz-2"~(8 ,'lr0q") exp (-a/48,) .  

In this case we find 

2L,aS exp (-2a/6 ,) '" 
RZ-SS,  [ 

6JZro'q 1 9 

Expressions (21 ) hold under the condition 

exp ( 2 ~ 1 6 , )  

When this condition is violated, the critical current reaches a 
constant value which corresponds to individual pinning: 

(1) i ,  - - jCo (qro2/6~Lz) 'la. (22) 

Since the correlation radius R, falls off rapidly with 
increasing period a in the case of a sparse vortex lattice, there 
can be a situation in which a size crossover occurs as the 
magnetic field is varied. This situation arises if L, is smaller 
than R, in strong magnetic fields [see ( 13b)l but larger 
than the minimum radius R rn with Rcz -a: 

4. CURRENT-VOLTAGE CHARACTERISTIC ABOVE THE 
CRITICAL CURRENT 

Another method for estimating the temperature and 
field dependence of the critical current is to calculate the 
current-voltage characteristics of a junction at high cur- 
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:ents, through an expansion in the random potential: ' 1 nls 
method yields a correct estimate of the critical current if the 
current-voltage characteristic of the junction has only a sin- 
gle characteristic current and can be written in the form 

where f(x)  is a dimensionless function [ f (x )  - 1 as x + w 1. 
At t #O, the voltage Uis nonzero at arbitrarily low currents 
for a junction of finite area. In this case we understand the 
critical current as the characteristic current at which the 
resistance switches to its value in the normal state [i.e., at 
which the function f (x)  reaches a value on the order of 
unity 1. 

The voltage across the junction, U, is related to the aver- 
age velocity of the lattice, V, by 

The lattice velocity is determined by the current through the 
junction and can be found from the equation of motion of the 
lattice: 

where 

q ( f )  = (f i /2e)2(d00/b'f)  ' / R  

is the viscosity of the lattice, R is the resistance to the quasi- 
particle current through the junction, and f,(t,r) is the 
Langevin random force, which satisfies 

( fT ( t r  r )  fT ( t ' ,  r') )=2q (5 )  T6 (r-r') 6 ( t - t ' ) .  

At j%j, the velocity of the lattice can be sought as an expan- 
sion in the random potential.I4 In this case the critical cur- 
rent is approximately equal to the current at which the cor- 
rection to the velocity for the random potential reaches a 
value on the order of the velocity itself. 

In the zeroth approximation in the random potential, 
the lattice velocity is determined by the ratio of the average - 
pulling force j 8 ' ( 2 )  to the average viscosity ~ ( 2 )  : 

This case corresponds to a linear current-voltage character- 
istic: 

U= (n2R/4KE) j .  

The velocity correction of first order in the random potential 
is calculated in the standard way (see Ref. 14 and the Appen- 
dix to the present paper). The result is 

-- (k0n)2  ( 
(t) - u*(O) 12))  , 

2 

C,,= <C ( E )  )=(4E/k2K)  EX, 

c , ,=  (<C-'(E,) >)-'= (4kf2K/k2E)  E,, 

I n ! 2  n 
pn=\- kK 2 sh (nnK'lK) 

is a Fourier component of the function p(x) ,  anc 
K t =  K(k1 ) .  

Let us find the velocity correction at absolute zero. Foi 
a junction with linear dimensions greater than the correla. 
tion lengths, the summation over q, and q, can be replacec 
by an integration. Calculating the correction to the latticc 
velocity, we find the following expression for the current- 
voltage characteristic of a junction at high currents: 

U= (n2R/4KE) ( j - j , )  . (26) 

The j-independent correction j, agrees in order of magni- 
tude with the critical current and is given by 

In the case of a dense soliton lattice ( k <  1, with a lattice 
period a = d , k  ), only the first term, with n = 1, is impor- 
tant in the sum over harmonics in (27). Using the asympto- 
tic expressions for the elliptic functions at small k, K z  7~/2 
and K ' z ln (4/k), we find the following expression for the 
correction: 

This expression agrees within a constant coefficient with es- 
timate (13a). In the case of a sparse lattice [ k ' <  1, 
a = 28, ln(4/k1) 1 ,  the summation over harmonics can be 
replaced by an integration, and we find the following expres- 
sion for j, [c (x)  is the Riemann zeta function] : 

This result also agree within a numerical coefficient with the 
corresponding estimate in ( 14a). 

For a one-dimensional junction (L, < R,, ) correspond- 
ing calculations lead to 

where 

In some simple limiting case we have 

where k,, = 2r/a is a reciprocal-lattice vector, where the constant A is [ 9 ! ! / (2~ )~ ] J (9 /2 )  z 1.0. Figure 1 
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pends on the junction "thickness" L,. Fluctuations have a J, / J C  min 

FIG. 1 .  The critical current j , ,  which determines the correction to the 
current-voltage characteristic (see the text proper), versus the parameter 
6,/a in the region of collective pinning. Solid line-Two-dimensional 
junction; dashed line-one-dimensional junction. 

shows the quantities j, and jil', normalized to their mini- 
mum values, versus the parameter S,/a. 

5. ROLE OF THERMAL FLUCTUATIONS 

How do thermal fluctuations in the soliton lattice affect 
the critical current? We consider a dense soliton lattice in a 
two-dimensional junction (L, , L, % R,  ). In this case the dis- 
placement correlation function, which determines the De- 
bye-Waller factor in (25), is given by 

Incorporating the Debye-Waller factor results in a decrease 
in the correction to the current j, in (26) by an exponential 
factor: 

The characteristic temperature at which the fluctuations be- 
gin to cause an appreciable decrease of the critical current 
(the depinning temperature) is estimated from 

An estimate shows that the value of T, is typically on the 
order of lo4 K, so fluctuations have a negligible effect on the 
temperature dependence of the critical current of a two-di- 
mensional Josephson junction. 

We turn now to the case of a dense soliton lattice in a 
one-dimensional (L, ( R ,  ) Josephson junction. The dis- 
placement correlation function in this case is 

Substituting this correlation function into (25), we find the 
following estimate of the depinning temperature of a dense 
soliton lattice in a one-dimensional junction: 

where T,, = @ / ( 4 ~ ) ~ i l .  The depinning temperature de- 

strong effect on the temperature dependence only for thin 
junctions, with L, < R ,  ( T,/T,, )'12. 

At low temperatures T <  Ti", one-dimensional junc- 
tions in a strong magnetic field have an exponentially small 
linear resistance: 

R (2') =A,R exp ( -A2T , (1 ) /T ) ,  

where A, and A2 are constants on the order of unity. As the 
temperature is increased, there is a decrease in the character- 
istic critical current, and there is also an increase in the linear 
response a low currents. At T- Th", thermal fluctuations 
completely suppress the critical current, and the linear resis- 
tance of a thin junction reaches a value on the order of the 
normal resistance. 

The case of a sparse soliton lattice in a thin junction is 
more complicated. When the temperature reaches a charac- 
teristic value 

the fluctuational displacement of a soliton over the time 
scale to = q S J / D  Ijc  reaches a size on the order of the range of 
the random potential, a,, and thermal fluctuations begin to 
strongly influence the critical current. At T> Ti; ' ,  the sum- 
mation over n in (28) is cut off from above by the Debye- 
Waller factor. A calculation of the correction to the lattice 
velocity in this temperature region yields the following 
expression for the current-voltage characteristic of the junc- 
tion at high currents: 

where 

j,=Alj,,E,7T-7(qr~2)36J'L,4 exp(-2a/6,), (39b) 

When the temperature reaches the second characteristic val- 
ue 

T,',"= (a/2nsJ) 'Is T,':', 

the fluctuations completely suppress the critical current, 
and the current-voltage characteristic of the junction be- 
comes linear up to currents j- j, . 

Let us examine the field dependence of the critical cur- 
rent through a one-dimensional junction in the region a %  6, 
for various temperatures. If the temperature is below the 
characteristic depinning temperature for a single Josephson 
vortex, 

the field dependence of the critical current is the same as at 
absolute zero: As the magnetic field is lowered, the critical 
current increases in accordance with (32b) and then reaches 
the plateau described by (22) (Fig. 2 ) .  In the temperature 
interval Tiu'  < T <  Ti" there is a qualitative change in the 
behavior: The critical current density reaches a maximum 
value 

in a magnetic field B P I ,  which corresponds to the following 
value of the soliton lattice period: 
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FIG. 2. Typical plot of the critical current versus the magnetic induction 
for disordered Josephson junctions with large dimensions. 

With a further lowering of the field, the critical current falls 
off sharply, in accordance with (39b), and it vanishes when 
the lattice period reaches the value a,, found from 

6. EFFECTOFTHE SELF-FIELD OFTHE CURRENT 

In  the sections above we essentially calculated the local 
critical current density as a function of the local magnetic 
induction in the junction, j, (B)  [the magnetic induction 
B is related to the period of the soliton lattice by 
B = (d6, /2a)  H,, . ]  Since the current flowing through the 
junction has a self-field, an irregularity appears in the distri- 
bution of the magnetic induction in the junction. For a junc- 
tion of large dimensions, the values of the induction at the 
edges of the junction may differ substantially from the aver- 
age value B, which is determined by the external field and the 
geometry of the sample. When the maximum current is flow- 
ing, a current j, (B)  flows at each point of the junction, 
where B is the local value of the induction at this point. On 
the other hand, the induction distribution itself depends on 
the current distribution and must be determined in a self- 
consistent way. 

Let us consider a two-dimensional junction 
[L,  -L, > R, ,  where R ,  is the correlation radius in strong 
fields; see ( 13b) 1 .  At B > H,, the local critical current den- 
sity does not depend on the field, so the average critical cur- 
rent density through a nonuniform junction of any dimen- 
sions must reach a plateau in sufficiently strong fields. In the 
case of a sparse vortex lattice, the self-field of the current can 
be ignored only for junctions whose dimensions lie below a 
certain characteristic value. To  estimate this value we com- 
pare the irregularity in the magnetic field at the maximum 
value of the critical current, 

AB- (4nlc) (6, lRc) "3Lj,0, 

with the characteristic value B,, , at which the critical cur- 
rent reaches its maximum, 

From the condition AB<B,, we find 

For a junction with large dimensions, an additional analysis 
is required in order to extract the j, (B) dependence from 
experimental data. 

For a one-dimensional junction (L, < R,. < L, ) the 
limitations which stem from the self-field of the current are 
far less stringent.'" At values of the induction below 

and at  absolute zero, the critical current in the junction is at 
its maximum value, (22).  In  this case the field irregularity in 
the junction is estimated from 

The self-field of the current is unimportant under the condi- 
tion A B 4 B  :,'I, which is equivalent to the restriction 

(61 L,) '" Lr R,'Ia L,'" 
In -In --- a 1. 

Rc Lz 6 5  

Since the coefficient of the logarithms is less than unity, re- 
striction (44) is very weak. 

7. DISCUSSION OF RESULTS 

We have derived the temperature and field dependence 
of the critical current density jc of Josephson junctions with 
irregularities. We have discussed junctions (respectively 
one-dimensional and two-dimensional) in which one or two 
geometric dimensions are greater than the correlation length 
Rc in ( 13b), which is a measure of the degree of disorder in 
the system. A temperature dependence arises from the 
change in the parameters of the junction and also because of 
thermal fluctuations of the positions of the Josephson vorti- 
ces. We have shown that at  realistic temperatures the ther- 
mal fluctuations do not affect the critical current in two- 
dimensional junctions, but they may cause a sharp decrease 
in the critical current in sufficiently thin one-dimensional 
junctions. For a two-dimensional junction, the behavior of 
the critical current is determined over essentially the entire 
temperature range by the temperature dependence of the pa- 
rameters of the junction ( j, , 6, ,A) .  In  particular, the mini- 
mum critical current found from ( 13a) has the following 
temperature dependence near T,: 

( T, - T ) ~ "  for an SIS junction, 
J c  mnn a ( T, - T ) " ~  for an SNS junction. 

The field dependence of the critical current density, 
j, (B) ,  has two limiting values, jCmi ,  and j ,,,, , in respec- 
tively weak fields ( B  < H,, ) and strong fields (B  > H,, ) 
(Fig. 2) .  The maximum value of the current density is set by 
the pinning of individual vortices [in the one-dimensional 
case, expression (22) reproduces the result derived by Min- 
eev et al." for one-soliton pinning]. The critical current 
reaches saturation in strong fields because various factors 
determining the average pinning force cancel out: The in- 
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crease in the elastic moduli of the lattice, which is propor- dii 
T, (2') ( i i + v - )  - VC(x, )  v i i  = -pf (x.-ui) v(x.+Vt, z ) .  

tional to the square of the field, is canceled out by the in- ax. 
crease in the characteristics force exerted on the lattice by an 
individual pinning center (the latter force is proportional to 
the field itself). The three characteristic values j, , j, ,, , and 
j, ,,, are related by a universal equation which is indepen- 
dent of the degree of disorder and which can be tested experi- 
mentally. For a two-dimensional junction this equation is 

( j o  mmur) 3 / j c a  ( j c  min)  '=const, (45a) 

and for a one-dimensional junction it is 

( j  (') ) A , j  ( . ( I )  
e max co J C  m i n )  = const. (45b) 

These results may prove useful in the analysis of experimen- 
tal j, (H) curves for dense superconducting ceramics, in 
which the field penetrates into grain boundaries at H >  10 
Oe. It must be kept in mind that the critical current j, - 10' 
A/cm2 in bulk samples in weak fields is due to the sif-field 
of the current6 and that the characteristic Josephson current 
density is larger by one or two orders of magnitude. In strong 
fields the critical current stems from a pinning of the vortex 
structure at grain boundaries. The saturation of the critical 
current in strong fields which has been observed in ceram- 
ics4-' is a characteristic property of disordered Josephson 
junctions. Strictly speaking, expression ( 13a) gives a correct 
estimate of the minimum critical current density only if the 
correlation radius in ( 13b) is much smaller than the grain 
size L. In the opposite limit R, %L, it becomes necessary to 
solve the problem of the percolation of a current through a 
network of disordered Josephson currents-a problem which 
we are not taking up in the present paper. 

We are deeply indebted to M. V. FeYgelYman for stimu- 
lating discussions. 

APPENDIX 

Calculation of correction to the velocity of a soliton lattice 

For the equation of motion of the lattice in (23) there is 
a spatial variation of the parameters. This variation becomes 
most important in the region a$S,. For a soliton lattice 
which is moving at a constant velocity V, we write the dis- 
placement u (t,r) as the expansion 

~ ( t ,  r) =Vt+ u,(%) +U"(t, r )  +ut ( t ,  r ) ,  (A1 

where ii (t,r) is a correction for the random potential, u,.(t,r) 
is a fluctuation increment (( i i ( t , r ) )  = (uf(t ,r)) = 0, and 
u, ( 2 )  is the lattice strain. This strain is proportional to the 
current and arises because of the spatial variation of the pull- 
ing force. In the case of a sparse lattice, the condition of a 
slight strain, du,/dx4 1, is 

j ~ i c o ( a / 6 J )  exp ( - a /6 , ) .  

We make the assumption that this condition holds, and we 
ignore the component u, (2 )  below. Transforming to a coor- 
dinate system in steady-state motion, x, = 2 + ii + u,., and 
taking the time average of Eq. (23), we find the relation 

The displacement ii(r,t) is determined in first order in u(r) 
by the equation 

Under the condition j& j, (a/&, )'exp( - a/S, ) the term 
7 V(dii/dx, ) is small in comparison with the elastic term and 
can be ignored. Substituting the expression found for the 
displacement ii(r,t) from (A3) into (A2), and taking an 
average over the random potential, we find a correction to 
the lattice velocity: 

q V ,  = - dx. dt (pfl(.z.--at ( 0 ,  I.,  0 )  ) 

X ~ ' ( x , + V t - u ~ ( t , x , + V t ,  O))), 

x G ( t ,  x., x,+Vt, 01, (A41 

where (...), means a thermodynamic average, and 
G(t,x,,x,, ,z) is a Green's function, determined by the equa- 
tion 

( x , )  G-VC ( x , )  V G = ~  ( t )  6 (x.-x.') 6 ( z )  . 
At distances x, - x,, )a this Green's function is essentially 
independent of everything except the coordinate difference 
x, - x,, , and its Fourier component at small wave vectors 
and low frequencies is given by 

where C4, = (C(f  ) )  and C, ,  = ( ( C -  ' ( 5 ) ) )  - I .  Carrying 
out Fourier expansions in t, x,, and z in (A4), we find (25). 
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