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The motion of a Bloch line along a domain wall in a ferromagnet characterized by a high uniaxial 
anisotropy and the presence of strongly localized microinhomogeneities is investigated using 
perturbation theory of solitons. An asymptotic dependence of the dynamic coercivity of a Bloch 
line on its velocity v is found. At high values of v the coercivity is proportional to up', whereas at 
low velocities it is proportional to v - " ~ .  Moreover, the coercivity of a domain wall creates an 
additional drag force which acts on a Bloch line and reduces its mobility. The dependence of the 
static coercivity of a Bloch line on the parameters of a material is derived in a model postulating 
pinning of this line by fluctuations of the number of microinhomogeneities. It is shown that the 
coercivity of a Bloch line is less sensitive to changes in the density of defects and in the energy of 
their interaction with the line than the coercivity of a domain wall. This result is used to predict 
different temperature dependences of the coercivity of a Bloch line and a domain wall on 
approach to the Curie temperature Tc. 

1. Magnetic imperfections of a magnetically ordered 
crystal associated with fluctuations of the composition, 
magnetic vacancies, and other factors are known to result in 
local pinning of topologically stable entities, such as domain 
walls and the coercivity of these walls.'-' This is the reason 
for the coercivity of Bloch lines in a domain wall. In contrast 
to the coercivity of a domain wall, which has been the subject 
of many experimental and theoretical investigations (see, 
for example, Refs. 4-9), the coercivity of a Bloch line has 
attracted attention only recently because discrete memory 
devices have been formed using vertical Bloch lines."' A 
study of the coercivity of a Bloch line is important not only 
for the determination of the requirements in respect of the 
homogeneity of materials used in practice. The problem is of 
interest also from the general physical point of view, be- 
cause-in contrast to the essentially one-dimensional dy- 
namics of solitons in an inhomogeneous medium (for exam- 
ple, Josephson vortices in a distributed semiconductor 
junction1')-we have to allow for the multidimensional na- 
ture of fluctuations influencing both a Bloch line and a do- 
main wall in which the line is channeled. However, a detailed 
analysis of the micromagnetic nature of the coercivity of a 
Bloch line has not yet been provided, although experimental 
investigations of the coercivity are pr~ceeding.".'~ 

A Bloch line, which in the simplest case is a two-dimen- 
sionally localized object, can move under the influence of a 
magnetic bias field causing the motion of a domain wall (be- 
cause of the gyroscopic force), as well as under the influence 
of an orthogonal (to the bias field) magnetic field which can 
reverse the magnetization of a domain wall without causing 
its overall motion. It is therefore possible that the coercivity 
of a Bloch line will be different in these two cases. Moreover, 
it is necessary to distinguish the static and dynamic coercivi- 
ty of a Bloch line. The former is related to the pinning of a 
Bloch line by an ensemble of magnetic inhomogeneities and 
is characterized by an unpinning field H :L. The latter is 
associated with the additional dissipation of energy during 
the motion of a Bloch line in an inhomogeneous medium. 
The dynamic coercivity of a Bloch line H f L  depends on the 
Bloch line velocity v and, in general, because of the inertia we 
have H ZL(u = 0)  # H SBL. 

We shall now analyze the coercivity of a Bloch line by 
considering the example of an isolated Bloch line during 
magnetization reversal in an untwisted domain wall, the pe- 
riphery of which remains at rest during the reversal process. 
We shall consider a model of microdefects of size not exceed- 
ing the domain wall thickness and characterized by a high 
density N in the interior of a sample. This model describes 
satisfactorily the coercivity of a domain wall in "perfect" 
single-crystal films such as epitaxially grown iron garnet 
films.'.' Moreover, it is assumed that the anisotropy energy 
exceeds considerably the Winter demagnetization energy, 
i.e., we shall postulate that K, ~ 2 7 r M  2, where K, is the ani- 
sotropy constant and M is the magnetization. These are 
mainly the materials used currently in studies of Bloch lines. 

2. We shall consider a uniaxial ferromagnet in which 
the z axis coincides with the anisotropy axis and the domain 
wall is they = 0 plane. We shall assume that a magnetic field 
H, which reverses the domain wall magnetization is direct- 
ed along the x axis and a Bloch line separating two subdo- 
mains in a Bloch-type domain wall is parallel to the z axis. 

The Lagrangian of a ferromagnet corresponding to the 
Landau-Lifshitz equations is 

M 
9 =jjj d r  dy dz[ - cp6 sin 0-@] , 

7 

where 0 and p are the polar and azimuthal angles measured 
from thex axis and representing the direction of the magnet- 
ization in a crystal; y is the magnetomechanical ratio; @ is 
the thermodynamic potential. In the Winter approxima- 
tion,13 we can represent the potential @ as follows: 

@=A ( I + E ~ )  [0,2+0,2+ OZ2+ sin2 0(cp2+cp,'+cpZ" 1 
+[K, (~+EK)  +2nM2(1+2eM)sin2 cp]~in~ 8 

--H,M(I+&,) cos ~-H,M(I+E,) sin 0 cos cp, (2 )  

where A is the exchange interaction constant; Hz (y) is the 
inhomogeneous bias field which pins a domain wall; 
tp = &p/p is the relative change in the magnetic parameters 
( p = A , K , , o r M ) .  

In the case of an unperturbed medium (E ,  = 0) we can 
use variational equations 
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subject to the boundary conditions 

to formulate the problem of search for a reference solution 
describing an untwisted domain wall at rest with an isolated 
Bloch line, parallel to thez axis and also at rest. In the zeroth 
approximation in terms of a small parameter Q - ' = 277M 2/ 

K, 4 1 the solution of Eq. (3)  is of the form 

Y - q  
8. = 2 arctg exp(-) 

A '  

where AzA,[l - (A, cp: + sin2 cp)/2Q.]; A, = ( A  / 
K, )1 '2  is the domain wall thickness; A, = A,Q ' I 2  is the 
Bloch line thickness; q  is the coordinate of the domain wall 
center (it is assumed that q, , q, 4 1). In this case the angle q, 
represents the tilt of the magnetization relative to the do- 
main wall plane. The spatial variation of this tilt is described 
by the second variational equation (4)  which is of the first 
order of smallness in terms of Q - '. The solution of Eq. (4)  
determines the structure of an unperturbed Bloch line: 

X-XL 
c p ~  2 arctg exp (- ), 

A L  

Using the solution (6), we can find from Eq. (1)  the 
variational Lagrangian of a domain wall considered as an 
infinitely thin elastic membrane with additional degrees of 
freedom created by the tilt of the magnetization out of the 
domain wall described by cp ( x ,  z, t ) .  This approximation is 
valid provided the domain wall velocity is not too high, i.e., 
provided a, q  44nMyA, (adiabatic approximation), and it 
has been discussed in detail earlier (see, for example, Refs. 
14 and 15). We shall use it here to obtain the initial Lagran- 
gian for q  and q, allowing for the spatial fluctuations E, # 0 of 
the magnetic parameters. 

We shall assume that the field of point defects { x i ,  y j ,  
z, ) creates fluctuations of the magnetic parameters, which 
can be represented by 

where E $ ~  = tipuk /p; SpUk = SAY,, SKU,, and SMuk are the 
absolute values of fluctuations of the three magnetic param- 
eters in the vicinity of a center of a defect ( x i ,  y, , zk ) with the 
dimensions aik = ai X aj X ak . 

Subject to these comments, we can transform the initial 
Lagrangian to 

where 

+h, cos p 1, ( 10) 

Q K cpIZ 6L = - j jdx d z z  a i : k { T ( & : j k + e i j k )  + - 
i , i , k  

4 

Here, b = H iA/477M, Hz is the magnetic field gradient 
which stabilizes a domain wall, h, = H, /8M, time is mea- 
sured in units of ( y 4 ~ M ) - l ,  and the dimensionality of the 
spatial variables in as follows: [ x ]  = A,, [y, q ]  = A,, 

] = A,, [aj  ] = A,. The Lagrangian ( 11 ) does not in- 
clude terms of the E~ hx and E~ qcp type, since we shall con- 
sider later the range of weak magnetic fields ( h ,  4 1) and 
low domain wall and Bloch line velocities (9, vq, 4 1 ). 
Moreover, in the case of a weakly dissipative medium we can 
ignore fluctuations of the magnetic parameters in the dissi- 
pation function. Therefore, we shall use the conventional 
form of this function (see, for example, Ref. 16) : 

where a is the magnetic relaxation parameter. We shall 
henceforth assume that a 4 1. 

The use of the Lagrangian (9)-( 1 1 ) and of the dissipa- 
tion function ( 12) leads to the following dynamic equations: 

-9-cp+.-cpzZ+'/2 sin 2p=-a@-h,sin c p + f ( Z ' ,  (14) 

where 

is a random force associated with the change in the energy of 
a domain wall near magnetic inhomogeneities, whereas 

1 -- 
4 

sin 2cp[ & t k - t 2 & z k  

is a random force to an inhomogeneous variation of the ener- 
gy of a Bloch line near microdefects. In view of the condition 
Q< 1, Eq. ( 13) is simplified by dropping the less important 
fluctuation terms. 
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3. In the following calculations we shall use the small- 
ness of the dissipative and fluctuation parameters (a ,  lap/ 
pi< 1 )  and apply the perturbation theory used in Ref. 16 to 
provide a compact description of the dynamics of an isolated 
Bloch line. We shall assume that the zeroth-order solution of 
the system of equations ( 13) and ( 14) is the self-similar 
solution of a dissipation-free system in the absence of fluctu- 
ations when the velocity of a Bloch line is low ( u & 1 ) . Then, 
in view of the smallness of the parameter b ( a  typical value 
of this parameter for iron garnet films is 10-'- lo- ') ,  this 
solution can be described approximately by the expressions 

(po=2 arctg exp (2-XL) , 

where x, is the position of the Bloch line center and 
u = a r x L .  

Obviously, local fluctuations of the magnetic param- 
eters give rise to fluctuations not only of the position of the 
Bloch line center in the course of its motion, but they also 
excite fluctuation-induced flexural vibrations of a domain 
wall as a result of dynamic bending which accompanies a 
moving Bloch line. Such fluctuation-induced flexural vibra- 
tions of a domain wall ( q ,  , q, ,  ), created because of its en- 
counter with microdefects and unrelated fluctuations of the 
Bloch line center, determine the dynamic coercivity of a do- 
main wall in the absence of a Bloch line. The coercivity field 
of a domain wall is then governed by the average fluctuation 
force on the right-hand side of Eq. ( 1 2 ) ,  i.e., (f"') = h yW. 
We shall now write down the equations describing separate- 
ly the fluctuation-induced vibrations of a domain wall bear- 
ing in mind that the main source of these vibrations is the 
force f " ' :  

d,(p, + (b2-82-d,2+adt)q, =f ( l ) -<f ( l ) ) ,  
( 1 8 )  

where ( f ' l ' )  is the average force of the fluctuations. 
In this case the solution of the initial system of equa- 

tions ( 13 ) and ( 14) should be sought in the form 

where and 6 are the corrections to the main solution. If we 
assume slow changes in the coordinate of the Bloch line cen- 
ter with time, i.e., if v, d,v& 1 ,  and also bear in mind the 
smallness of Ip, 1, 16 I &n, we find that E ~ S .  ( 1 3 )  and ( 1 4 )  
yield the following equations for the corrections to the ze- 
roth-order solution described by the system ( 1 7 ) :  

-atQ"+ (cos ~rp0-~x2-dz2)~=d,qdf2xL+acPzodtxL ( 2 0 )  
-rp2dZ2xL-hx sin rp0+2(p, sin2 ~ + + f ( ~ ) .  

Applying the procedure of elimination of the secular terms 
from the solution of the system of equations ( 2 0 )  by ortho- 
gonalization of the right-hand side relative to a vector 
(q:, e,: ), which is the solution of the conjugate homoge- 
neous system, we obtain the following equations for the com- 
pact description of a Bloch line in an inhomogeneous medi- 
um: 

where 

F'" = 5 Y," ( f ' " )  dx, F(2)  = 5 f ( 2 ) r p ;  ax. 

In the case of a film of thickness d ( 0  < z < d )  this equa- 
tion must generally be supplemented by boundary condi- 
tions of the a, x ,  1 .  = ,, = 0  type. However, bearing in mind 
that the Q factor of the vibrations of a Bloch line across a 
magnetic film is usually small and that the flexural vibra- 
tions are usually damped out before they travel from one 
surface of a film to the other, i.e., assuming that u, r L  d  - ' 
= A, ( a d )  - ' & 1 ,  where v ,  is the velocity of flexural vibra- 

tions of a Bloch line and T, is the relaxation time of these 
vibrations, we can ignore the influence of the boundary con- 
ditions on the Bloch line dynamics and assume that the mo- 
tion of a Bloch line is unrestricted. 

The first term on the right-hand side of the resultant 
equation ( 2 1 )  describes the gyroscopic effect of the fluctu- 
ation-induced vibrations of a domain wall on a Bloch line. 
When domain wall is bent only slightly, so that q ,  & 1 ,  this 
effect is weak and we can ignore it in subsequent analysis. 
The second term also originates from the fluctuation-in- 
duced vibrations of a domain wall, but it results in an accu- 
mulation of changes in the average position of the moving 
center of a Bloch line. I t  can be regarded as a contribution of 
the dynamic coercivity of a domain wall to the drag of a 
Bloch line because of a moving dynamic deflection of a do- 
main wall which accompanies a moving Bloch line. The 
expression for this additional drag force can be found expli- 
citly if we assume that the domain wall coercivity is indepen- 
dent of the velocity, i.e., if we assume that (f"') = h FW 
= const. We then have 

nv 
F ( l )  = j q," ( f ( 1 ) )  dx = - h?? 

- m 
b ( 2 2 )  

In general, the domain wall coercivity is a function of the 
velocity of its motion: h FW = h FW(q) .  At sufficiently high 
domain wall velocities, the dependence can be found by us- 
ing the condition of smallness of the amplitude of fluctu- 
ations of the domain wall q, < 1, and the relationship 

d f"' 
h ~ w = ( ~  9 ") , 

where q, is the solution of a linearized system of equations 
( 1 8 )  with q = qt. The velocity dependence of the dynamic 
domain wall coercivity is discussed, for example, in Ref. 8, so 
that we shall confine ourselves to a general comment with- 
out a detailed discussion of this topic. In general, the addi- 
tional drag force exerted on a Bloch line and associated with 
the domain wall coercivity is a nonlinear function of the ve- 
locity, which applies particularly to the dynamics of Bloch 
line clusters creating a large deflection of a domain wall. In 
the simplest case of a small domain wall deflection it results 
in renormalization of the linear Bloch line mobility by re- 
ducing it. 
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The last term on the right-hand side of Eq. (21) deter- 
mines the intrinsic Bloch line coercivity, which is the main 
contribution if (7/2ab) h FW< 1. The field representing the 
dynamic coercivity of a Bloch line is equal to the average 
value of the force F 2 ,  i.e., 

h :L =( J f ( 2 ) ~ ;  dx). 

We can find it explicitly by deriving from Eq. (21) the 
expression for x, (t, x , ,  y,, z, ) and substituting it in Eq. 
(23). This is not possible to do in general. We shall therefore 
consider a simplified situation when the fluctuation-induced 
vibrations of a Bloch line are weak, i.e., /6xL / < 1. This is 
possible if the Bloch line velocity is sufficiently high, so that 
lxL / > a3(n(&')) 1 ' 2 a ' /  (see below), where n =. NA,,Ai  is 
the normalized density of defects and ( E ' )  is the variance of 
the relative fluctuations of the magnetic parameters. The last 
requirement is not in conflict with the adopted adiabaticity 
condition /i, / < 1, because ( E ' )  < 1. Then, after lineariza- 
tion of Eq. (21), we obtain the following equation for sto- 
chastic vibrations of a Bloch line moving at an average veloc- 
ity v: 

where 

and the Bloch line velocity is now given by an equation de- 
scribing the averages 

The dynamic coercivity of a Bloch line is obtained in the 
second order in respect of the fluctuation interaction from 
Eq. (23) as follows: 

where G(f, z )  is the Green function of Eq. (24) and (...*... ) 
denotes a convolution of the functions. Averaging is carried 
out over the whole field of defects on the assumption of an 
equiprobable spatial distribution characterized by the Pois- 
son statistics of the number of defects in a bounded volume. 
Similar statistical properties are exhibited by a pulsed 
steady-state process with a random number of pulses in a 
limited time interval (see, for example, Ref. 18). We then 
find from Eqs. (24) and (26) that 

1 b'"n ( E ' )  (a:jk) 
h 1' = - jj Gk ( 1 P:' I ' )  ik dk dk, = 

2,5,2u 2 

where 

is the Fourier transform of the random force, G, = 4 x ( k f x 
- k ' + ikok) - ' is the Fourier transform of the Green func- 

tion, x = 4b /n2v', k,, = 4Ch /r2v, and 

FIG. 1. Pinned segment of a Bloch linex, ( z ) ,  where x, is the maximum 
(critical) deflection of the line when h ,  = h 1". 

The asymptote of the dependence of the Bloch line coer- 
civity on the velocity is as follows: 

where {(s) is the Riemann zeta function. 
At very low velocities the fluctuation-induced vibra- 

tions of a Bloch line become very large, since in the limit u + 0 
the mean-square fluctuations 

grow without limit. Therefore, if the velocity obeys 

the theory ceases to be valid. In this case a more suitable 
characteristic of the coercivity is the start or unpinning field 
of a Bloch line. 

4. The start field of a Bloch line is governed by the 
mean-square value of the force of the fluctuation interaction 
acting on a characteristic Bloch-line pinning length I. This 
length can be related to the maximum quasistatic reversible 
displacement of a Bloch line in a segment of length 21, pinned 
at its ends as shown in Fig. 1. It follows from Eq. (2  1 ) that a 
static deflection of a Bloch line can be described by the equa- 
tion a f x, = h,, the solution of which subject to the bound- 
ary conditions x, (I)  = 0 and x, ( - I) = 0 makes it possi- 
ble to find the required relationship 

where x, denotes the maximum reversible deflection of a 
Bloch line x, (z). This critical deflection x, generally de- 
pends on the force of the interaction of a Bloch line with 
point defects, as well as on the density of defects and its 
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variance, and on the "rigidity" of a Bloch line under bending 
conditions. Numerical and statistical methods were used in 
Refs. 4-6 to calculate the quasistatic displacement of a fila- 
mentary dislocation and a one-dimensionally bent domain 
wall in the field of strongly localized inhomogeneities occur- 
ring under the action of a constant force. Use has been made 
of the equation 

which describes also a quasistatic displacement of a Bloch 
line [see Eq. (21 ) 1. An analysis of the results of the calcula- 
tions reported in Refs. 4 and 5 shows that the critical deflec- 
tion x, of such objects (dislocation and domain wall) con- 
sidered in the case of pinning by fluctuations of the number 
of inhomogeneities inside an object is proportional to the 
thickness of the object, so that x, ~ 0 . 2 8 .  In this case the 
characteristic pinning length normalized to the length 
of a Bloch line depends on the coercivity field: 
1-0.75 ( h  ,BL)-'I2. 

The static coercivity of a Bloch line (start field) repre- 
sents the root of the variance of a random force acting as a 
segment of length 21, i.e., 

The above expression is valid if the characteristic length I 
does not exceed the thickness of a magnetic film d. In the 
opposite case, we have to replace 1 in Eq. (30) with the thick- 
ness d. Bearing in mind that 1 is a function of the coercivity, 
we can find the Bloch line coercivity for the case when d S 1  
from Eq. (30) using a self-consistent approach, such as that 
employed in Ref. 6 to find the domain wall coercivity. 

It therefore follows from Eq. (30) that in the case of 
weak pinning of a Bloch line by defect clusters, when d 4 1 
and a Bloch line behaves as a "rigid" entity, we have 

In the case of films characterized by Igd ,  when a Bloch line 
bends between microinhomogeneity clusters pinning them, 
we find that 

For the sake of comparison, we shall give the expression 
for start field of a domain wall, which is obtained from Eqs. 
( 13)-( 15 ) on the basis of similar considerations: 

where sf z n-/h pW is the region of pinning of a domain wall 
and ( E ;  ) = ( ( E $  + &fk ) 2 ) .  A comparison of Eqs. ( 3 1 ) and 
(32) shows that the nature of the dependences of the coer- 
civity on the density of defects and on the variance of the 
magnetic parameters is different for a domain wall and a 
Bloch line and this is due to the different d i r n ~ n ~ i n n ~ l ; + i - - ~  nF 

these two physical objects. Moreover, it follows from a com- 
parison of Eqs. ( 15) and ( 16) that in the case of a strongly 
anisotropic ferromagnet considered in the present paper the 
difference becomes greater because the local forces repre- 
senting the interaction of a domain wall and a Bloch line 
with inhomogeneities are quite different. The coercivity of a 
domain wall is governed primarily by the anisotropy field 
and its fluctuations, whereas the coercivity of a Bloch line is 
governed by the magnetization. This is particularly clear 
from the dimensional expressions for the coercivity given 
below. 

5. It follows from the above discussion that under dy- 
namic conditions the coercivity of a Bloch line is character- 
ized by additional drag forces related to the coercivity of a 
domain wall and the intrinsic coercivity of a Bloch line. A 
compact dimensional description of a Bloch line subject to 
these forces is: 

where 

The dynamic coercivity of a Bloch line then depends on the 
velocity and creates an additional nonlinearity of its dynam- 
ics in accordance with Eq. (28).  Moreover, the mobility of a 
Bloch line decreases considerably under these conditions. 
We shall demonstrate this by considering a specific example. 

Theile and Engemann" measured the mobility of Bloch 
lines in (YSmBi) ,. (FeGa),O,, films of thickness 2pm with 
a magnetization 4n-M = 100 G, a quality factor Q = 4.5, 
a = 0.086, and y = 1.78 X lo7 Oe-l.s-'; the value obtained 
by them was 15 m.s- ' .Oe - I .  In the investigated range of 
the Bloch line velocities, v - 20 m/s, the Bloch line mobility 
was a linear function of the velocity and could be described 
by the usual expression ,u,"~ = n-yA,,/2a, which yielded 70 
m.s--l. Oe-I. However, a calculation carried out using the 

expressionpBL = pOBL ( 1 + H yW/8Mab) - I, which follows 
from Eq. (34), gave the value pBL = 25 m.s-'.Oe-I on 
substitution of the domain wall coercivity H FW = 0.7 Oe 
given in Ref. 10 and of a domain wall rigidity estimated from 
the approximate expression b ' = 2dA,,/7.rw2, where d is the 
film thickness and w = 4.8 pm is the width of a stripe do- 
main. The latter value of the mobility was closer to the ex- 
perimental results, particularly if we bear in mind that mo- 
bility of the Bloch line was measured under transient 
conditions and the rigidity of a domain wall was estimated 
only very roughly. 

Since essentially the coercivity of a Bloch line and a 
domain wall have the same origin, there must be a relation- 
ship between them which can be found from Eqs. (32) and 
(33). Before doing this, we shall adopt more usual dimen- ' 

sional forms of these expression: 
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where 

are the mean-square forces of the interaction of an isolated 
defect with a Bloch line and a domain wall, respectively, and 
o,, = 4(AK) ' I 2  is the surface energy density in a domain 
wall. An expression for the domain wall coercivity resem- 
bling Eq. (36) was obtained in Ref. 6 and used in Refs. 7 and 
9 in an analysis of the experimental results. 

The final forms of Eqs. (35) and (36) for the Bloch line 
and domain wall coercivities are valid in a wider range of 
conditions, because they apply also to materials with Q < 1, 
where Bloch lines were also investigated (see, for example, 
Refs. 19 and 20)." In this case it is however essential to 
specify the micromagnetic dependence of the forces of the 
interaction of a Bloch line or a domain wall with defects. In 
the Qs 1 case considered in the present paper the relation- 
ship between the pinning forces 

leads to the following relationship between the coercivity 
fields of a Bloch line and a domain wall: 

where B = ( ( E ~ ) / ( E ; ) ) ~ / ~ .  
We shall now obtain numerical estimates using the re- 

sults reported in Refs. 10 and 11. We shall assume that the 
relative magnitude of the fluctuations of the magnetic pa- 
rameters A, K, and M is approximately the same and we shall 
postulate that B = 3. Then, if HPW = 1 Oe, Q = 4.5, and 
47~M = 103 G (Ref. lo) ,  we find from Eq. (37) that H :L 

= 2 Oe and if H,DW = 2.1 Oe, Q = 7.2, and 477M = 185 G 
(Ref. 1 I ) ,  we have H FL -, 3 Oe. The experimentally deter- 
mined values of the start fields of a Bloch line were H $L 5 3 
Oe (Ref. 10) and HFL 5 4 Oe (Ref. 1 I ) ,  respectively, in 
agreement with the theoretical estimates. However, it 
should be pointed out that the assumptions made about the 
relative magnitudes of the fluctuations of the selected three 
magnetic parameters are arbitrary and a satisfactory com- 
parison of the theory and experiment requires additional 
studies, for example, a study of the temperature dependence 
of the coercivity of a Bloch line and a domain wall. 

Our expressions thus establish the dependence of the 
coercivity of a Bloch line on the magnetic parameters and 
their fluctuations, and allow us to relate it to the coercivity of 
a domain wall. It is clear from Eqs. (35) and (36) that the 
coercivity of a Bloch line is less sensitive to changes in the 
magnetic parameters and in the pinning forces than is the 
coercivity of a domain wall. Consequently, the temperature 
dependences are also different. For example, on approach to 
the Curie point T,, when the main contribution to ( E ~ )  is 
associated with fluctuations of the demagnetization energy 
and of the anisotropy, so that 

wherep is the critical index (in the molecular-field approxi- 
mation this index is p = 0.5 ) and ST, is the amplitude of 
local fluctuations of the Curie point T,, and if K a M (for 
example, when the uniaxial anisotropy is dominated by the 
single-ion contribution), the change in the coercivity of a 
Bloch line occurs in accordance with the law H :L oc ( 1 - T /  
Tc l3Ol3  - 4/3 ,whereas HPWc (1  - T / T , ) ~ ~ - ~ .  

In the case of films with an open domain structure we 
have to allow for the twisted shape of the domain walls be- 
cause (f;,) and aL vary across the film thickness. How- 
ever, in the case of clusters with an even number of lines NL 
such variation is slight because of the symmetry of the mag- 
netic structure and Eq. (35) is still applicable. We must also 
bear in mind that if the pinning forces acting on the individ- 
ual Bloch lines are weaker than the forces of the interaction 
in a cluster, it follows that (f2(NL ) )  = NL Cf2( 1 ) )  and 
oL (N,) = NLaL ( I ) ,  sothat H!LaNL'3. 

Undoubtedly the Bloch line coercivity may also be af- 
fected by the appearance of Bloch points,21 which create ad- 
ditional pinning, However, this is outside the scope of the 
present paper. 

I' Equation (36) applies to materials with a moderately strong magnetiza- 
tion (see Ref. 6), when I,,M'/uU< 1, where I,, = A, .ctZ1" is the 
characteristic size of the pinned part of a domain wall. In the opposite 
case the Bloch line coercivity must be compared with the domain wall 
coercivity obtained using the model of its one-dimensional de f l e~ t ion .~ ,~  
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