
Photovoltaic effect in spin resonance in a quantizing magnetic field 
L. I. Magarill, A.M. Palkin, V. N. Sozinov, andV. M. ~ n t i n  

Institute of Semiconductor Physics, Siberian Division, USSR Academy of Sciences 
(Submitted 18 August 1989) 
Zh. Eksp. Teor. Fiz. 97,950-965 (March 1990) 

The photovoltaic effect in n-InSb in optical transitions between spin Landau-level subbands is 
investigated theoretically and experimentally in the ultraquantum limit. The current along the 
magnetic field is considered. The effect is due to Hamiltonian cubic terms that are caused by the 
absence of an inversion center. The current has a resonance dependence on the magnetic field and 
contains contributions both even and odd in the field. This character of the effect is due to 
resonance in the intermediate state and to interference between transition amplitudes of second 
order in the relativistic contributions to the Hamiltonian. The dependences of the photovoltaic 
effect on the crystal orientation and on the radiation polarization direction are investigated 
experimentally. The band parameters of InSb are determined by comparison with the theory. 

1. INTRODUCTION 

Starting with the work of Rashba and Sheka,' com- 
bined resonance (light absorption on account of the electric 
component of an electromagnetic wave and due to electronic 
transition with spin flip) continues to be of interest in solid- 
state physics. Thus, interference of magnetodipole and elec- 
trodipole resonances in the Voigt configuration in crystals 
without inversion center has been recently observed and in- 
ve~t igated.~-~ 

The absence of an inversion center is known also to lead 
to an onset of a stationary current induced by homogeneous 
illumination-the photovoltaic effect (FVE).5 The depen- 
dence on the light polarization and on the crystal orientation 
help distinguish it from among other photoelectric effects. 

The FVE in a magnetic field was investigated by 
many,"' but the case of a quantizing field has not been con- 
sidered. We report here a theoretical and experimental study 
of the FVE in a quantizing magnetic field for spin transitions 
in the conduction band of a semiconductor of InSb type. 

Study of the FVE under spin resonance can supplement 
light-absorption experiments as a method of measuring the 
band parameters, since the same Hamiltonian terms can lead 
both to electrodipole transitions and to an FVE current. 

2. THEORY 

We consider current flowing along the direction of the 
magnetic field H with the light propagating in the same di- 
rection (Faraday geometry). The light polarization and the 
orientation of H relative to the crystallographic axes are as- 
sumed arbitrary. Let the conditions corresponding to the 
quantum limit w ,  > T, w ,  > p ,  be satisfied, where 
w, = Jglp,H is the spin-transition energy, p is the Fermi 
level measured from the lower spin subband, g is theg factor, 
pB is the Bohr magneton, and h = 1. 

Let A, and d ( t )  = Re ( A  exp [ - iwt] ) be respective- 
ly the vector potential of the constant homogeneous magnet- 
ic field and of the electromagnetic wave, 

the potential energy of the electron interaction with the ran- 
domly distributed impurities (ri  is the coordinate of the ith 
impurity center). The Hamiltonian of the system considered 
is 

where A?", is the Hamiltonian of the free electron in the 
parabolic approximation: 

The terms A?", , R2, and R, correspond to three possible 
mechanical transitions with spin flip: A?", = So (ax ) ,  where 
in the principal crystal axes xi = kjkikj - klkikl it is con- 
nected with the absence of an inversion center; the term 

is connected with the dependence of the g factor on the mo- 
mentum, and the term 

%"=a( [VU, k]o) 

is the spin-orbit interaction of the electron with the impuri- 
ties. 

The Hamiltonian terms designated by the letter de- 
termine the interaction of the electrons with the electromag- 
netic wave, with 

.F=.FO+s*+52+5", 

where 

For current to flow along the field H, the transition 
probability must be odd as a function of the longitudinal 
momentum p, (the z axis is directed along the magnetic 
field). Obviously, this occurs if the probability is calculated 
in the nonzeroth order in the constant So that determines the 
absence of inversion center. We begin by solving a quantum- 
kinetic equation of the form 

where 6f, is the increment to the equilibrium distribution 
function 
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is the integral of electron collisions with the impurities, G is 
the generalization probability, a = (n,p,a) is the set of 
quantum numbers indicative of the eigenstates of the Hamil- 
tonian Zo in the gauge A,  = (O,Hx,O), n is the number of 
the level, p = (p,, p, ) is the electron momentum, a = + 1 
(we shall hereafter designate the spin projections by up and 
down arrows). Since we are interested in the Landau-level 
limits n = 0, we shall omit this subscript from all the quanti- 
ties. 

The generation functions Go,, = G,, are defined as 

Here fa'" is the equilibrium distribution function of the 
electrons, w,,, is the square of the matrix element of the 
electron transition with spin flip. Bearing in mind InSb,in 
which g < 0, we assume that the lower spin subband corre- 
sponds to a = +_ 1. 

Since the Hamiltonian terms responsible for spin-flip 
processes are small, and the generation process itself re- 
quires that they be taken into account, we can neglect the 
contribution of such processes in the collisional integral. 

We subdivide I, G, and Sf into parts that are even and 
odd in p: 

Z=ZC+I-, G=G++G-, 

1+6f-+Z-6f+=G-, (4)  

Ii6j++Z-6)--G+. 

The current is determined by the odd part of Sf, : 

( V is the volume of the system, uz is the operator of the 
velocity z-component). For interaction with impurities, the 
term I -  Sf+ vanishes. Actually the probability of scatter- 
ing by impurities can be written in the form 
Wa,, = 2 6  ( I t,,, I ' )S(E, , , ) ,  where t is the operator for 
scattering by a single impurity center (the angle brackets 
denote averaging over the impurity configurations) 
~(afl)  = &(a) - ~ ( f l ) ,  and E;  are the eigenvalues of Xo . 
The scattering operator, however, satisfies the optical 
theorem and the condition that follows from the time rever- 
sal requirement: 

tppr (H) = t - P 8 ,  -H). ( 6 )  

(we do not write out here the inessential index a .  ) Since the 
momentum operator and the magnetic field enter the Hamil- 

tonian Po in the form of the combination p, + Hxe/c, si- 
multaneous reversal of the sings ofp, and H does not change 
the Hamiltonian. It follows hence that for 

- - 
the condition tp,p = t - zp,, - p, is met. But this equation 
and the condition leads to 

and this means that J P .  Wpp, is even inp,. Using this fact and 
the energy conservation law, according to which p: = , p,, 
we find that 

This means that the odd probability of scattering by impuri- 
ties in the superquantum limit does not lead, in contrast to 
the case of small.H, to a photovoltaic effect. 

Thus, the quantity Sf; we need to calculate the longi- 
tudinal current is determined by an equation that follows 
from the first equation of (4) : 

where the relaxation time rpz, is given by the expression 

1 + pz-P,' 
-= W p r o , p a -  . 
T p Z a  p.  P z  

Using Eqs. (2) ,  ( 3 1, and ( 7 1, we obtain the relation for the 
current: 

where I =  U ; ~ T T , ~ ~ ,  I f =  uZ , t r  ,L. 
PI P ,  

The asymmetric part of the photoexcitation probability 
can result also from neglect of interaction with impurities in 
first-order perturbation-theory series, on account of inter- 
ference between F, and F ,  : 

where a = pt , 8 = p' The expression for the matrix ele- 
ments (F, ),,a depends on the orientation of the magnetic 
field relative to the crystallographic axes.It follows from Eq. 
(27) of Ref. 1: 

Here E ,  is the amplitude of the electric field of the electro- 
magnetic wave, el3 =e-B, , , , ,  +e+B<233),ei  
= 2 - "'(ex + ie, ), e is the polarization vector, and a is the 

magnetic length. The angular dependence is contained in the 
coefficients BV3,) (Ref. 1); 

B , , 3 , ) = ~ ~ ~  2 0  cos 2 0-'I, i sin 2'3 cos 0 (3  cos2 0- i ) ,  ( 10) 
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B(233,=-3/2 i sin 2(D sin 0 sin 20,  (11) 

where O and @ are the polar and azimuthal angles of the 
vector H in the system of the crystallographic axes. 

For (F2 )pa we have 

from (9) we obtain from W"' : 

It is seen from (8)  that if one disregards scattering by impur- 
ities with spin flip and the nonparabolicity of the spectrum 
then the difference I - I ' vanishes because the spin subbands 
are identical and the momentum is conserved in the transi- 
tion probability ( 12). For the effect not to become zero, ac- 
count must be taken of the nonparabolicity of the spectrum 
in the calculation of T,,, and u;,. Assuming the nonparabo- 
licity to be small, we can represent the expression in the par- 
entheses in (8 ) in the form (d  /dm) ( ?,,: t u iZ  t ) Ip, Am, where 
Amrzm,  - m, = - mu,/&,, and E, is the band gap. As a 
result we have 

1 
x P ,  (a'pZa - T) -j8,, (A). ( 1 3 )  

Here 6 ,  (A) = q / r (A2  + q2)  is a "smeared" 6 function, 
A = w - w, is the detuning from resonance, and 
P = Re(e,ey ) = Re(e e*, B, ,,,, ). The damping 
q -+ + 0, however, as is customarily done, can be replaced in 
the final results, for comparison with experiment, by a finite 
quantity q indicative of the width of the transition. 

For scattering by charged impurities 

( x  is the dielectric constant and ni is the impurity density). 
For this case we obtain from (13) where E, is the effective 

i;l) - eS60~o.2EoZ (2m) "ln. 
(( ~ ' ~ 1 ) )  P6" ( A )  , 

a' I g( e,moZnieB (14) 

Bohr energy, and E = p5/2m is the longitudinal energy of the 
electron. The double angle brackets denote averaging: 

is the electron density. For nondegenerate case 
4 & 5 / 2 %  = Z T -  1 / 2 ~ 5 / 2  

Besides the considered contribution made to the cur- 
rent by interference of F, and F, , there are also terms con- 
nected with allowance for the contribution made to w by the 
interaction of the electrons with the impurities. It may turn 
out that transitions with spin flip, with participation of im- 
purities are not resonant, for in this casep, is not conserved. 
It will be shown later, however, the FVE is determined in 
this case by a resonance in an intermediate state. The reason 

is similar to that of the onset of resonant FVE in a quantum 
fi1m.9.10 

Analysis shows that the resonant terms we need in the 
p, -odd transition probability appear when account is taken 
of the interference of the transition amplitudes of the first 
and second order. It must also be borne in mind that the 
answer should contain the constant 6, and the second power 
of the impurity potential. For the corresponding contribu- 
tions to w we obtain 

Here E , , ~  = cy - E ~ ,  ey is the spectrum of the Hamiltonian 
&Yo; the subscripts y = p't and 6 = p l  correspond to inter- 
mediate states. The transitions contributing to w ' ~ . ~ '  are 
shown schematically in Fig. 1. Equations (15) and (16) 
show that the resonance is due in this case to an intermediate 
state. The matrix elements of Fu and U contained in ( 15) 
and ( 16) are given by the relations 

where u, is the Fourier component of the potential of an 
individual impurity, Ni is the total number of impurities, 
J ( q )  = exp(iq*r). 

After substituting and averaging we get 

FIG. 1 .  Two types of transition that determine the contributions ji" and 
jj." to FVE in spin resonance; a-interference of transition matrix ele- 
ments determined by F ,  (dashed line), and of the composition matrix 
element of type U x F ,  (solid line), or F, X U (dash-dot line); b-inter- 
ference of composite matrix elements U X F ,  and F , , ,  x U. Momentum 
conservation in the transition dictates the resonant character of the pro- 
cess. 
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We introduce the notation 

where 

a,= (p,'-p,) ( a ' ~ , 2 - ~ / ~ ) ,  

g2= (pi-p , )  (azpz'2-i12), 

%=pZ (a2pz'z-'/z), 

~ ~ = p , ' ( a 2 p , 2 - ' / 2 ) .  

is a function indicative of the frequency dependence of the 
current [S:, (A) is the derivative of S,, ( A )  1 ,  and the func- 
tion 

P'=Im(e+*es)=(et(21m B,,33~+Im(et*e-B,,33))  

determines its polarization dependence. 
For the nondegenerate case we have ( ( E ) )  = T / 2 .  
Other contributions in the same order of theory (and 

proportional to SOg) could result from the contribution, odd 
in p , ,  to the spectrum E,,:,, but it is easy to verify that they 
vanish, at least in this order. 

Note that expression ( 17) is valid for an arbitrary im- 
purity potential. 

In Eqs. (14) and (17) the line width was taken into 
account with the aid of a numerical parameter 7. Such a 
model corresponds to line broadening by spin relaxation. A 
much greater role is played in InSb by broadening due to 
nonparabolicity of the electron spectrum. It  can be shown 
that allowance for it reduces to the following replacement of 
the function S,, (A) : 

We have then for the current 

In the case of short-range impurities (u, = u,,/V, 
u, = const), the values of gi are easily obtained: 

Here w,  is the cyclotron frequency and 8 ( x )  is the unit 
step function. 

Let A 4 ( ( E )  ), where ( ( E )  ) is the average energy of the 
longitudinal motion of the electron. In this case pi z - p, 
and 9,  = 9, = - 2 9 ,  = 2 9 ,  = 9 = const. Assuming 
that the relaxation time is determined by scattering from the 
same potential Uas in the Born approximation of 9, we get 

As a result we get for j, 

j :2 )+ j ;3)=  -. 4naBoe3n,( E )) 
a h 2  Eo2Sn ( A )  P', 

where 

where Y = 2  for Eq. (14) and Y = 3/2 for Eq. (17),  
y = 2w, T / E ,  and 7, are parameters indicating respectively 
the nonparabolic broadening and the broadening to the spin 
relaxation. If the condition y& 7, is met, we have in the case 
of Boltzmann statistics 

where r(3) = 2, y ( + )  = 

Thus, allowance for nonparabolicity leads to an asym- 
metric line broadening. The contributions j i0 and j12' re- 
main constant in sign, while the sign of jt3' alternates. 

Expression (17) shows that the polarization depen- 
dence of the current is the same for all parts near resonance. 
In the case of purely circular polarization it is determined by 
the quantity ImB,,,,, . In typical experimental geometries 
the field H is directed along [001 ] , [ 1101, or [ 1 1 1 1. It can be 
seen from ( 10) that an effect on circular polarization is pos- 
sible only in the [ 11 1 ] orientation, with P ' = - 2 / 0  for 
cyclotron-inactive polarization (right-handed), and there is 
no effect for left-handed polarization. In the case of linear 
polarization the current differs from zero for the orienta- 
tions [ l l l ] and [001 1. In the first case there is no polariza- 
tion dependence. In the second the sum j12) + J:~' has a po- 
larization dependence of the form sin 2p, where p is the 
angle between the vector e and the [ 1001 direction. As for 
the termj;", it is equal to zero for circular polarization, and 
differs from zero only at HI1 [ 1001, and depends on y, like 
- cos 2p. The values of Pand P' for the principal directions 
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are listed in the table. 
When comparing the sign of the current with experi- 

ment it must be remembered that the z axis is directed along 
the magnetic field. It is more convenient to use the current in 
the laboratory frame. In the [ 11 1 ] orientation H - - H and 
simultaneous change of the circular polarization or preser- 
vation of the linear one does not change the sign of the cur- 
rent. In the [OOl] orientation the polarization j;" changes 
while ji2' + ji" does not change the sign when H -  - H.  

In the orientation [ 1001 and for linear polarization of 
the radiation it must be taken into account that the polariza- 
tion is not preserved inside the sample, but is rotated by the 
Faraday effect. The measured signal is proportional in this 
case of ~ t d z j , ,  where d is the sample thickness. 

3. SAMPLE PREPARATION AND MEASUREMENT 
PROCEDURE 

We used in the experiments n-type indium antimonide 
samples with concentration n,, , = 1.3. 1014 cm '. The 
ingot was oriented by a standard x-ray procedure accurate to 
30'. Samples measuring 3X 3 x 10 mm were cut from the 
ingot in such a way that the maximum dimension corre- 
sponded to one of the three crystallographic directions: 
( loo),  (1 lo),  and (1  11). Etching in a selective etchant 
made it possible to establish the crystallographic indices in 
absolute units. 

Indium contacts were placed on the end faces of the 
samples, as shown in Fig. 2. The radiation source was an 
optically pumped submillimeter CH, OH vapor laser. The 
experiments were performed at a fixed laser emission wave- 
lengthil = 118.8pm. The intensity of the radiation incident 
on the sample was 5 mW/cm2. The measurements were 
made with the radiation polarized both linearly and circular- 
ly by passing the beam through a crystalline quartz quarter- 
wave plate. 

The samples were placed in an optical cryostat with a 
superconducting solenoid having a maximum induction 8 T. 
The inhomogeneity of the magnetic field in the volume occu- 

FIG. 2. Dependence of photoemf on the magnetic field at HI [OOl]: 1- 
p = 0", 2-30", 3-60", 4-90", 5-120" (p is the angle between the direc- 
tion [ 1001 and the polarization vector e ) .  Inset-geometry ofexperiment, 
q-radiation wave vector. 

pied by the sample was 1 . 1 0  of the maximum. The pho- 
toemf signal was measured by an amplifier with a lock-in 
detector. A germanium bolometer placed behind the sample 
measured the transmission coefficient. The Faraday-rota.. 
tion angle of the polarization plane in the samples in a mag- 
netic field was fixed by the maximum transmission through a 
polarizer located between the sample and the bolometer. 
The densities of the free carriers and that of the ionized im- 
purities in the samples in a magnetic field were determined 
by measuring and analyzing the Hall effect and the mobility. 

4. EXPERIMENTAL RESULTSANDTHEIR DISCUSSION 

The experiments were performed in the Faraday geom- 
etry, E l  Hllq, where q is the radiation wave vector. The pho- 
toemf was measured along the magnetic field. For samples 
with principal crystallographic orientations we measured 
the magnetic-field dependences of the emf at various direc- 
tions of the incident radiation, of the radiation polarization, 
and of the magnetic field. Typical plots are shown in Fig. 2. 
According to the results of an absorption experiment" the 
central peak corresponds to spin resonance by free carriers, 
and the peaks on the left and right of the peak correspond to 
impurity transitions. 

The measured signals contain resonance peaks and non- 
resonant "base." For comparison with theory we shall ana- 
lyze only the resonance peak corresponding to spin reso- 
nance by free carriers. The shape of the plot of the photoemf 
against the magnetic field contains a constant-sign compo- 
nent and an alternating-sign one. By analyzing the line 
shapes of the observed emf, photoconductivity, and absorp- 
tion signals, we have verified that the line is better approxi- 
mated by a Lorentz curve and its derivatives than by the 
dependences calculated from Eq. ( 19). It is possible that we 
failed to observe the line asymmetry due to nonparabolic 
broadening, owing to insufficient homogeneity of the mag- 
netic field in the samples. We shall therefore describe the 
constant-sign peak by the function S(A)  = ? / r (AZ + q 2  ), 
and the alternating-sign peak by - S'(A) = - 2Av/ 
r ( A 2  + v2 ) 2 ,  where is the half-width of the absorption 
line. Since the constant-sign component has a maximum at 
A = 0, when the alternating-sign component vanishes, we 
shall compare hereafter the signal amplitudes at the extrema 
of the alternating-sign component, i.e., at A = + 77/3"*. 
The experimental curve was divided into two components by 
fitting the coefficient D in the expression. S( A) + DS1(A) to 
obtain best agreement with the initial curve. 

The photoemf signal contained a component that de- 
pends on the sign of the radiation vector, as well as an inde- 
pendent component. The FVE for a given direction of the 
polarization vector does not depend on the direction of q. An 
FVE contribution odd in q can occur only in the orientation 
HI/ [001 1,  for in this orientation the current depends on the 
polarization, and the latter is varied in the sample by the 
Faraday effect which is odd in q. In addition, polarization- 
independent effects odd in q exist, viz., the Dember emf" 
and the dragging effect,'? as well as an emf even in q and due 
to inhomogeneity of the sample (these contributions are pro- 
portional to the absorption coefficient, which does not de- 
pend on the linear polarization). With account taken of this 
fact, the FVE effect was separated from the common signal 
in a different manner for each orientation. 

Let us examine the behavior of the FVE for the princi- 
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where 

FIG. 3. Polarization dependence of FVE contribution even in A for two 
polarities of the magnetic field and directions of the incident radiation 
(a)--qll [001], (b)--qll [OOl]. HereOcorresponds to HI/ [001] and to 
Hll[001]. Curves--calculated from Eq. 20. 

pal orientations of the crystal. 
A. Hll [OOl]. In this case the FVE was separated in ac- 

cordance with its characteristic polarization dependence 
separately for the contributions even and odd in A. Figure 3 
shows the experimental angular dependences of the even 
contribution to the FVE for two polarities of the magnetic 
field and directions of the incident radiation. To compare the 
theoretical relations with the experimental ones account 
must be taken of the Faraday effect. In a magnetic field cor- 
responding to spin resonance, the density of the free carriers 
decreases on account of the magnetic freezeout, and the rota- 
tion of the polarization plane is due mainly to the Faraday 
effect on the "wing" of the impurity cyclotron resonance.I4 
The Faraday angle remains practically unchanged within 
the limits of the spin-resonance line width. 

Theoretically, contributions to the FVE are made in 

q~ is the angle between the polarization vector of the incident 
radiation and the [loo] direction, R is the coefficient of re- 
flection from the front and rear faces of the sample, a, is the 
longitudinal conductivity in the magnetic field correspond- 
ing to the spin resonance, Bin, is the intensity of the electric 
field of the wave incident on the sample, and n ,  is the refrac- 
tive index. In this equation account is taken of the rays trans- 
mitted and reflected by the rear face of the sample, but their 
interference is neglected, since under the experimental con- 
ditions these faces were not parallel with accuracy sufficient 
for interference. We have also neglected here the damping of 
the radiation intensity in the sample, since the experimental- 
ly measured absorption coefficient was 0.01 cm - ' . 

The Faraday angle rd was determined by measuring the 
rotation of the polarization plane of the wave passing 
through the sample, and turned out to equal 0.7 rad. 

The angular dependence in(20) contains coefficients A 
and B determined by the band parameters So ,  g, and a .  The 
parameter So is determined from experiments on absorption 
under spin-resonance  condition^,^ where the interference 
between the electrodipole and magnetodipole transitions is 
clearly pronounced and turns out to equal 3.6.10-34 
erg.cm3. By varying the ratio A /B it is possible to approxi- 
mate well the experimental polarization dependences for 
A / B  = 1 and 2 (see Fig. 3).  Substituting in the theoretical 
expression 

A 2v'Qo,2ma1a ( K T )  " 
-= 
I3 nR 1 g l f i ~ , ~ , n , a  

these orientations by jll' and j:"-see the table and Eqs. 
EB = 0.6  me^, = 0 . 0 1 3 5 ~ ~  E, = 0.236 e ~ ,  l g l  = l, 

( 14) and ( 17). In this casejll' depends on the magnetic-field ni = 1.1.1014 cm - 3, we obtain gla = 26. substituting the 
direction, while j12' does not. With allowance for the Fara- experimental value of the signal in (20) and recognizing that 
day effect the expression for the FVE emf takes the form a = 1.26.10F6 cm, n,,, = 4.2, 77 = 5.109 s - ' ,  no = 1.10" - 

~ m - ~ ,  a, = 2.5.10-2 R - '  -cm- '  , we obtain -- 

( I -R2)E ,?n, g =  - 1.9.10-'2cm2,andthena= - 7 . 1 0 - 1 4 ~ m 2 . S ~ c h  
U =  ti ( A )  (A2+B2) Ib sin (rd)  sin  (rd+cp0+2q), 

2oHn0r values of the parameters g and a are in good agreement with 
the theoretical values calculated in Kane's model: 

(20) g=1.2.10-12 cm2 (Ref. 15), a=-f i2/4m&, 

TABLE I. Values of Pand P '  for various orientations and polarizations. 

Iiiil 
Polarization 

0 
-3-'h Linear 
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= - 5-1014 cm2 (Ref. 16), but differ greatly from 
g = - 1.10- " cm2 obtained in Ref. 17. 

Figure 4 shows the angular dependences of the odd 
contribution to the FVE for two polarities of the magnetic 
field in the case of linear polarization of the radiation. In the 
theoretical part of the paper it is described by the expression 
forji" and is independent of the magnetic-field direction. A 
dependence on the direction of H appears when account is 
taken of the Faraday effect. The expression for the emf takes 
then the form 

where C = - Em, /Igla. The angular dependence plotted in 
accordance with this equation describes the experimental 
one well, but the amplitude of the effect turned out to be 
3.9.10 - 4, much higher than the experimental 5 - 1 0  ' V. 

The polarization-independent resonant contribution to 
the total signal has components dependent on and indepen- 
dent of q. The more significant is the q-dependent compo- 
nent, which duplicates the line shape of the peak that is odd 
in A. We attribute this component to a photon dragging ef- 
fect of the type of Ref. ( 13). The component independent of 
q, which has the line shape of the peak that is even in A, we 
attribute to the emf on the sample inhomogeneities. The 
dragging effect is 1.2 times larger than the FVE at the ex- 
trema of the polarization dependence of the latter, while the 
emf on the sample inhomogeneities is - 15% of the odd con- 
tribution to the FVE. 

B. H(I [ 1101. At this orientation there is not FVE theo- 
retically and has not been observed in experiment. 

C. Hll[ 11 11. In this case analysis of the experimental 
results has shown that the measured signals are independent 
of the angle between the linear-polarization vector and the 
crystallographic directions in the ( 11 1 ) plane. To separate 
from the experimental curves obtained for opposite direc- 
tions of q the signal components that are dependent on or 
independent of the sign of the radiation vector, we have con- 
structed the following combinations: 

FIG. 4. Polarization dependence of the emf on FGE odd in A at two 
polarities of the magnetic field: 0-H/1[001], 0-H1([001]. Curves- 
calculation by Eq. ( 2  1 ) .  

The values of U +  and U -  were determined for two 
polarizations of the magnetic field relative to the [ 11 11 di- 
rection. Here U +  is independent of the sign of q and is deter- 
mined by the FVE and the resonance photoemf connected 
with the inhomogeneity of the samples. It is impossible to 
separate experimentally one from the other by our measure- 
ment procedure, but judging from analysis of the results in 
the Hll [OOl] geometry for the contribution even in A, where 
the FVE can be separated by means of the polarization de- 
pendence, the value of the emf on the inhomogeneities is not 
more than 15% of the FVE. We shall assume with the same 
accuracy that U +  is determined by the FVE. 

Figure 5 shows the dependences of the FVE signals on 
the magnetic field for linear as well as right- and left-circular 
polarizations relative to the magnetic-field direction. It is 
seen from the figure that the effect exists only for linear and 
right-circular polarizations, with the signal amplitude for 
circular double that for linear, in agreement with the theory 
(see the table). Change of the sign of the magnetic field does 
not influence the magnitude of the effect for linear polariza- 
tion of the radiation. The signal contains contributions even 
and odd in A. In this orientation, as seen from the table, only 
jlz) and j;" are manifested. Since there is no angular polar- 
ization dependence at such an orientation, the Faraday ef- 
fect does not influence the magnitude of the signal. The FVE 
emf for the even contribution is described, for linear polar- 
ization, by the expression 

From a comparison of the theoretical value of the signal and 
the experimental one we obtain a = 5.7.10 - l 4  cm2, in good 
agreement with the value obtained for this parameter from 
the even contribution to the orientation Hll[ 1001.   he odd 
contribution for the FVE emf for linear polarization is given 
by 

u=- (1-RZ) E ?",d 
3'h6Hn, 

BC6' (A). 

Substituting here the parameter a, determined in the geome- 
try Hll [OOl] from the contribution even in A, we obtain a 

FIG. 5. Dependence of FVE emf on the magnetic field for various polari- 
zations of the incident radiation: I-left-hand circulation, 2-right circu- 
lation. 3-linear. 
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FIG. 6. Dependence of the photon dragging effect on the magnetic field at 
HI1 [ 11 1 I. 

signal emf equal to 4.7. lo- '  V, just as in the case of H 
Iooll. 

The value of U- ' depends on the sign of q and is deter- 
mined by the photon dragging effect and by the Dember 
photoemf. For comparison with the FVE, the dependence of 
U- on the magnetic field is shown in Fig. 6, from which it is 
seen that the spin-resonance curve is antisymmetric, attest- 
ing to a small gradient effect, which has a constant-sign mag- 
netic-field dependence. 

Note that in our experiments the FVE emf was en- 
hanced and the dragging-effect emf was weakened by reflec- 
tion of the radiation from the rear face of the sample. In 
experiments with a tilted rear face of the sample the ratio of 
the dragging effect to the FVE was approximately double, so 
that the accuracy with which the FVE was separated was 
lower. 

CONCLUSION 

Thus, the proposed theory of the effect describes well 
the observed polarization dependences in the considered ori- 
entations of the magnetic field relative to the crystallograph- 
ic directions. Comparison of the theoretical and experimen- 
tal values of the signals for the FVE contribution even in A 
makes it possible to determine the parametersg and a. These 
parameters are in good agreement with their values calculat- 
ed in the Kane model. The theoretical value of the contribu- 
tion odd in A is larger by approximately three orders than 
the experimentally observed one. This can be due in part to 
the fact that the inhomogeneity of the magnetic field in the 
volume occupied by the sample suppresses an alternating- 
sign signal, but has little effect on the value of the constant- 

sign contribution. Other contributions, not accounted for by 
the theory and describing the peak odd in A, are also possi- 
ble. 

The impurity peaks shown in Fig. 2 behave in experi- 
ment almost in the same way as the peak of the spin reso- 
nance on the free carriers. According to the selection rules, 
only intracenter transitions between bound states are possi- 
ble. Free electrons are therefore created in such transitions 
via autoionization processes. The contribution of these 
states to the photomagnetic effects for impurity cyclotron 
transitions and impurity spin transitions have been dis- 
cussed earlier. Excited impurity states act in the FVE as in- 
termediate states, the final state being free. The frequency of 
the transition between impurity levels acts as a rksonance 
frequency. 

A detailed investigation of FVE on impurity transitions 
is beyond the scope ofthis article. 
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