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An investigation is made of the dynamics of fluxon chains in long Josephson junctions with a 
periodic lattice of local inhomogeneities. In the commensurate case a chain as a whole is in a 
pinned state as long as the density of the bias current density is below a certain critical value. It is 
shown that defects in the form of an excess fluxon or a "hole" may propagate in a pinned chain. 
The long-wavelength approximation is used to deduce the evolution equation of a local 
deformation of a chain: the result is an "elliptic sine-Gordon equation" which has exact soliton 
solutions ( "supersolitons" ) describing such defects. The current-voltage characteristics are 
found for the motion of a supersoliton in the presence of dissipation and a bias current (when the 
density of this current is less than the critical value). Supersoliton excitations are then predicted 
on the basis of a direct numerical solution of a perturbed sine-Gordon equation describing a 
periodically inhomogeneous junction. The soliton solutions of the elliptic sine-Gordon equation 
are also obtained numerically. Although the latter equation is in all probability nonintegrable, a 
numerical investigation shows in particular that a collision of two solitons of opposite polarities is 
in practice absolutely elastic. Both models are used to calculate the current-voltage 
characteristics of a ring-shaped inhomogeneous junction. An experimental study is reported of a 
linear Josephson junction containing a regular lattice of deliberately formed inhomogeneities. 
Steps on the current-voltage characteristics of such a junction are found to occur at a voltage that 
depends strongly on the applied magnetic field. These features are attributed to the motion of 
supersolitons in a junction. 

1. INTRODUCTION 

Topological soliton excitations in the form of magnetic 
flux quanta (fluxons) play an important role in the dynam- 
ics of long Josephson  junction^.'.^ It is particularly illumi- 
nating to investigate the dynamics of periodic chains of flux- 
ons in long Josephson junctions containing a periodic lattice 
of deliberately formed inh0mogeneities.'-' In particular, the 
dependence of the effective force (bias current density) 
which breaks a fluxon chain pinned to an inhomogeneity 
lattice on the chain density (proportional to the magnetic 
field at the edges of the junction), predicted theoretically 
and confirmed e~~er imenta l ly ,~  has sharp maxima at points 
corresponding to the situations when the chain becomes 
commensurate with the inhomogeneity lattice. If the bias 
current density is less than this critical value, the chain as a 
whole is at rest. However, since a fluxon chain has a finite 
rigidity, it follows that deformation waves may travel along 
a pinned chain. If a chain is almost commensurate with the 
lattice, i.e., if a sufficiently long segment of the chain corre- 
sponds to one extra or one missing fluxon, the corresponding 
defect may travel along a chain as a deformation wave under 
the influence of a bias current of density below the critical 
value. This effect was first found in a numerical experiment.' 
Our aim was to carry out a more detailed theoretical and 
experimental investigation of this effect. 

In the second section of the present paper we shall con- 
sider the propagation of long-wavelength deformations in a 
pinned chain of fluxons on the basis of a familiar models 
describing an inhomogeneous long Josephson junction in the 
presence of dissipative losses and a bias current. An ap- 
proach analogous to the Whitham method9 will be used to 
derive an effective evolution equation for long-wavelength 
deformations, which is the "elliptic sine-Gordon equation." 

Although this equation is not exactly integrable, in contrast 
to the conventional sine-Gordon equation, it has an exact 
solution in the form of a topological soliton which we shall 
call a "supersoliton." Depending on its polarity, a supersoli- 
ton describes either an excess or a missing fluxon in an infi- 
nite chain. In the presence of an arbitrary bias current and 
dissipation a supersoliton moves at a constant velocity 
which is uniquely defined. 

In the third section we shall give the results of a numeri- 
cal-investigation of the initial model of an inhomogeneous 
long Josephson junction, based on the usual perturbed sine- 
Gordon equation (the results were given first in Ref. 7 ) ,  and 
of the new elliptic sine-Gordon equation. We shall show that 
the profile and velocity of a supersoliton found using both 
models are in good agreement and they also agree with ana- 
lytic expressions obtained in the second section. We shall 
quote the results of a numerical investigation (based on the 
elliptic sine-Gordon equation) of collisions between two so- 
litons of the opposite polarity. Since this equation is noninte- 
grable, a collision should be accompanied by radiative losses 
(emission of small-amplitude waves). Our numerical results 
showed that the losses are extremely weak, so that a collision 
looks almost absolutely elastic in a wide range of parameters. 
The reason for this is not quite clear. 

In the fourth section we shall give the results of an ex- 
perimental investigation of the current-voltage characteris- 
tics of linear long Josephson junctions with a lattice of local 
inhomogeneities of the microresistance type (inhomogen- 
eous long Josephson junctions of this type had been studied 
earlier4). The experimental current-voltage characteristics 
can be interpreted unambiguously as the result of motion of 
supersoliton excitations in a chain of fluxons pinned to inho- 
mogeneities. 
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2. THEORETICAL MODEL 

Evolution of a local phase shift p(x,  t )  of the wave func- 
tion of superconducting electrons (proportional also to the 
magnetic flux in a junction) in an inhomogeneous long Jo- 
sephson junction can be described by the following per- 
turbed sine-Gordon equationX 

+ m  

cptt-q,, + sin cp=-ocp,--y+c 6 (x-on) sin cp ,  ( 1 ) 

where a is the dissipative constant; y is the bias current den- 
sity; a is the period of a lattice of local inhomogeneities; the 
parameter E represents the influence of a single inhomogene- 
ity. The E > 0 and E < 0 cases correspond to what are known 
as a microresistance and a microshort, i.e., to local regions in 
a junction where the critical Josephson current density is 
reduced or enhanced, respectively. 

We shall analyze the model described by Eq. ( 1) using 
perturbation theory (for a review see Ref. 10) and assuming 
that the parameters a ,  y, and are small2'; on the other hand, 
the lattice period a can be arbitrary. In the zeroth approxi- 
mation ( a  = y = E = 0 )  a chain of fluxons at rest is de- 
scribed by the following exact solution of the sine-Gordon 
equation: 

where am is the elliptic Jacobi amplitude and the elliptic 
modulus k ( 0  < k < 1 ) is an arbitrary parameter governing 
the chain period 

L=2kK ( k )  ( 3  

[here K ( k )  is a complete elliptic integral of the first type], 
and { is an arbitrary constant (chain coordinate). We shall 
assume that the following condition of commensurability of 
the lattice and chain is satisfied: 

wherep is an arbitrary integer. 
The total Hamiltonian of the model ( 1 ) (when a = 0 )  

is equal to the sum of the Hamiltonian of the unperturbed 
system 

+ m 

the Hamiltonian of the interaction with the lattice 
+ - 

and a term representing the bias current 
+m 

H,=y S cp(x)dx. ( 7 )  
-m 

We shall now assume that a chain of fluxons is de- 
formed over a large distance A$L. It is then sufficient to 
assume that the quantity { in Eq. ( 2 )  is a slowly varying 
function {(x, t )  (lX -L /,I), whereas the elliptic modulus k 
remains constant. Then, substituting Eq. ( 2 )  in the terms 
(5)-(7), we can readily calculate the total Hamiltonian of 
the system H H,, + H, + H,. , expressed in terms of { ( x ,  
t) : 

where cn is the elliptic cosine, p z 4 k  - 'E(k)/K(k) is the 
density of the chain mass [ E ( k )  is a complete elliptic inte- 
gral of the second kind], and G r y k  ( K ( k ) .  

The Hamiltonian (8)  gives rise to the following equa- 
tion of motion: 

E.-gP+4e (apk) -' sn( f ) cn($) dn(+) = p-'G-o~,, 

where the last (dissipative) term can be deduced from the 
energy balance; sn and dn are, respectively, the elliptic sine 
and the "delta amplitudes." The maximum velocity corre- 
sponding to the left-hand side of Eq. (9)  is the same as the 
maximum velocity for Eq. (1 )  (which in our notation is 
equal to unity), i.e., it is equal to the velocity of the Swihart 
waves. Equation (9 )  (with G = a = 0 )  can obviously be re- 
duced to the dimensionless form 

e r r - = X X + ~  sgn ( 8 )  sn (+) cn(+) dn(:) = 0, ( 10) 

where 2, T, and X can be expressed in a self-evident manner 
in terms of{, t, and x. It is natural to call Eq. ( 10) the elliptic 
sine-Gordon equation. It depends on a continuous param- 
eter k and on the sign parameter s g n ( ~ ) ,  (i.e., in fact there 
are two different elliptic sine-Gordon equations correspond- 
ing to E > 0 and E < 0 ) .  If k is low, Eq. ( 10) is close to the 
conventional sine-Gordon equation: 

9,,-Bxx+sin 9=-'/,k2 sin ( 2 9 )  f 0 ( k 4 ) .  (11) 

It is well known that the sine-Gordon equation ( 11 ) with a 
small perturbation -sin(25) is nonintegrable (see, for ex- 
ample, Ref. 10). It follows that Eq. ( 10) should also be non- 
integrable. 

Finally, we note that the spectrum w(q)  ofweak excita- 
tions described by the linearized equation ( 10) is of the opti- 
cal (gap) type, exactly as in the case of the conventional 
sine-Gordon equation. I f& > 0, the ground state is So = 4Kn 
(n  = 0, 1, 2, ... ) and the spectrum can be of the form 
w2(q) = 1 + q', where w is the frequency and q is the wave 
number. If E < 0, we have E,, = 2K(2n + 1 ) and against the 
background of the ground state we obtain w' = k ' + q'. 

We shall now turn back to Eq. (9 ) .  If G = 0, it has the 
following exact solution describing a supersoliton at rest: 

g (x)=kF{arcsin[ (1-k"ch~2xk-'(e/ap)'")+kZ]-'"1. 

--oo<x<O, (12a) 

E (5 )  =2kK(k)-E (-x.), O<X<+ w (12b) 

if E > 0, and 

g ( x )  =-kF{arccos[(chZ(2sk-'[(I-k2) lel/ap]'")-k2)-'" 

~ ( 1 - k ~ ) ' " ] ) ,  - ~ < X < O ,  ( 13a) 

x = -  ( x )  O < X < + ~  (13b) 

if E < 0. Here, F ( z )  is an incomplete elliptic integral of the 
first kind. 

The supersolitons described by Eqs. ( 12 and ( 13 are 
isolated by the boundary condition 

519 Sov. Phys. JETP 70 (3), March 1990 Malomed eta/. 51 9 



[we recall that L is the period ( 3 )  of a fluxon chain]. There- 
fore, a supersoliton described by Eq. ( 12) or ( 13 ) can indeed 
be regarded as a "hole" in a fluxon chain. A supersoliton of 
the opposite polarity, i.e., the solution ( 12) or ( 13) with the 
sign reversed, describes fully analogously an excess fluxon in 
a chain. The solution for a moving supersoliton (in the case 
when G = a = 0) can be obtained from Eq. ( 12) or  ( 13) in 
an obvious manner by the Lorentz transformation. 

In connection with nonintegrability of Eq. ( 10) we re- 
call that nonintegrable equations can have exact one-soliton 
solutions, but collisions of solitons should be elastic because 
of emission of radiati~n.". '~ In spite of the quite obvious 
nonintegrability of Eq. ( l o ) ,  discussed above, a numerical 
investigation of collisions of two supersolitons of opposite 
polarities, reported below in Sec. 3, demonstrates that such a 
collision appears in practice as absolutely elastic in a wide 
range of parameters. 

We shall now consider the case when G and a are both 
nonzero. In the range defined by 

4 
y2<y.' = -(-&\1 [ (5k2--2k'-2) (l+lc') + 2 ( l + k 4 - k 2 )  

27 npk 

a fluxon chain remains pinned as a whole by a lattice of inho- 
mogeneities.' On the other hand, a chain defect in the form 
of a hole or an excess fluxon, described by the supersoliton 
solution, moves at an equilibrium velocity v which can be 
found from the energy balance: 

v2 nZpk3K2 ( k )  yZ -- = (arcsin k )  - 2  

l - v 2  3 2 E ( k ) a 2 ( & I  

if E < 0  (this should be compared with the familiar expres- 
sion 

for the equilibrium velocity of a solitary fluxon in a homoge- 
neous junctionX). 

The quantity ( p ,  ) averaged over the coordinate is 
known to be proportional to the voltage across a Josephson 
j ~ n c t i 0 n . l . ~  Using Eqs. ( 2 )  and ( 1 4 ) ,  we obtain the follow- 
ing result: 

where I is the total length of the junction. It therefore follows 
that a supersoliton creates the same voltage as an ordinary 
solitary fluxon moving at the velocity u. On the other hand, 
the current-voltage characteristics, i.e., the dependence 
( p , )  ( y )  is different for a supersoliton and an ordinary 
fluxon because of the different dependences u( y )  [compare 
Eqs. ( 1 6 ) ,  ( 1 7 ) ,  and ( 1 8 ) l .  

We shall now consider the limits of validity of our theo- 
ry. It follows from Eqs. ( 12) and ( 13) that the characteristic 
size 1 of a supersoliton can be estimated as follows: 

Equation ( 9 )  can be regarded as the Whitham type equa- 
tion" for envelopes. The condition of its validity L <A can be 
reduced, subject to Eqs. ( 3 )  and ( 2 0 ) ,  to the form 

We can therefore see that the above description applies to 
fluxon chains with a moderately low density (but sufficient- 
ly rigid ). 

Finally, we note that if we consider a model of a periodi- 
cally inhomogeneous long Josephson junction with a har- 
monic modulation function l 4  described by the equation [see 
Eq. (111 

cptt-cp,S.sin cp=-acpt-y+ea-' cos (2nxla) sin cp, 

we obtain not Eq. (9)  for { ( x ,  t )  but the conventional sine- 
Gordon equation [with terms of the same type on the right 
hand side as in Eq. ( 9 )  1. However, harmonic modulation 
can hardly be realized experimentally. 

3. NUMERICAL MODELING 

In this section we shall describe the results of our nu- 
merical solution of the perturbed sine-Gordon equation for a 
periodically modulated Josephson junction of Eq. ( 1  ), and 
of the elliptic sine-Gordon equation ( 9 )  derived in the pre- 
ceding section. In both cases we shall use a finite-difference 
stabilized explicit method, l 5  valued for its simplicity and ef- 
fectiveness when applied to the nonlinear Klein-Gordon 
equations. 

We shall first describe briefly the results important to 
our case and relating to Eq. ( 1  ) ( a  more detailed account 
can be found in Ref. 7 ) .  Integration of Eq. ( 1 ) was carried 
out using periodic boundary conditions for a Josephson 
junction closed to form a ring: 

where n,, is the number of unipolar fluxons in a ring junction 
(n,, = const). The parameters of this junction assumed in 
our numerical modeling were as follows: 1  = 8.0; a = 0.05; 
n,, = 4-7. The last term in Eq. ( 1 )  was approximated as 
 follow^:'^^ 

where the following numerical values were used: E = 0.2, 
a = 1.6, and x,, = 0.8. 

The initial conditions for a chain of vortices at the first 
point of the current-voltage characteristic were selected in 
the form of a function pO(x ,  t )  , which is linear in x  and which 
satisfies the boundary conditions ( 2 2 )  and ( 2 3 ) .  The initial 
velocity of a chain selected in accordance with the energy 
balance relationship is given by Eq. ( 18 ). In the calculation 
of the other points of the current-voltage characteristics, we 
assumed that the initial conditions p ' ( x ,  t )  were in the form 
of the phase distributions corresponding to steady-state os- 
cillations of p, in the preceding adjacent point on the cur- 
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rent-voltage characteristic. The step in the difference 7 
scheme along the spatial and time coordinates was the same: a.5- 0.5 

a Ax = At = 0.025. The relative precision of the deteamina- 
tion of the average voltage p, (of the current-voltage charac- o 4  - 
teristic) across the junction was =: 1 %. In calculations of the 
selected parts of the current-voltage characteristics the dis- 
tributed current y was varied first in one direction and then 0.3 - 0.3 

in the opposite direction in order to find all the points on the 
characteristic. For convenience, we introduced a reduced 
voltage u  = p, I / 2 ~ ,  so that the motion in a ring chain of n, 
fluxons at the maximum velocity v = 1 corresponded to an 
average voltage ( u )  = n,. 

Figure la shows the current-voltage characteristic cal- 
culated numerically for a commensurate configuration of a l l 

chain of n, = 5 fluxons in a ring junction containing a lattice 0 2 4  o 2 4 0  2 4 < ( ~ >  

of N = 5 inhomogeneities. The lowest-energy state of this 
system corresponds to the case when each fluxon is pinned 
by an inhomogeneity. In this case the force pinning the 
fluxon chain is strong, which corresponds to a high critical 
value of the current y,. Since the chain is fairly dense, the 
reduced magnetic-field in the junction p, (x) is quite high 
and on the average constant: it is only weakly modulated 
near the individual fluxons (Fig. 2a). In the course of mo- 
tion of a chain of fluxons it is found that an increase in the 
external current y increases the voltage monotonically: this 
increase is first nearly linear and then an asymptotic value 
( u )  -n, is reached (this is the main Swihart peak). 

The results of our calculation of the current-voltage 
characteristic for two incommensurate configurations char- 
acterized by n, # N  are presented in Figs. lb and lc. In this 
case the number of inhomogeneities is still the same 
( N  = 5), but only the number of fluxons n, is varied. If n, 
= 4 and n, = 6, then in addition to the Swihart peak, the 
current-voltage characteristic shows a clear step at 
( u )  z 1.0. This is accompanied by a major redistribution of 
the field p, ( x )  in the junction corresponding to a strong 
deformation of the fluxon chains. If n, = 4, a region with a 
lower value of the field cp, (Fig. 2b) appears in the junction, 
whereas for n, = 6 there is a local region with a higher value 
of the field cp, (Fig. 2c). According to the ideas put forward 
in Sec. 2, these singularities represent nonlinear collective 

FIG. 1. Numerically calculated current-voltage characteristics of a long 
ring junction containing a lattice of N local inhomogeneities in a chain of 
n, unipolar fluxons: a )  n, = N = 5; b )  n ,  = 4, N = 5; c )  n,, = 6, N = 6 .  

excitations in a fluxon chain, i.e., they are supersolitons. If 
u z 1.0, the chain as a whole is at rest, but a supersoliton 
travels along this chain at a velocity v z  1 and supersolitons 
of opposite polarities move in opposite directions. 

Figure l c  (n, = 6) shows not only the main supersoli- 
ton step at ( u )  z 1.0, but also a weak singularity at ( u )  ~ 4 . 0 .  
Its origin becomes obvious if we allow for the fact that, in 
addition to the simplest commensurate configuration a = L 
[p = 1 in Eq. (4)  1, there are also other configurations, par- 
ticularly a = 2L (p = 2). The step at ( u )  ~ 4 . 0  can be inter- 
preted as the appearance, in a chain of n, = 6 fluxons, of 
four supersoliton excitations (n,, = - 4) corresponding to 
the. second (p = 2) commensurate configuration. The cor- 
rectness of this explanation is supported by the fact that if n, 
= 7, then the calculated current-voltage characteristic ex- 

hibits steps at ( u )  ~ 2 . 0  (n,, = 2 forp = 1 ) and at ( u )  - 3.0 
(n,, = - 3 f o r p = 2 ) .  

An additional numerical calculation shows that for the 
same-values of n, and N = 5 as before, the asymptotic val- 
ues of the voltage steps ( u )  remain unchanged in a wide 
range of junction lengths 6.0 < 1 < 12.0. This demonstrates 

1 I I I 
ff 2 4 6 3 
1 FIG. 2. Distribution of the local magnetic field Q,, in a 
0 2 4 

L z long ring junction corresponding to the individual 
points on the current-voltage characteristic a )  at the 
pointA (Fig. l a ) ;  b )  at the point B (Fig. lb ) ;  c )  at the 
point C (Fig. l c ) .  
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FIG. 3. Numerically calculated steady-state supersoliton profile de- 
scribed by the elliptic sine-Gordon equation (9) .  

that the steps on the current-voltage characteristic observed 
in this case are unrelated to a resonant interaction between a 
chain of fluxons and its radiation emitted at inhomogene- 
i t i e ~ , ~  but can be explained only if we assume the presence of 
supersolitons in the chain. 

We shall now consider the results obtained from the 
elliptic sine-Gordon equation (9).  We investigated numeri- 
cally a system with the following parameters: k = 0.478; 
L = a  = 2kK(k) = 1.6; 1 = a N =  8.00; E = 0.2-1.0; 
a = 0.05. The step in the difference scheme was again the 
same along the spatial and time coordinates: Ax = At = 
0.025. The boundary conditions for Eq. (9)  were assumed to 
be 

where n,, is the number of supersolitons, and p = 1 (n,, > 0 
corresponds to excess fluxons and n,, < 0 to holes). Our ini- 
tial conditions were in the form of the exact solution repre- 
sented by Eqs. ( 12a) and ( 12b) for the unperturbed equa- 
tion (9), as well as the normalized exact solution of the 
conventional sine-Gordon equation ( 1 ). In both cases the 
characteristic times needed to find the solution did not ex- 
ceed 100-150 time units. Figure 3 shows the stationary 
(steady-state) solutions for three values of the current y. 

The relationship ( 16) was checked by a numerical cal- 
culation of the current-voltage characteristic on the assump- 

tion that p = 1 for three values of E: 0.2, 0.5, and 1.0. The 
results are plotted in Fig. 4a. In the E = 0.2 case the current- 
voltage characteristic is in qualitative agreement with the 
results of calculations carried out using the initial model rep- 
resented by Eq. ( 1 ) and corresponds to a step on the charac- 
teristic at ( u )  --, 1.0 when n, = 6 (Fig. lc).  A comparison of 
the results of these calculations with Eq. ( 16) was made by 
converting the calculated current-voltage characteristics to 
shared reduced coordinates 0 and y, where 0 is defined by 

The characteristics converted in this way are plotted in Fig. 
4b. It follows from the theory that the dependence of the 
quantity given by Eq. (27) on y disappears and the points 
obtained for all three current-voltage characteristics fit well 
the theoretical value 

which is equal to 0.618 if k = 0.478. 
Finally, bearing in mind that in all probability Eq. (9)  is 

nonintegrable, it would be of interest to investigate a colli- 
sion of two supersolitons of the opposite polarity using the 
unperturbed model corresponding to Eq. (9)  and assuming 
that a = y = 0. This was done for a ring system (junction) 
of length I = 16.00 on the assumption that k = 0.478 and 
E = 0.5. The dissipation represented by a = 0.05 and an ex- 
ternal current y = 0.1, governing the initial velocities + u,, 
of supersolitons (u0z0.75), were included right from the 
beginning of these calculations. After establishment of 
steady-state motion in a ring (Fig. 5a), which usually re- 
quired 300-400 time units, it was assumed that the dissipa- 
tion in the current disappeared: a = y = 0. Next, the time 
intervals between consecutive collisions were found over a 
long period (3000-5000 time units). The results indicated 
that in a wide range of initial velocities 0.6 < uo < 1.0 a colli- 
sion was practically absolutely elastic and the supersoliton 
velocity remained constant to within 0.5% after 400-600 
collisions (Fig. 5b). Figure 5c shows the distribution of the 
quantity lx (x) in such a system after 5000 time units (about 
450 collisions) from the moment corresponding to the situa- 
tion illustrated in Fig. 5a. The "ripples" between supersoli- 

FIG. 4. a )  Current-voltage characteristic ( v )  ( y )  correspond- 
ing to the motion of one (n,, = 1) supersoliton, found numeri- 
cally using Eq. ( 9 ) .  b)  Same characteristic converted in accor- 
dance with Eq. (27) .  The continuous curves correspond to 
& = 1.0; 0 )  E = 0.5; 0) & = 0.2. 

0 0.5 10 
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tons clearly represent a very weak radiation field emitted by 
supersolitons as a result of their collisions. 

4. EXPERIMENTS 

Distributed Nb/NbO,/Pb Josephson junctions were 
fabricated by a conventional method employing magnetron 
sputtering of niobium, followed by photolithography, plas- 
ma oxidation of niobium, and thermal evaporation of lead. 
Periodic modulation of the critical current density was 
created by silicon monoxide strips ("inhomogeneities") e- 
vaporated thermally and shaped by photolithography on the 
surface of a niobium film before oxidation and deposition of 
lead. These strips were perpendicular to the long dimension 
of the junction and their width along the junction was 12pm; 
the thickness of the strips was =. 1500 A. The results report- 
ed below were obtained for a junction of 498 X 20 p m  size 
with N = 9 strips representing inhomogeneities. The spatial 
modulation period of the critical current density was then 
ail, ~ 5 0 p m ,  where A, is the Josephson penetration depth. 
Details of the procedure used in our measurements had been 
described earlier.4 These measurements were carried out at 
T = 4.2 K and it was estimated that at this temperature A, 
was z 30 pm.  

Figure 6 shows the dependence of the critical current I,. 
of the investigated junction (at which a voltage appeared 
across the junction) on the magnetic field H directed in the 
plane of the junction and at right-angles to its long dimen- 
sion. The dependence I,. ( H )  exhibited two sharp maxima at 
fields HI = 1.49 Oe and H, = 3.01 Oe. These maxima corre- 
sponded to the exact commensurability of the spatial periods 
of the chain and of the inhomogeneity lattice. The first maxi- 
mum at H = HI corresponded t o p  = 1 in Eq. ( 4 ) ,  whereas 
the second at H = H, corresponded t o p  = 2. We investigat- 
ed experimentally the current-voltage characteristics of this 
junction in magnetic fields close to HI and H,. 

In the range of fields HI < H < H, we observed an unu- 

FIG. 5. Collisions of two supersolitons of the opposite 
polarity traveling at velocities u in the model of Eq. (9) 
characterized by a = y = 0: a )  initial configuration;, b )  
time dependence of the velocity u;  c )  wave field configura- 
tion at t = 5000 (after 470 collisions). 

sual singularity in the current-voltage characteristic: it was a 
step labeled with an asterisk ( * )  in Fig. 7a. In addition to this 
step, we also observed (Fig. 7)  a set of Fiske steps"." of two 
types. The first type was observed at low voltages and repre- 
sented conventional Fiske steps for a long junction" with a 
characteristic separation of ~ 2 0  p V  on the voltage scale. 
These steps represented resonances occurring throughout 
the long junction between a fluxon oscillation mode and the 
radiation which appeared near the edge of the junction as a 
result of collisions of fluxons with this edge. We also ob- 
served two sharp steps (second type of the Fiske step) sepa- 
rated bv voltages of ~ 2 0 0  pV. These were typical of junc- 
tions with regular inhomogeneities under "superradiance" 
 condition^^,'^ when a fluxon mode was in resonance with the 

FIG. 6. Dependence of the critical current I, flowing through an 
Nb/NbO,/Pb junction with a lattice of inhomogeneities on the applied 
magnetic field H. 
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FIG. 7. Part of the current-voltage characteristic re- 
corded at low voltages for an Nb/NbO, /Pb junction 
with an inhomogeneity lattice: a )  in the vicinity of the 
first peak of I, ( H )  in fields H>H,, where H = 1.83 Oe 
( I ) ,  1.98 Oe (2) ,  2.14Oe ( 3 ) .  and 2.36Oe ( 4 ) ;  b )  in 
the vicinity of the second peak of I, ( H )  in the range 
H > H Z ,  where H = 3.41 Oe ( 5 ) ,  3.47 Oe (6) .  3.53 Oe 
(7) ,  and 3.63 Oe (8 ) .  

radiation concentrated in short sections of the junction 
between the adjacent inhomogeneities. The motion of a 
fluxon chain as a whole ensured synchronization of the Fiske 
modes of the individual segments of the junction. The vol- 
tage at the Fiske steps of both types was practically unaffect- 
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FIG. 8. Dependence of the maximum voltage at the steps in the current- 
voltage characteristics on the magnetic field H: 1)  main Swihart step; 2) 
step (* )  (see Fig. 7a); 3) step (**) (see Fig. 7b). 

ed by variation of the magnetic field H and only their width 
on the current scale changed. On the other hand, the voltage 
position of the step labeled ( * )  in Fig. 7a depended strongly 
on the field H. A similar singularity of the current-voltage 
characteristic, but observed in a narrower range of magnetic 
fields, appeared also when H >  H,. The latter step was la- 
beled (**) in Fig. 7b. 

We investigated the behavior of the (*)  and (**) singu- 
larities in the full range of fields in which they were observed. 
The results are plotted in Fig. 8. Moreover, in the range of 
weak fields we observed the main (Swihart) peak on the 
current-voltage characteristic due to the motion of the whole 
chain of fluxons at its maximum velocity in the junction. 
Since in a magnetic field the fluxon chain period was 

Lhj -@DIM 

(here @,, is a magnetic flux quantum, A = A ,, + A ,,, + d is 
the depth of penetration of the magnetic field into a super- 
conductor in the region of a Josephson spacer, and d is the 
effective thickness of an insulating spacer), the voltage u ,  
corresponding to the main peak should be proportional to H: 
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(we ignored here the contribution of inhomogeneities to the 
cross-sectional area of the junction at right-angles to the 
magnetic field; F is the Swihart velocity). The commensura- 
bility of a fluxon chain with the inhomogeneity lattice oc- 
curred when 

In spite of the fact that the number of fluxons n ,  was con- 
served in a linear junction (but this was not true of a ring 
junction, see Sec. 3 )  when the external magnetic field H was 
sufficiently high, we could speak of a constant average num- 
ber of fluxons proportional to H. We could similarly assume 
that when the fluxon chain and the inhomogeneity lattice 
were incommensurate, there was a certain average number 
of supersolitons in the junctions and it could be estimated 
from 

Like fluxons, supersolitons were created at one of the edges 
of the junction, crossed the junction, and disappeared at the 
opposite edge. Therefore, the number of supersolitons n,, 
[and, consequently, the voltage step on a current-voltage 
characteristic due to the motion of supersolitons-see Eq. 
(29)]  was found to be proportional to the deviation of the 
magnetic field H from the commensurability field H,. This 
was fully confirmed by the experimental results for the sin- 
gularities ( * )  and (**), as demonstrated clearly in Fig. 8. 
The slope d V / d H  of the supersoliton singularities was very 
nearly equal to the slope of the main peak [see Eq. (29) 1, as 
expected on the basis of physical considerations (because the 
topological charge cP,, and the maximum velocity? were the 
same for fluxons and supersolitons) . 

In the range of fields H < H, we should have n,, < 0, 
which follows from Eq. (3  1 ) . This corresponds to supersoli- 
tons of the opposite polarity (when instead of an excess 
fluxon we have a hole in a fluxon chain). However, clear 
steps of this type were not observed experimentally. In this 
range of fields we found only anomalously strong and non- 
monotonic (with respect to the fields) changes in the ampli- 
tude of the Fiske steps. 

Therefore, the singularities of the current-voltage char- 
acteristic of a long Josephson junction with a built-in in- 
homogeneity lattice observed in the present study can be 
interpreted unambiguously as the result of motion of super- 
solitons in a fluxon chain. This can be regarded as an experi- 

mental confirmation of the existence of a new type of nonlin- 
ear excitations in a nonlinear sine-Gordon system. 
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