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It is shown that a bound electron-hole state with large c.m.s. momentum exists in degenerate 
semiconductors. The binding energy of such a state exceeds the binding energy of an electron and 
a hole with zero c.m.s. momentum. The formation ofthe bound state is tracked in one-, three-, and 
quasi-two-dimensional systems. Quasi-two-dimensional systems are most convenient for the 
observation of the described effect. 

1. INTRODUCTION 

The existence of a bound state of an electron and a hole 
in three-dimensional systems against the background of a 
large number of free electrons was first predicted in Ref. 1. A 
similar effect was predicted in quasi-two-dimensional sys- 
tems in Ref. 2, while in Ref. 3 were presented calculations of 
the binding energy of a surface exciton as a function of the 
carrier density. The ground-state energy was determined in 
Refs. 2 and 3 by using an equation whose validity for the 
many-particle problem had not been proved. In Ref. 3, fur- 
thermore, in an investigation of high densities it was recog- 
nized that account must be taken of the filling of k space, but 
this account was quite rough. 

All the computations described above were carried out 
for a case when the momentum P of the exciton mass center 
was zero. This constraint is justified in the study of direct 
transitions, when transitions with P#O are forbidden by the 
momentum-conservation law.4 In semiconductors with a 
many-valley band structure, however, the situation is differ- 
ent, and optical transitions proceed with participation of a 
third particle (phonon, impurity, etc.). In such semiconduc- 
tors transitions into states with P $0 are allowed. It is there- 
fore of interest to find the exciton energy dispersion law 
f l (P ) .  It is necessary here to take into account the orthogon- 
ality of the exciton wave function to the wave functions of 
the free particles filling states with energy lower than the 
Fermi energy. 

We obtain in this paper, using the Bethe-Saipeter (BS) 
equation, the binding energy of an exciton at zero tempera- 
ture in degenerate one-, three-, and quasi-two-dimensional 
systems. The most convenient for the study of such an exci- 
ton are apparently quasi-two-dimensional systems. On the 
one hand, it is possible in them to get around the complex- 
ities connected with the anisotropy of the effective-mass ten- 
sor for a multivalley band, since there usually exists a surface 
over which the effective mass is isotropic. On the other hand, 
it is easy to vary the carrier density, and hence the maximum 
momentum of the distribution (k, ) . 

We shall show that the bound state (exciton) obtained 
in Ref. 1 at P =  0 exists also at larger P of order 
k, (m , + m,) /m , , where m , and m, are respectively the ef- 
fective masses of the electron and hole (the major carriers 
are the electrons), and the binding energy is in this case sub- 
stantially higher than for P = 0. In addition, whereas at 
P = 0 the gap between the exciton energy and the energy of 
the free electron-hole decreases exponentially with increase 
of k,, in the case of large P this gap has a complicated depen- 
dence on k, and a section exists where the dependence of the 

gap width on k, is not exponential. We shall also derive, on 
the basis of these BS equation, equations that make it possi- 
ble to determine in the most vital quasi-two-dimensional 
case the binding energy of an exciton in the limit of high and 
low electron densities in the channel. It will be shown that 
for low densities the equation obtained agrees with the equa- 
tion used in Refs. 2 and 3. 

In Sec. 2 we obtain an expression for the exciton from 
the BS equation. By way of an example that permits all the 
calculations to be carried through to conclusion and to un- 
derstand the structure of the solution, this equation will be 
solved in Sec. 3 in the one-dimensional case of a 8-like poten- 
tial. In addition, approximate solutions of this equations will 
be obtained in Secs. 4 and 5 for a Coulomb potential in the 
three- and quasi-two-dimensional cases, respectively. All 
the calculations are made in the lowest order in the gas pa- 
rameter. It is shown in the Appendix how to obtain from the 
result an equation that is valid in the low-density limit. 

2. EQUATION FOR THE EXCITON SPECTRUM WITH 
ALLOWANCE FOR k-SPACE OCCUPANCY 

We obtain an equation that describes an exciton in a 
quasi-two-dimensional electron gas, for example in an elec- 
tron accumulation layer in an MIC structure. From this case 
it is easy to go over to others by assuming, for example, for 
the three-dimensional case that the motion is free along all of 
three coordinates. We shall not consider the complicated 
character of the valence band, i.e., we shall assume that the 
holes have an isotropic effective mass m,. We assume that 
one hole was produced in the bulk of the semiconductor, and 
study the bound states of the hole and an electron. The Ham- 
iltonian of the system takes in the second-quantizaion the 
form 

+ J~~~~N{~/,Y.+(~)Y.+(Y)v(x-Y)Y.(Y)Y.(~) 
-Ye+(x) Yhf(y) V(X-Y) Y ~ ( Y )  Ye(x) 
Si/2Yh+(x) Yh+(y) V(x-y) Yh(y) y ~ ( ~ ) ) .  ( ) 

We assume that the width of the band gap Eg is much larger 
than all other energies, and therefore carry out all the calcu- 
lations accurate to E L  '. The quantities $, afid $, z e  the 
field operators of the electrons and the holes, K,  and K,  are 
the kinetic-energy operators of the electrons and the holes. N 
is the normal ordering symbol, and V(x - y ) = l/lx - y 1 is 
the Coulomb potential. We use an atomic system of units. 
The potentials @>$ are self-consistent and obtained by solv- 
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ing single-particle Hartree-Fock equation; it was their sepa- 
ration in ( l ) which lead to the appearance of the symbol of 
normal ordering in front of the two-particle interaction op- 
erator. The Hartree-Fock equations for the inversion layer 
in the MDC structure have been solved, for example, in Ref. 
5. In the mixed representation, the Green's functions of the 
electrons and holes take the form 

Herep is the level of the carrier chemical potential, k is the 
quasimomentum in the plane of the boundary, and z is the 
coordinate perpendicular to the boundary. In the zeroth ap- 
proximation E, (k )  and qk,a ( z )  are the eigenfunction and 
eigenvalues corresponding to the Hartree-Fock equation. 

The electron-hole binding energy is determined by the 
poles of the total vertex of the electron-hole interaction. To 
find these poles it suffices to solve a homogeneous BS equa- 
tion (Fig. l ). In the limit k, ) l ,  where the random-phase 
approximation can be used, one can choose for K a screened 
Coulomb potential V,,. In the opposite case k, 4 1 K must 
be replaced by V. Inclusion in K of diagrams with more than 
one potential V,, leads to corrections that are small in the 
gas parameter r, (Ref. 1 ). (The quantity r, is proportional 
tok, a tk ,< l  andtok; 'a tk,) l . )  

After simple transformations,' introducing in lieu of 
the total vertex a new variable X, we get 

P 
x G , ( ~ B ,  z2, 2.. - 6 )  Ven (k, z,, 2 6 ,  6-m) 

To calculate V,, in the limit of large k, it is necessary to 
sum over all the loop diagrams. The entire frequency depen- 
dence in V,, is then contained in the polarization operator. 
From the explicit form of this operator (see, e.g., Ref. 7)  it is 
seen that its dependence on the frequency is weak and can be 
neglected. Moreover, allowance for a finite screening radius 
leads only to a correction of higher order in the gas param- 
eter to the Fourier transform of the potential for particles on 
the Fermi surface. This will lead, as will be shown below, to 
logarithmic corrections to the exciton binding energy. 
Allowance for these corrections will generally speaking be 
an exaggeration of the accuracy of the estimates, and V,, 

FIG. 1. Homogeneous Bethe-Salpeter equation. Hatched circle-sought 
total vertex, rectangle-analog of potential, thick lines-Green's func- 
tions of particles. 

can be assumed equal to Vwherever it does not lead to diver- 
gence of the integral. The right-hand side of (3) can then be 
integrated over w,  and the entire equation (3 ) over 6, and we 
can put 

For the function X ,  which is the analog of the electron-hole 
wave function, we obtain the equation 

It is shown in the Appendix that in the limit as kF +O Eq. (4) 
reduces to the Schrodinger equation used in Refs. 2 and 3 to 
calculate the binding energy of a surface exciton. 

As shown in Refs. 2 and 3, Eq. (4)  has a bound state in 
the limit k, 4 1. It is analogous to the state obtained by Ma- 
han' for an electron-hole pair in the bulk of a semiconduc- 
tor. 

In the calculation of the Green's function G, in (4)  one 
can disregard electron interaction with a single hole. This 
function can be represented by a sum of two parts, one corre- 
sponding to an electron localized in a surface potential well, 
and the other to a free electron in the bulk of the semiconduc- 
tor (it is assumed for simplicity that there is only one filled 
subband in the potential well). The right-hand side of (4) is 
then represented as a sum of two parts, one corresponding 
the surface exciton and the other to a bulk exciton. If the 
energies of the surface and bulk excitons differ greatly, the 
bulk-exciton contribution can be neglected in the calculation 
of the surface exciton, and vice versa. The case of close ener- 
gies of the surface of bulk excitons calls for a separate analy- 
sis. 

In the Green's function, account must be taken of its 
interaction with quasi-two-dimensional electrons. At largez 
this interaction reduces to the known electrostatic image 
forces. Allowance for these forces at small z is quite compli- 
cated, and its analysis is not part of our problem. It is as- 
sumed below that the image forces are included in the initial 
Hartree-Fock equation. The hole Green's function takes 
then the form 

Here IC,B ( 2 )  is obtained from the solution of a Dyson equa- 
tion in which image forces are taken into account in the mass 
operator. It will be shown below that the form of qi, is not 
too important for the determination of the main contribu- 
tion to the binding energy. 

Retaining in G, only the surface contribution, we inte- 
grate (4)  with respect to 6: 

dk 
= j w a 3 d z 6  

C t  ( ~ 1 )  (Ph' (18) $6 ( ~ 1 )  $6. (z*) , ( kt -kFl 

A 8, (kt) See (k2) -Q 
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[here 8(x)  is the Heaviside step function and E, is the single- 
particle energy of an electron in the bare Green's function]. 

It is convenient in this equation to change to the c.m.s. 
system: 

P=k,+k,, q=(m,k,-m,k,)lM, 

M=ml+m2, p=mlm21M. 

We then obtain ultimately 

3. ONE-DIMENSIONAL MOTION WITH SHORT-RANGE 
POTENTIAL 

The exact solution shown in Fig. 2 differs substantially from 
(8a) or (8b) only in the vicinity of the intersection point of 
curve R(P )  and the function P2/2M. 

Let us examine in detail the picture in Fig. 2. It shows in 
addition to the R(P )  plot also the dependence of the energy 
of the free electron-hole pair with electron momentum 
k, = k, on the mass-center momentum P: 

and a plot of the function P 2/2M. These parabolas are tan- 
gent at the point m ,P /M = k,. In this case the minimum 
energy of the free electron-hole pairs in which the electron 
occupies a state with energy higher than the Fermi energy 
and the hole has arbitrary energy, equal to E, (P) (k ,  = k,) 
form,P/M< k, and to P2/2M(kl = mlP /(ml + m,) ) for 
m ,P /M > k,. The energy of an exciton with a given Pshould 
be lower than the free-pair energy. At the inverse ratio of 
these energies, the exciton state is either nonexistent or is 

To understand better the structure of the states that set quasistationary. The distinctive feature of the one-dimen- 
in during the solution of ( 5 ), we consider first one-dimen- 

sional case is that the exciton state exists for all P. However, 
sional motion with short range potential V(x) = V,6(x). In regardless of the dimensionality of space, the binding energy 
this case one starts out with the Green's functions of the free is exponentially small as P-0 [see (8a)] ,  and at 
particles, and Eq. ( 5 is correspondingly rewritten in the lP /M- kF the binding energy has a power-law depen- 
form dence on V,. The cause of this difference is that for P = 0 the 

x (P ,  57, Q )  
electron and the hole move counter to each other, while at 
P = Mk,/m, they move in parallel, and this leads to a more 

rn 

dk x (P1  k ,  P) effective interaction between them. Note that P = 0 corre- 
sponds to the local maximum of the exciton energy 
(d2R/dP21,,o <0 ) .  

(We have chosen P> 0) .  Integrating this equation over 
dq/2n-, we obtain an equation for the eigenvalues: 

Equation can thus be integrated, and as a result we get for 
P2/2M - R < O  and A * = 2p(R - P2/2M) 

pVo 1 I ( k ~ + h ) " - P '  I 1 =-- (7a) 
2n h (k,-A)'-P" ' 

andforP2/2M- R>OandA * = 2,u(P2/2M- R )  wehave 

Equation (7a) goes over into (7b) at A = 0, i.e., when" lo I 
P'2-ka2=-2k,pVo/n. 

In the region m,P/M< k ,  it is easy to obtain an ap- 
proximate analytic solution of Eq. (7a) as 4,-0: 

0 2 4 6 8 1 0 P  P" k ) kF-P' 
Q = - +  2M 2~ - - { [ ~ " + * k , ( k , - ~ ' )  P 

FIG. 2. Dependence of the energy R of a one-dimensional exciton on the 

2n ( k r P f )  )I " - p , )  mass-center momentum P for the case m ,  = m Z  = 1 ,  k,. = 6 ,  V,, = 8 

xexp (- (8a) (curve 3 ) .  Curve 1 up to the point of tangency with curve 2-minimum 
I 

energy of free electron-hole pair with electron momentum k ,  > k , .  Past 
the tangency point the minimum energy of such a pair is described by 

and a solution of Eq. (7b) in the region P ' >  k,: curve 2. 
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4. DISPERSION LAW FOR BULK EXCITON 

Mahan's paper' was followed by a detailed study of an 
exciton in a degenerate electron Fermi liquid.x We therefore 
consider here only the variation of the energy n(P) of such 
an exciton in the region of large P(m ,P/M- k, ). Starting 
again with initial free particles, we rewrite Eq. (5 )  (in the 
three-dimensional case) in the form 

The function x(P,q,n)  satisfying Eq. (9)  is spherically 
asymmetric. It depends on the angle 9 between the vectors P 
and q. It is easy to verify, however, that it becomes spherical- 
ly symmetric at q > P' + k,. The spherical symmetry is thus 
violated in the region Ik, - P'I < q < k, + P ' .  If we intro- 
duce then the function 

it can be regarded as approximately dependent on the angles, 
since the functionx which depends on the angles in a bound- 
ed region averages out with a spherically symmetric func- 
tion. Changing in (9)  fromx to Z and integrating the resul- 
tant equation over the angles of the vector q, we obtain 

Using for V the expression V = 4n-/(k + q: ) (q; ' is the 
screening radius), for a screened potential, we can see that 
the main contribution is made by the region q - k - k,. The 
logarithm can then be replaced by ln(2kF/q, ), after which 
the equation can be integrated. The result is 

2nh ( (kp+h):-P" I kF2-PI2 kF+P' 
= ln +- ln  1-1 

P ln (2kF/qa)  (ka-h) -PJZ P'h kp-P' 

- k F - Pa-h2 1 (kp+P')z-h2 
2P'h (k,-P') 2-hz (10a) 

forP2/2M- O<OandA = 2 / ~ ( i 2  - p 2 / 2 ~ )  and 

23th k,+P' k,-P' 
= 2 [ n  - arctg-- 

h 
arctg - 

y In (2k,/qs) h 

( lob)  
f o r P 2 / 2 M - f l > O a n d R = 2 / ~ ( P ~ / 2 ~ - f l ) .  

The solution of Eq. ( 10a) goes over into the solution of 
Eq. ( lob) at il = 0. P satisfies then the equation 

2n y k,+P' 2yk,  -- - + --- 
l.(zk,/q.) P' ln1 1 kFz-P" ' 

At P = 0 Eq. ( 10a) turns into the equation obtained in Ref. 
1. Numerical solutions of Eqs. ( 10a) and ( lob) are shown in 
Figs. 3 and 4 for different effective-mass  ratio^.^' Note that 
the quantity n ( P )  that satisfies (10) and is shown in these 
figures does not exist for all P. The quantity exists at P = 0, 
and then vanishes for small P and reappears again in the 
region m,  P /M- k ,  . The cause of the high binding energy in 

FIG. 3. Dependence of the exchange-exciton energy R o n  the mass-center 
momentum P  for masses m ,  = 1, m, = 0.3, and k ,  = 6. Curves 1-3 are 
similar to the one-dimensional case (see Fig. 2) .  The inset a shows the 
region of small P, and inset b the region of large P - M k , / M , .  

the region m,P/M-k, is, as before, that in this case the 
electron and hole move almost in parallel. 

5. QUASI-TWO-DIMENSIONAL SURFACE EXCITON 

The energy of a quasi-two-dimensional surface exciton 
can be obtained by solving Eq. (5) .  For an exact solution of 

FIG. 4. The same as Fig. 3, but for m ,  = 1 ,  mZ = 3, and k ,  = 6.  
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(5 )  we must know the wave functions of the electrons and 
holes in the Hartree-Fock approximation, but these can be 
obtained only numerically. We can nevertheless estimate 
this energy without knowing the exact form of these func- 
tions. To this end we introduce, as in the three-dimensional 
case, the quantity 

(We assume, according to Ref, 5, that the Hartree-Fock 
wave function of the electron is practically independent of 
the momentum k, near the surface.) Just as in the three- 
dimensional case, we assume that B depends weakly on the 
angle 6 between q and P and integrate over 6 neglecting this 
dependence. We obtain then on the left 277, and on the right 
the integral 

= 2.j d6 
exp[ - 12,-z2 1 (q2+k2-2qk cos 6)  '"1 

(qz+k2L2qk cos 6 )  ' " f q ,  -n 

(12) 

Form,P/M<k,  wehaveq$landk% 1. Expanding Iq - kl 
in a power series in the vicinity of the saddle point 9 = 0 and 
extending the integration over the interval ( - w , w ), we 
obtain a quantity the main contribution to which does not 
contain q, : 

(see Ref. 9, p. 325). Here r ( n )  is the Euler gamma function, 
and r (n,a) the incomplete gamma function. Since q - k and 
z, -z,, the second argument in the incomplete gamma func- 
tion can be replaced by zero and the expression for the inter- 
action potential assumes the simple form 

This quantity no longer depends on z,  and z,, and therefore 
the equation for E (P,q,SZ) can be integrated over dz, and dz, 
using the normizability of the functions g, and the orthogon- 
ality of $. Excluding, as in the three-dimensional case, the 
quantity E ,  from the equation and assuming that all the 
corrections to the parabolic dispersion law can be reduced to 
constants, we obtain 

k d P '  

dk arccos [ (kF2-P'2-k2) /2P1k] 
+ ' k2/2p+P2/2M+ea-eo-R ' 

(13) 
kr-P' 

where E, is the energy of the bottom of the surface subband. 
Unfortunately, the last integral in this expression cannot be 
calculated in elementary functions. Nonetheless, in the im- 
portant limiting cases P ' < 1 and P ' - k, we can estimate this 
integral and obtain the solutions of Eq. ( 13) in the lowest 
order in the gas parameter. 

In the P( 1 limit the bound states of the electron and 
hole occur at E,  - E, + P * /2M < 0 .  The first integral in ( 13 ) 
is then analogous to the corresponding integral in the three- 
dimensional case, while the second, after the change of vari- 
ables 

h a ~ 2 p  (8-PP/2M-ea+eo), k=kr+P1 sin s, 

A-kr-P'-q, q t  l 

and after discarding terms of second order in sin x ,  P  ', and q 
compared with kF, reduces to a tabulated integral (see Ref. 
9, p. 416). The final equation for the eigenvalue in the region 
m , P / M 4  1 takes the form 

from which we get for O<m,P/M<a 

7 vanishes at the point m , P / M  = a, and the exciton energy 
becomes equal to the free-pair energy, while at larger P the 
exciton state vanishes. The a ( P )  dependence in the region 
of small P is similar to that shown in Figs. 3 and 4 for the 
three-dimensional case. 

In the limiting case m,P/M-k,, in the region 
k, - P =p,  0 < p <  1 the first term gives a value of order 
(2kF)  - I ,  which can be neglected at large k,. Using the 
mean-value theorem, we can estimate the second integral in 
(13). As a result we get 

where 

p2-ko2-2kRp 
y = arccos 

2kO (~F-P) ' 

and k, is a number on the order ofA. For the value ofp,, at 
which A = 0 we get 

[p, corresponds to P a t  which a ( P )  crossesp2/2M]. In the 
other limiting case p = 0, m , P / M  = k, we have 
2 n ; ~ y / A = 2 ' / ~ .  More accurate estimates yield 
rZp//Z = 2'/', i.e. again y- 1. 

The quasi-two-dimensional exciton behaves thus like 
the three-dimensional one. In the region P 4 1 there is an 
exponentially small gap between the exciton energy and the 
energy of a pair with the same P. This gap is rapidly filled 
with increase of P. An exciton arises anew in the region 
m ,P/M- k, where the electron and hole move almost par- 
allel. In this region the gap between the exciton and free- 
energy energies is substantially larger than in the region 
P-0, and it increases with increase of P. This character of 
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the behavior of the exciton is not greatly influenced by the 
specific form of the wave functions of the free electron and 
hole. 

6. CONCLUSION 

As already noted, the most favorable conditions for the 
observation of the described exciton in the case of a large 
momentum of the mass center occur in quasi-two-dimen- 
sional systems. Such systems were investigated in Refs. 10. 
The existence of an exciton can be manifested in the features 
of the differential luminescence spectra. 

The authors are grateful to V. M. Asnin and R. Zim- 
mermann for interesting discussions. 

APPENDIX 

In the limit as k ,  - 0 and under the assumption that V,, 
and the self-energy corrections to the Green's functions 8, 
and 8, are independent of frequency, Eq. ( 4 )  reduces to the 
equation obtained in Ref. 3 for a surface exciton. To prove 
this, it is easiest to use the operator equality of the complete 
Green's functions:" 

Since the sum G ; ' (Q/2 + 6 )  + G ; ' (Q/2 - S )  is the in- 
dependent of the frequency S for all the frequency-indepen- 
dent self-energy parts of Z, and Z, , Eq. (A 1 ) can be used 
under the integral sign in ( 4 ) .  As a result we get 

dk d6 ,=J -- 
( a n )  "2n 

Vetf (k, ~ $ 7  zO 

B 
- ~ ) ] x ( P ,  k-q, z ~ ,  Z L ,  Q)dz3  dz4. 

It must be remembered here that since (A1 ) is an operator 
equation, the term in the square brackets in this equation 
(and under the integral sign) must be taken to be a single 
operator. This means that when integrating over S the inte- 

gration contour must be closed on the same (arbitrary) side 
for G, and G, . Taking the last remark into account, we ob- 
tain after integrating over S, z, and z, 

In the limits as k ,  - 0  and O-. 1 and in the coordinate 
representation Eq. (A2) goes over into the Schrodinger 
equations with corrections for the screening of the potential 
and for the image forces. It can be shown that under certain 
assumptions the screened potential is equal in the RPA ap- 
proximation to the potential obtained in Ref. 3 in the Thom- 
as-Fermi approximation. *, 

In the limit k ,  $1, in view of the theta function in the 
right-hand side of (A2), this equation becomes integrodif- 
ferential also in the x-representation and therefore it is 
simpler to consider in this limit the purely integral equation 
( 5  1. 

" We consider the case k,. 1. For k,. < 1 solution of Eq. (7b) yields the 
binding energy in a one-dimensional delta-like potential well. 
The R(P)  plot shown in Fig. 3 has a weak local minimum at a value of P 
close to k , . M / m , ,  but we do not know whether it is preserved when 
exact account is taken of the angular dependence of x in Eq. ( 9 ) .  
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