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We propose a regularization of Landau's Hamiltonian, which enables us to transform the 
functional integral describing critical fluctuations into a path integral. The integral obtained 
resembles, but is not identical with, the integral occurring in (Feynman's) functional formulation 
ofquantum mechanics. Its evaluation can be reduced to the solution of an infinite chain of 
coupled integral equations. The analysis of these equations enables us to find the critical 
exponents v and 7. 

The Kadanov-Wilson-Fisher theory' is, evidently, the 
most consistent of the quantitative theory of critical phe- 
nomena which exist at the present time. However, the inade- 
quate mathematical foundation of the initial premises of the 
renormalization group methodhand the necessity to use a 
divergent asymptotic series in a parameter which, in fact, is 
not small, makes it impossible to consider the problem of 
critical fluctuations to be completely solved. We described in 
the present paper another approach to the evaluation of the 
starting functional integral. 

We are dealing with the integral',' 

Here Cis  the correlation function of the scalar order param- 
eter g, near the second-order phase-transition point; the 
function E ( p )  is the ratio of the increase in the thermody- 
namic potential induced by the fluctuations in g,(x), to the 

Here q ( ~ )  is a curve (path) in three-dimensional space with 
the initial condition 

The function U(x)  is assumed to be positive, rapidly de- 
creasing as x - w ,  and spherically symmetric. 

If we take U(x) = g s ( x )  we get the original Landau 
Hamiltonian, but then the integral 

temperature. becomes infinite. Hence it follows that the original local 
In connection with the unbounded increase of the cor- Hamiltonian is fundamentally inadmissible and its short- 

relation radius of the fluctuations in the order parameter wavelength regularization method for the Landau Hamilto- 
near the transition point when we approach it, we can con- n ian ,~  z but the experimentally known universality of the 
sider the fluctuation g, as a continuous field. One usually main features of the critical phenomena4 enables us to as- 
assumes that sume that the nature of the above mentioned regularization 

where H ( p )  is the Landau Hamiltonian: 

- 
is unimportant (within well-defined limits) for the deter- 
mination of the macroscopic characteristics of the medium. 

The integral ( 2 )  resembles the integral arising in the 
functional formulation of quantum mechanicsh (with imagi- 

( 1) nary time). However, the "action" 
t 1 

m, b, gbeing constants depending on the external conditions. 
However, Eq. ( 1 ) which is local (depending on the val- 

ue of the function and its derivatives only in the given point) 
can, in general, not be applied to short-wavelength fluctu- 
ations (starting with wavelengths of the order of molecular 
dimensions, if we are dealing with normal condensed me- 
dia). According to the Appendix, when we have the regular- 
ization 

we can write down the correlation function by means of a 
path integral rather than by means of three-dimensional sca- 
lar functions (as is the original expression) : 

is not instantaneous (it contains a double integral over the 
time). This fact prevents us from reducing the evaluation of 
the correlation function to a solution of a differential equa- 
tion similar to the Schrodinger equation. One can, in princi- 
ple, use near the critical point the functional analog of the 
Laplacian method (saddle-point method), but in the present 
paper we shall use another method. 

We consider the function 
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We assume here that O<t,< ... (t,,, and as before q(0)  = 0. 
From the definition follows immediately the "argument can- 
celing" rule: 

In particular, 

Pi  (x, 0) =6 (2). ( 5 )  

We can obtain the following infinite set of coupled 
equations for the functions P,, : 

(we assume to to be equal to zero). The derivation of this set 
of equations is completely analogous to the derivation of the 
Schrodinger equation in the functional formulation of quan- 
tum mechanicsh and therefore we do not give it. Equation 
(4)  can be considered to be the initial condition for Eq. (6)  
[for n = 1 we must use (S)] .  

We transform the set of Eqs. (6 )  as follows. First of all 
we change variables, 

where 

3 3-t7 Tj=tj-tj-i, Pi=",-x. 
(x,=po=O, .t.o=to=O), 

and then we perform Fourier and Laplace transformations: 

= Idspt .  . . dspn I . .  . jar,. . . d~. f~(p t r t  I.. . 1p.r) 
0 

xexp [x (ikjpj-p,v)]. 
j-1 

We denote the results of the transformation with the same 
symbols as the original ones and distinguish them by their 
arguments. It is clear that four sets are possible: & ) or {k,) 
and { r j )  or {p,). In particular, it follows from ( 3 )  that 

We can write Eq. (7)  in the form 

f n  Ckizt I.. . I knzn) I f j  -0 

We note that the Fourier transform of the correlation 
function C(k)  can, according to (2 ) ,  be written as 

(the Fourier transform is here also denoted by the same sym- 
bol as the original). 

One checks easily that the set of Eqs. (6)  in the new 
variables takes the form 

where 

and for n = 1 we must takef;, - ,  = 1. 
In what follows we shall mainly consider the case 

in which we shall simply write p for the common value of 
the pJ and we shall for the sake of simplicity drop this vari- 
able from the list of arguments off;, . For instance, we shall 
write simply f2(k,lk2) for f ,(kglk,p).  

The solution of the set of Eqs. (9 )  is rather complicated. 
However, this is not necessary to determine the critical expo- 
nents. It will soon become clear that the critical exponents 
depend only on the nature of the singularity of the functions 
f;, for small I kJ I near the critical point; but we do not actually 
need the detailed value of the solution. The remainder of this 
paper will be devoted to this simplified problem. 

First of all we use the following approximation. We 
drop in the sum overj on the right-hand side of (9)  all terms 
for which j<n - no, where no is fixed. Of course, when n<n,, 
the equations remain exact. One checks easily that when 
no = 1 (one term) A, reduces to the product of identical fac- 
tors, each of which depends only on kJ and p. This approxi- 
mation is unsatisfactory and will not be considered. 

We turn at once to the case no = 2. One checks easily 
that the general solution of the chain of equations in that 
case will be 

n - i  

where 

while the function f satisfies the closed nonlinear integral 
equation 
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(12) 
We take condition ( 10) and assume that for small Ik I 

the right-hand side of Eq. ( 11 ), for which we use the nota- 
tion Z ( k )  in what follows, can approximately be written as: 

where E = 0 in the transition point. It is implied here that 
E = ~ ( p ) ,  A = A (p) ,  but it will be more convenient to invert 
the first ofthese equations and assume the variable& to be the 
independent variable: p = p ( ~ ) ,  A = A (E)  . Moreover, it is 
convenient to use such units that, first, the length will be 
dimensionless (E, k, and A will then be simultaneously di- 
mensionless) and, secondly, the quantity A will be of the 
order of unity near the transition point. For the usual con- 
densed media we are essentially dealing with a choice of the 
unit of length of the order of molecular sizes. In such units 
Eq. (13) must hold for k 2 &  1. 

We split the integral on the right-hand side of ( 11 ) into 
two terms, corresponding to the integration domains 1x1 < Q 
and Ix 1 > Q, where 

In the first of the integrals thus obtained we change the inte- 
gration variable to { = x/E"* and make the substitution 

As a result we get 

Herel? = k 2 / ~ I / 2 ,  Ak = k2 - k,,  A6 = h k  /&'I2. ~ h u s  there 
appears a second scale for measuring the lengths of the vec- 
tors k, with the unit (cf. the multiple scale methodh). 

Because of condition (14), the first integral on the 
right-hand side of (15) is practically independent of &(as 
E-0) and is thus not a function For small k, ,  k2 it can 
be approximately taken to be constant. We can with the same 
accuracy replace v ( f ~ ' / ~  - k,  ) by v ( 0 ) .  We can neglect the 
left-hand side of the equation for bounded k,, 12. We then get 
approximately 

Hence it follows that w is bound as k,, k2-0 and when 
( k ,  ( 5 is practically independent of k,: 

We now compare Eqs. ( 1 1 ) and ( 13 ) . We again split 
the integral on the right-hand side of ( 11) into two terms 

corresponding this time to integration domains 1x1 < N E " ~  
and 1x1 > NE"~, respectively. We shall discuss the choice of 
the quantity N below. 

The first of the two integrals considered can be written 
in the form 

In the second, for sufficiently large N, we can expand the 
integrand, considered as a function of x, k, and E,  in a series 
in E. We thus get" for Z ( k )  

k2 
Z ( k )  = p  + - + Coe" '+f l (~ ,  k ) ,  

2m 

where Co is constant and F a  regular function. 
Putting 

(p,,, C , ,  A ' are constants), we get as E - 0 

Herep' = p +po. The quantity po determines the transition 
point "renormalized" due to fluctuations. 

We shall assume that in the phase transition point b = 0 
and near it 

b=const. AT, 

where A T  is the temperature measured from the transition 
point. It then follows from ( 17) that the correlation radius 
near the transition point increases proportional to AT - '/' 
[see (8)  1. Thus the critical exponent v = +. For the second 
critical exponent which characterizes the way the correla- 
tion function decreases at distances considerably less than 
the correlation radius we get, clearly, = 0. 

The conclusions reached here are based upon a simpli- 
fied variant of the set of Eqs. (9) .  However, at the basis of the 
explanation of the structure of the solution there were lying 
essentially only considerations about the dimensionality of 
the space which remain valid also when we go beyond the 
above mentioned simplification. We consider this problem 
in more detail. 

We assume that near the transition point for small lk I 
Eqs. ( 13 ) and ( 17) are correct as before. Slightly changing 
the notation, we write 

As before, p = -pO corresponds to the transition point 
[see (8)  ] and p' = p + pO. As usual we shall not explicitly 
indicate the p dependences of the quantities considered. 
Generally speaking, A = A (p), B = B (p) , but as p' -0 we 
can consider them to be approximately constant. 

When k = 0 we have 

and then, as t -  co 

We now conclude easily from Eq. (7 )  that asp1-+ 0 
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where 

We replace the integration variables t , ,  ... ,t,, , ,t,, 'in 
the last integral by t , ,  ... ,t,, _ , ,s,, and after that integrate by 
parts over t, ( 1 q '<n - 1 ) . As a result we get 

w ea 

Adding Eq. ( 19) for different j we find 
rn Ca 

The last equation is similar to the original one, but with 
one less integration variable which enables us to apply again 
the transformation used. As a result we find easily: 

1  
f n ( O I  ...I 0)= J t n - ~ * ~ - ~ ~ l  dt 

Br ( 4 / 3 )  (n -  1 )  ! , 

- - r (n+ 113) 
B r  ( 4 / 3 )  r ( n )  (p ' )  "+" ' 

We consider the function 

where now 

and Ak, = k,, , - k,. According to (20) these functions 
must be bounded aspi-0  and k, -0. 

Using (21) as a change of variables in Eq. ( 9 ) ,  we get 

Sn(ki( A k z l . .  . ( A k n - i  Ikn) 
2" ( k , )  e n ( k i ( A k z I . . . I ~ k , - 1 1 k ~ )  

x ~ n + %  (kil  Ak21. 1 Akj-i 1 %  l A k j / .  + .  lAkn-il k n + x )  
Z " ( x )  Zah ( k , + x )  

(22) 
We have taken here 

We consider c,, I , ,  = ,,, = ,,, = ,,. When n = 1 it follows 
from (23) ,  (9 ) ,  and (18) that 

When n > 1, f,, (01 ...I 0 )  is, by definition, the ratio of the 
quantities 

andJ;, (01 . . . I  0) .  
One can estimate (24) essentially in the same way as 

f,, (01 ... lo), using the equation 

fn+ i  (kit1 I I kntn I x tn+i)  ( k t =  ...- h = o  

which follows from ( 7 ) .  We must then bear in mind that 
(24) becomes identically equal to 1 when n = 1 [see (9 ) ] .  
Without going into details we give the result: 

3n-3 
bn(Ol . . . I  0 ) ~ -  p', pl+O, n > l .  

3n-2 

We can now easily check, using practically the same 
considerations which were used above when we considered 
the simplified variant of the set of Eqs. (9) ,  that Eq. (22) 
does not have a singularity as E--0, k, -0  (this time 
E = B(p')4/". The original assumption ( 18) is thus in ac- 
cord with the conclusion that p,, is bounded asp'-0, k, -0. 

Moreover, we can conclude from the form of the set of 
Eqs. (22) that for small k, we cannot subject the variable k ,  
to the scale change k ,  - k,/~" '* [cf. ( 16) 1,  i.e., in the case 
considered p,, depends, in fact, on k ,  and k , / ~ ' / ~  ( j > 1 ) . To 
check this we must in Eq. (23) use (21) to change from 
f,,,f,, + I to p,,,p,, + , . In complete analogy with what was 
done earlier we now conclude that ( 18) follows from Eq. (9)  
with n = 1 which finally confirms the "self-consistency" of 
this original assumption. At the same time it becomes clear 
that the above found values of the critical indices do not 
change when go over from the simplified (truncated) set of 
equations to the complete one. 

In conclusion the author thanks A. F. Andreev, I. A. 
Batalin, V. P. Popov, and A. A. Sobyanin for discussing a 
number of problems in connection with this paper. 

APPENDIX 

We consider the following functional integral: 

The scalar function g, in three-dimensional2' space serves as 
the integration variable: W is a functional that depends on 
p '. The homogeneity of W (invariance under space shifts) is 
not assumed in the general case. 

We use a (functional) Fourier transformation." Let 

where f is an auxiliary functional variable. In that case 
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The integral over e, is now Gaussian and therefore (see, 
e.g., Ref. 2) 

C ( G , X ~ =  j9)fG(x, ,xzIf)Wf),  (A21 

where G is the solution of the equation 

and A is the Laplacian operator. 
The solution of the last equation can be written down 

using a Feynman path integral. We consider the quantity 

where q ( r )  is a path satisfying the initial condition q(0)  = y. 
The integral J satisfies the equation (see, e.g., Ref. 5)  

and the initial condition J I, = ,, = S ( x  - y).  One can now 
easily check that 

m 

Moreover, 

We now conclude from (A2), (A3), and (A4) that [with 
q(0) = y l  

.C (x, y) = - d t  2596 [x - I (41 2 ' j  s 

This is the required transformation of the original functional 
integral. Equation (2)  is a particular case of it in which the 
correlator can be considered to be a function of the differ- 
ence of its arguments because of the presence of spatial ho- 
mogeneity. 

I '  The discussion given here is essentially based only upon considerations 
of dimensionality and is not completely correct: the N-dependence of 
the second integral was neglected. We can estimate this integral more 
accurately, but we have omitted the detailed calculations for simplicity. 

"In fact, the number of dimensions of space is unimportant for what 
follows. 

"One can obtain the same results by using instead of a Fourier transfor- 
mation an expansion of Win the functional analog of a Taylor series, as 
was done, e.g., in Ref. 7 .  
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