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The optical properties of dense low-temperature atomic spin-polarized hydrogen and deuterium 
gases are examined in a near-resonance frequency region corresponding to strong interaction of 
the gas with electromagnetic radiation. It is shown that new nontrivial quantum effects can 
appear here even in the case of nondegenerate gases. In contrast to a low-temperature gas whose 
particles have a de Broglie wavelength shorter than the effective resonance-interaction region, the 
elastic scattering and the excitation transfer in pair interaction between excited and unexcited 
atoms leads to formation of a collective mode, a sort of exciton (analogs of such excitons are the 
known spin waves in atomic hydrogen gas). Hybridization of the excitons with photons leads in 
turn to new elementary excitations-polaritons-which are characterized, just as in the case of 
crystal optics, by two energy-spectrum branches separated by a gap. It is the polariton character 
of the elementary excitations which governs the main features of the interaction between 
resonance radiation and a gas medium, including total reflection of light from a volume of gas. 

1. INTRODUCTION 

Low-temperature spin-polarized atomic hydrogen 
( H I  ) and deuterium ( D l  ) gases, which are intensively in- 
vestigated of late (Refs. 1 and 2), satisfy the condition 

where k, = (2mT) 'I2 (m is the atom mass and f i  = 1 ) is the 
thermal momentum of the particles, and R " z 3 . 5  A is the 
effective interatomic-interaction radius. This condition 
leads to the onset of quantum phenomena even in Boltzmann 
H, and D,  gases (specific spin waves,3 direct manifestation 
of quantum correlations in the optical characteristics4). In 
this sense these can be referred to as quantum gases, al- 
though the temperature can also be higher than the degener- 
acy temperature. 

The optical properties of gases in the temperature re- 
gion ( 1.1 ) differ in principle from the known analogous 
properties of these gases at higher temperature. We shall 
show here that unique excitons and polaritons, which are 
collective excitations that are not trivial for a gas medium, 
can appear in resonance optics of sufficiently dense, low- 
temperature H,  and D l  gases satisfying the condition 

(n is the gas density and il is the photon wavelength), and 
can alter the dielectric constant radically. 

Under condition ( 1.2) the resonance interaction of an 
excited atom with an unexcited one predominates over natu- 
ral broadening, and is therefore decisive for the optical prop- 
erties. We shall be interested in the region 1 Am 1 5 nd ' near 
the dipole-transition frequency ( Aw is the frequency detun- 
ing, d is the reduced dipole moment of the atomic transi- 
tion), which corresponds under this condition to strong in- 
teraction of the medium with electromagnetic radiation." 
We consider a gas without a condensate. Resonance optics of 
a Bose gas with a condensate has a number of additional 
peculiarities and will be considered separately. 

The resonance-optics problem was treated in the binary 
approximation by Vdovin and Galitskiis for a high-tempera- 
ture gas, when 

where r, a md > R,, is the effective radius of the resonance- 
interaction potential V(r) a d  2/?. Condition ( 1.3) yields 
for the collision broadening of the excited atom a cross sec- 
tion a a d  '/u ( U  is the relative collision velocity). The scales 
of the coherent interaction of the excited and unexcited 
atoms, and the scale n(au) of its collision width, turn both 
out to be proportional to nd 2, so that both the real and the 
imaginary part of the dielectric constant are of the order of 
unity. This means that the reflection and transmission coef- 
ficients of the incident radiation become of the order of uni- 
ty, and the transmitted photons are absorbed over a distance 
on the order of the wavelength A. 

In the considered low-temperature quantum gases H,  
and D, meeting the criterion ( 1.1 ) , a condition inverse to 
( 1.3) can be realized for transitions to highly enough excited 
states of the atom, with the binary approximation preserved. 
In this situation, which we shall call the "quantum collision" 
regime, we have an entirely different picture. The character- 
istic collision-broadening cross section is now a a <, and the 
collision width n(au) a T is much smaller than the co- 
herent interaction, for which the scale nd is preserved. As a 
result, it is just this interaction which can lead to formation 
of unique weakly damped excitons whose coherent interac- 
tion with the electromagnetic radiation leads in turn to for- 
mation of polaritons, which are combined photon-exciton 
excitations. The optics of a low-temperature quantum gas 
should thus be determined essentially by the polariton char- 
acter of the spectrum of the elementary excitations, includ- 
ing in particular the possibility of complete reflection of ra- 
diation from a gaseous medium. 

2. QUALITATIVE ANALYSIS 

As already noted, in a high-temperature gas satisfying 
condition (1.3) the cross section for scattering and transfer 
of excitation in pair interaction of an excited atom with an 
unexcited one is a a d '/u (Ref. 5  ) . When the gas tempera- 
ture is lowered, the characteristic value of a increases, and 
two different situations are possible. The first corresponds to 

460 Sov. Phys. JETP 70 (3), March 1990 0038-5646/90/030460-07$03.00 @ 1990 American Institute of Physics 460 



violation of the binary approximation and to inclusion of 
multiparticle effects at a definite value of T, when the char- 
acteristic scattering radius becomes of the order of the 
average distance P between the particles. The second situa- 
tion (quantum-collision regime) corresponds to preserva- 
tion of the binary approximation even when the cross section 
reaches its limiting low-temperature value aa 6 at 

and requires satisfaction of the criterion 

We shall consider only the quantum-collisions regime. 
The need for meeting simultaneously conditions (2.2) 

and ( 1.2) imposes an upper bound on the quantity d  indica- 
tive of the quantum-collision regime: 

This bound corresponds to radiative transitions from the 
ground state of the hydrogen atom to a state with principal 
quantum number v %  1. In turn, at the temperatures of sever- 
al times ten millidegrees Kelvin that can actually be attained 
in H, gas," the condition (2.1 ) can be met only for v k 5. 

In the quantum collision regime the characteristic colli- 
sion width of the excited atom is of the order of 

1.c n(ou> a (nd2)  (k,r,) <nd2 . (2.4) 

The quantity nd is the characteristic size of the frequency 
region in which resonance radiation interacts strongly with 
the medium. One can therefore expect the optics of low-tem- 
perature gases to be coherent under condition (2.4). On the 
other hand, the quantity nd determines (just as in the high- 
temperature case) the scale of the coherent interaction of an 
excited atom with a gas. The condition (2.4) means then the 
possibility of formation of a weakly damped collective 
mode-sort of a unique exciton [this mode is the analog of 
the aforementioned spin waves in H,  gas (Ref. 313' 1.  As a 
result of the strong coherent interaction of the resqnance 
radiation with the excitons, the true elementary excitation in 
the system is a polariton-a quasiparticle that is a superposi- 
tion of a photon and an exciton, which will determine in fact 
the optics of the gas. 

The situation, however, is made complicated by the 
presence of additional excited-atom dispersion due to the 
nonsphericity of the resonance interaction. The additional 
dispersion results in a dielectric-constant part of order unity 
in the frequency interval A& = 4and near the resonance fre- 
quency w,. In the frequency region AE the polaritons are 
strongly damped and the picture of the reflection, transmis- 
sion, and absorption of the radiation turns out to be qualita- 
tively the same as in a high-temperature gas. At the same 
time, a weakly damped exciton can exist even for additional 
dispersion. In this case its frequency w. (to which a dielec- 
tric-constant pole corresponds) is located outside the inter- 
val Aw. At frequencies outside Aw the optical properties of 
the gas are then determined by the existence of weakly 
damped excitonic polaritons. The presence of an energy gap 
A E  oc 4 m d  between two branches of the polariton spectrum 
should lead to total reflection of the radiation from the gas 
volume. This effect, naturally, occurs only in that part of the 
frequency interval A E  which does not overlap the strong- 

absorption region Aw (the degree of overlap of the intervals 
AE and Aw is determined by the specific features of the 
short-range interaction between an atom and an excited 
atom). 

If there is no real exciton, the optics of the gas has out- 
side the interval Aw qualitatively the same character, except 
that now the dielectric constant has no pole corresponding 
to an exciton. In this sense one can speak of a virtual exciton 
that determines the optics outside the interval Aw. 

The entire foregoing analysis pertains to the case of 
small Doppler width 

For d  values corresponding to the quantum-collision re- 
gime ( Y 2 5 ), at realistic gas temperatures, this condition 
can be met for densities exceeding4) lOI9 cm -3 .  

If the inverse of condition (2.5 ) holds, we have the usu- 
al Doppler broadening of the spectral line. The photon 
passes through the gas medium with near-unity probability 
and is adsorbed over a distance substantially longer than its 
wavelength. It is of interest to note that this results in a col- 
lective mode (exciton) that is weakly damped at momenta 
k g n d 2 / v ,  (cf. Ref. 3). Such an exciton hybridizes with a 
photon only to a low degree. 

The magnetic field strength H needed to produce the 
gases H I  and D l  themselves is of no principal significance 
for the considered picture of the interaction of resonance 
radiation with a gas. We shall consider, however, a more 
lucid situation, in which pBH%nd *, cf ( E ~  is the fine split- 
ting for the excited atom). In this case the component of the 
electron orbital momentum M of the atom ( M  = 0, 1)  
along the magnetic-field axis is a good quantum number, and 
the frequency regions corresponding to transitions into 
states with different Mare distinctly separated. 

3. FUNDAMENTAL RELATIONS 

We present in this section a number of general relations 
on which the exposition that foliows will be based. 

In our case of a strong magnetic field, for the frequency 
region corresponding to transitions into states with orbital- 
momentum component M, we can express the polarization 
operator I IaD in the form 

nap ( k ,  a )  =eMaeMB*Hnr (k, a ) ,  (3.1) 

where the unit vectors e, are given in terms of the excited- 
atom polarization vectors by the equations 

(the z axis is directed along the magnetic field). 
For a polarization operator in the form (3.1 ) the fre- 

quency w, the wave vector k, and the polarization vector g of 
an elementary excitation propagating in a medium are relat- 
ed by 

It follows from (3.2) that for arbitrary direction of k one of 
the modes ofthe elementary excitations is a photon that does 
not interact with the medium. Corresponding to this mode is 
a polarization vector g, uniquely defined by the conditions 
k-g, and e& .g,  = 0. (An exception is the case M = 0, klle,, 
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when the two transverse modes do not interact with the me- 
dium. ) 

The dispersion law that follows from (3.2) for a mode 
interacting with a medium (the polarization vector is or- 
thogonal to g , )  can be written in the form 

wherea = cos20 for M = 0, a = f sin20 for M = + 1, and 0 
is the angle between the vector k and the magnetic-field di- 
rection. 

To find the polarization operator H, (k,w) we use the 
Keldysh diagram technique (see, e.g., Ref. 7 )  which, in con- 
trast to the Matsubara technique used in Ref. 5, obviates the 
need for an analytic continuation in frequency. It is then 
necessary to sum over the " + " and " - " indices at the 
vertices, for it can be easily verified that diagrams containing 
" + " and " - " vertices simultaneously are negligibly 
small. It is possible then to consider vertices and Green's 
functions with only one fixed index, which we choose to be 
'1 9, - 

For transitions into states with given M, we represent 
the Hamiltonian of the interaction of a gas medium with 
resonant electromagnetic radiation in the form 

h 

Here A is the electromagnetic-field operator, while 6, and 4 
are the respective field operators for the excitation of atoms 
with orbital-momentum component M and for unexcited 
atoms. 

Taking the particle elastic interaction into account in 
the mean-field approximation, we can express the Green's 
function of a gas of unexcited atoms in the form 

G ( k ,  o) = ( o - E  ( k )  +is)-'*2nin,P ( a - E  ( k ) ) ,  
E  ( k )  =k"Zrn+ ( l * l )  n o ,  (3.5) 

where n, are the occupation numbers for the gas particles 
and U is the effective elastic-interaction vertex. Here and 
below, the upper and lower signs refer to Fermi and Bose 
gas, respectively. Relation (3.5 ), which corresponds to com- 
plete absence of photons and excited atoms in the system, 
will be used for the case when the photon and excited-atom 
densities are low. We use the angular-momentum represen- 
tation for the Green's functions of excited atoms and pho- 
tons. The zeroth Green's function of excited atoms is 

P$'L, (k, o )  = G I M M ,  (o -00-edI-k2 /2m+iS) - i ,  eM=kBMH. 

In our problem, only the longitudinal part of the photon 
propagator DM,. (k,w) plays an important role in the dia- 
grams. This part is equivalent to the potential of resonance 
interaction between an atom and an excited atom 

vMM, ( k )  = ( O ~ ~ / C )  2 ~ i M r  (k ,  oO) =4nd2 ( e ~ ' k )  ( e ~ s k ) l k ~ ,  

since only frequencies close tow, are effective for the photon 
propagators in the diagrams. After neglecting the transverse 
photon propagator and replacing the longitudinal photon 
propagator by the potential (3.7), the diagram technique 

becomes graphically identical with that of Ref. 5. The ana- 
lytic perusal of the diagram corresponds in this case to a 
Keldysh technique with all the vertices having an index 
" - ". The rules for correspondence of the graphic and ana- 
lytic elements take then the form 

k,w - + iG(k,w) , (3.8) 

From the form of the Hamiltonian (3.4) follows a gen- 
eral expression for the polarization operator. In a strong 
magnetic field, accurate to the small parameter 
nd '/( p B H ) ,  only the diagonal element is significant (k, p, 
andp' denote below 4-momenta) 

n,. ( k )  -DM ( k )  =In (m.d/c)' KMM ( p ,  k) d4p/ ( 2 n )  '. ( 3.1 1 ) 

where 

The sign in (3.12) was chosen such as to compensate, in the 
case of a Fermi gas, for the additional " - " sign that appears 
in the polarization operator because the diagram (3.12) en- 
ters in this operator with closed left-hand ends. The dia- 
grams entering in K should be irreducible in terms of the line 
(3. lo),  in the sense that it is impossible to separate the right- 
hand end of the diagram from the two left-hand ones by 
cutting one such line. This property of the function K is ob- 
vious if it is recognized that it defines a polarization operator 
that must be irreducible in the photon propagator, and the 
dashed line is the redesignated longitudinal part of this pro- 
pagator. 

K,, satisfies the relation 

in which S,,. ( p,k,pl) denotes the aggregate of four-pole 
diagrams that are irreducible both with respect to cutting the 
line pairs (3.8)-(3.9) and with respect to cutting the line 
(3.10). 

Lines with oppositely directed arrows are not taken into 
account in (3.12) and (3.13), owing to their nonresonant 
character, so that in the frequency region of interest to us 
they make a contribution that is small in terms of the param- 
eter nd '/w,. Also disregarded are the off-diagonal terms of 
P,,, and K,,., which are small in the parameter 
nd 2/(  pBH). 

In the gas approximation it is possible to change in the 
diagrams from the interaction potential to the ladder four- 
pole diagrams 
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Together with the resonance interaction we shall take into 
account also the pure elastic short-range interaction of the 
excited and unexcited atoms, an interaction essential for 
transitions with small enough values of d .  

Ladder series for the four-pole diagrams (3.14) are 
summed in standard fashion by transforming to the func- 
tions 

As a result (see Ref. 5 ) ,  

r(*)(q, k, p )  =r(*) (q,  k ,  a ) ,  8=o,-oo-pa/4m, (3.16) 

where r' * ' ( q , k , f l )  is a solution of a known integral equa- 
tion for a four-pole diagram corresponding to an elastic po- 
tential 

where U is the potential of the short-range interaction of an 
excited and an unexcited atom. 

It will be shown below that the optical properties of a 
gas at the frequencies Iw - w,l a 4 m d  of interest to us are 
determined by values of r' * ' ( q , k , f l )  that differ little from 
their values on the mass shell = k2/m,  on which the equa- 
tion for r" ' ' (q ,k , f l )  goes over into the scattering-problem 
equation. It is convenient in this case to express I?' * ' in 
terms of the interaction potential and the wave function of a 
particle pair in the coordinate representation 

rzig (q,  k )  =rfLI (q, k, 8=kz /m)  

= dr e - i q r ~ k z , .  ( r )  X.,. (r, MIr). ' ( 3.18 

Herex,,. (r,M " ) is the wave function of the relative motion 
of a particle pair in a potential U;,.. , a function corre- 
sponding to a momentum k  and an angular-momentum 
component M '  prior to scattering. As Irl+ co this function 
has an asymptote 

X ~ M '  (r, Mrr) +eikr6M,Mr,.  (3.19) 

The expression for the function Sin  terms of the ampli- 
tudes r"' and I"" is 

The stroke through the last diagram means subtraction from 
the latter of a diagram with one dashed line, corresponding 
to the excitation-transfer potential. This subtraction is nec- 
essary to satisfy the aforementioned irreducibility require- 

ment for S. We designate the function corresponding to the 
crossed-out diagram by T(2'. The " - " sign in front of this 
diagram in the case of a Fermi gas is due to the fact that its 
substitution for s in (3.13) leads to the appearance of a 
closed loop of Fermi lines. With allowance for Eqs. (3 .13) ,  
(3 .14) ,  (3 .16) ,  and (3.20) we get 

where 

q= (p-p') 12, B=ok-oo+q2/m-k(2p+2p1-3k) /4m. 

The Green's function of the excited atom is obtained 
from the Dyson equation which yields (PM=PMM) apart 
from off-diagonal terms small in the parameter nd '/( p B H )  

P ,  ( p )  =[o,-a,-ex-pZ/2m-ZM(p) +is1 -', (3.22) 

where the mass operator Z takes in the gas approximation 
the form5 

where fl = wp + up. - a, - ( p + ~ ' ) ~ / 4 m .  The reason for 
the " - " sign in the case of a Fermi gas is that the diagram of 
a mass operator with four-pole T"' contains a closed fer- 
mion loop. Substituting in (3.23) the explicit expression for 
G makes possible integration over dw,. , which leads to re- 
placement of iG( p l ) d  4p'/(  2 ~ ) ~  and + npf d p ' / ( 2 ~ ) ~ .  
The parameter 6 becomes equal then to 
up - w, - p2/2m + q2/m.  

4. THE FOUR-POLE I"*'ANDTHE POLARIZATION 
OPERATOR IN THE LOW-ENERGY LIMIT. EXCITONS IN A 
LOW-TEMPERATURE GAS 

Let us find the general form of the functions r' * ' in the 
limit of small momenta q and k  corresponding to the quan- 
tum-collision regime. The condition ( 1.3) permits a clear- 
cut division of the integration region in ( 3.18 ) into two. In 
the strong-interaction region 5 the function 
xtM' ( r , M f ' )  does not depend on k, the exponential is 
- ,kr- - 1 ,  and we have a contribution independent of the mo- 

menta, which we designate by 477d 2[  LL'. In the weak inter- 
action region r )  r, the function x,,. (r,M" ) takes its 
asymptotic value (3.191, while UL5',.,,, = + VMM, (r) .  
The resultant integral builds up over distances a Iq - kl - ' . 
In view of the condition ( 1.3), we can therefore set formally 
the lower integration limit at r = 0 ,  and the resultant contri- 
bution to r ' * '  is equal to + VMMt ( q  - k )  (3 .7 ) .  We have 
thus as a result 

(*) rMM, , (q;k)  =4nd2{5$%*[eM'(q-k) I [e,, (q-k) ] / ( q - k ) ' ) .  

Note that even if the elastic-interaction effective radius is 
l?,<;.o, .: e quantities [&! are determined essentially by 
the behcrior of the potential U L&! ( r )  at short distances 
r 5 R,. The reason is that it is precisely this range of distances 
which gc verns the form of the function x for all r 5 r,. The 
charactel istic values [ LL', should be of the scale of unity 
(cross section o a 6 ). In principle, however, a situation is 
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possible in which I becomes anomalously large be- 
cause of the resonance on a weakly bound level (real or vir- 
tual). 

In accordance with (3.15) we obtain for the amplitudes 
r(') and r"' 

+4nd2 [e~ ' (q-k)  I [eMe (q-k) 1 
(q-k) 

(4.3) 

We consider now the expression (3.21 ) for the function 
Snear the mass shell. The quantities (pJ  and Ip'l in (3.21 ) are 
of the order of the characteristic momentum k, of the parti- 
cles, and the momentum lkl5 w,Jc< k,. We have hence on 
the basis of (4.2) and (4.3) [the expression for I"2' contains 
only the first term of (4.3) ] 

We call attention to the fact that a contribution to S is made 
only by the amplitude I" - ' in the case of a Fermi gas and 
only by the amplitude + ) in the case of a Bose gas. This 
distinguishes the low-temperature case from the case of fast 
particles,5 where the result is independent of the statistics, 
since the contribution made to s by the first term of (3.2 1 ) is 
small (owing to the almost backward scattering). 

Taking into account the explicit form of the function S 
and introducing the functions (w ZE w, ) 

KM (k) =4nd2 5 K M  ( p ,  k) d4p/ (2n)', (4.5) 

Q,M (k)-4nd2 J~,.-.PM (P, op=o+E ( I p-kI ) ) dpl (Pa)', 

weobtain fromrelations (3.11)-(3.13) ([LT)=[&)) 

To determine the mass operator 8, that enters in the 
expression (3.23) for the Green's function P, in the mass- 
shell vicinity of interest to us, we can use in (3.23) the values 
(4.2) and (4.3) of r. As a result we get 

The first term in the right-hand side of (4.9) is connected 
with the particle interaction at short distances r 5  r,. The 
momentum-dependent second term is due to the interaction 
over large distances r )  r,,. Depending on p, it ranges from 0 
to4md2forM=Oand to2md2forM= 5 1. 

The function K M  to which the polarization operator 
II, is proportional is in fact a two-particle Green's function 
constructed on two t+b and two q, operators. This function 
contains information on the excitation transport in the sys- 
tem. Strictly speaking, we are dealing with an imaginary sys- 
tem in which the interaction with transverse degrees of free- 
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dom of the electromagnetic field (with the photons) is 
"turned off." The latter will hybridize in our case with the 
natural mode of the system, and the true excitation-trans- 
port picture will be described not by the function K ,  but by 
Eq. (3.2). It is advantageous, however, to first mentally turn 
off the interaction of the gas with the photons and to analyze 
the natural mode of the excitation transport. The more so, 
since it will be seen below that in some cases its distortion by 
hybridization with photons is of no fundamental impor- 
tance. 

If KM (k,w) has a pole near the real w axis, this means 
that the system contains a mode of weakly damped elemen- 
tary excitations-excitons. It follows from (4.8) that the 
dispersion equation is then 

QM-' (k, o) = 0. (4.10) 

In view of the presence of additional dispersion of the excited 
atom the second term in the right-hand side of (4.9), a real 
solution of (4.10) contributing a pole to KM does not exist 
for all values o f f  3. In the case of Boltzmann gases a nu- 
merical analysis of Eq. (4.10) using (3.23), (4.6), and (4.9) 
shows that there is no real solution as k-0 if 
- 0 . 2 9 ~ [  L* )'(0.64. 

A dispersion law for the excitons can be obtained ana- 
lytically in the limit as l[ ,&F) 1 - co . One can neglect in this 
case the momentum-dependent second term, which does not 
exceed 4vnd 2. Accordingly, the expressions that follows for 
Q M  from (4.9), (3.23 1, and (4.6) takes the form 

QM=4nd2 J n.[o--oreM-4nnd2c:) -pk/m+i6]-1 dp/ ( l n )  

Assuming the momentum k to be small enough, we have 
expanded here in powers of k up to the quadratic term. 
Hence, substituting (4.1 1 ) in (4. lo),  we obtain for the natu- 
ral frequency w of the collective mode, corresponding to a 
momentum k = 0, 

The expansion procedure in (4.1 1 ) is legitimate if the 
term proportional to k is small compared with unity. Re- 
placing in this term [ by [. we arrive at the dispersion law 

and we can represent the small expansion parameter in the 
form 

The characteristic width of the energy band for the excitons, 
as seen from (4.13) and (4.14), turns out to be much smaller 
than 4 m d  2. 

The dispersion law (4.13) is very similar to that which 
obtains for spin waves in a low-temperature gas, and is based 
on an identical small parameter (see Ref. 3). This reflects 
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the fact that if IS kT ) I ) 1, when the additional dispersion 
can be neglected, the excitation-transport picture in the gas 
under condition (2.1 ) becomes qualitatively the same as the 
spin-transport pattern under condition ( 1.1 ) . If the param- 
eter (4.14) becomes of the order of unity we can verify, by 
determining the imaginary part of Q,, that strong collision- 
less Landau damping takes place. If the parameter (4.14) is 
small the Landau damping is exponentially small relative to 
this parameter (cf. Ref. 3). 

In addition to collisionless damping, collisional damp- 
ing of excitons is also present, but we have neglected it by 
retaining in the four-pole r only the real part. The character- 
istic width of the collisional term is T - ' a nr2, v,. The condi- 
tion for weak collisional damping (short de Broglie wave- 
length compared with the mean free path), namely 
(dw/dk)r$ k - ' , where o ( k )  is the exciton frequency de- 
fined by relation (4.13), imposes a lower bound on the exci- 
ton momentum 

By virtue of the criterion (2.1 ) it is possible to satisfy simul- 
taneously in the quantum-collision regime the condition 
(4.15 ) as well as (4.14), imposing an upper bound on k. 

The criteria (4.14) and (4.15) remain in force for real 
solutions of (4.10) at (<LF))I a 1, while the dispersion law 
for the exciton can be described qualitatively by Eq. (4.13) 
as before. A noteworthy nontrivial fact is that a collective 
mode exists in the presence of strong additional dispersion- 
the excitation energy of the particles depends on their mo- 
mentum, but coherent interaction leads to formation of col- 
lective mode nonetheless. 

5. EXClTONlC POLARITONS. DIELECTRIC CONSTANT 

Interaction between a medium and transverse degrees 
of freedom of an electromagnetic field leads, generally 
speaking, to hybridization of the excitons with the photons, 
i.e., to formation of excitonic polaritons. The polariton dis- 
persion law is determined by relation (3.3) which we write, 
with allowance for (4.7) and (4.8), in the form 

1-a ($)2=e,(k,o)=I- QM-' (k, o )  *%:'-a . (5.1) 

Assuming the criterion of weak collisionless damping of the 
excitons (4.14) to be met, with k of the order of the photon 
momentum ko, which is equivalent in fact to the condition 
that the Doppler broadening be small, we can put k = 0 in 
QM (k,w) by virtue of the small width of the energy band for 
excitons compared with 4and '. As a result, the scalar dielec- 
tric constant E~ becomes independent of k. 

In the limit 1cLF)I$l, putting Q,'=g-(L-), we 
have on the basis of ( 5.1 ) 

1-a 
c- ( 1 ~ 1 )  cF)-a ' 

Two modes of the polariton energy spectrum correspond to 
Eq. (5.2). Just as for the well-known case of polaritons in a 
crystal (see Ref. 8), they are separated by an energy gap, 
whose value in our case is 

FIG. 1. Dielectric constant as a function of 6 - + ' for a Bose gas at 
T > T c , M = 0 , t ' = ~ / 2 , ~ ~ + ' =  -0.5. 

This gap occurs in the frequency region 

The real part of the dielectric constant E', (w), defined 
by the right-hand side of (5.2) becomes negative in the re- 
gion of the gap (5.4). The imaginary part is then EL (w) = 0, 
and total reflection of the radiation should take place from 
the principal volume in the region of the polariton-gap spec- 
trum. Allowance for the additional dispersion when deter- 
mining QM yields a nonzero &, but only in the frequency 
region 5 LF ) <c<c LF ' + 1, which does not overlap in the 
considered limit 15 hT ' I $ 1 with the region of the total re- 
flection (5.4). 

The pole of the dielectric constant is close to the exciton 
natural frequency o (corresponding to k = 0). At a = 0 it 
coincides with w.. 

Under conditions when an exciton exists at I<LT) I a: 1 
the polariton spectrum and the dependence of EL on EL re- 
main qualitatively the same as for LT ) 1 $1. The addi- 
tional-dispersion region, however, in which EL #0, can "eat 
up" part of the total-reflection region. The values of EL and 
EL calculated in this situation for a Bose gas at T) Tc ( Tc is 
the Bose-condensation temperature) are shown in Fig. 1 for 
t h e c a s e M = 0 , 0 = 7 ~ / 2 , c i + ) =  -0.5. 

At these values of cLT),  when there are now weakly 
damped excitons in the gas, the EL (w) dependence retains 
nonetheless the features inherent in the exciton case. Al- 
though there is indeed no pole on the EL (w) curve, a maxi- 
mum and a minimum are clearly pronounced. This is seen 
from Fig. 2, which shows the computer-calculated dielectric 
constant of a Bose gas at T$ Tc, M = 0, 8 = ~ / 2 ,  
[A+ ) = 0.25. Outside the region of additional dispersion 
corresponding to EL $0, there exists again a total-reflection 
region. This picture can be treated as a result of hybridiza- 
tion of a photon with a "virtual" exciton. 

Allowance for the imaginary part in the four-pole I? 
yields the collisional damping of the polaritons. The width of 
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FIG. 2. Dielectric constant as a function of { - < A t  ' for a Bose gas at 
T ,  T,, M = 0, e = ~ 1 2 ,  (A+ ) = 0.25. 

the collisional damping turns out to be small compared with 
characteristic polariton energy 4 ~ n d  to the extent that the 
parameter k,r,< 1 is small. As to the radiative damping of 
the polariton at k a  k ,  the radiative width is 
T; ' a d  ' / A  3&477nd by virtue of the condition ( 1 . 2 ) .  

The case a - 1, which is possible for M = 0 and 8-0, is 
special. In this case one of the solutions of (5.1 ) is w  = ck, 
i.e., it corresponds to a photon that hardly interacts with the 
gas medium. The second solution corresponds to an exciton 
with a dispersion law defined by the equation 

The situation is similar for strong Doppler broadening, 
when 

In this case, for k  a k,, we have 1 Q, ( k , w )  1 g  1 and from 
(5.1 ) we get w  =: kc, i.e., a photon that hardly polarizes the 
medium. For k < k ,  we can set equal to zero the left-hand 
side of ( 5 .  l ) ,  obtaining thus Eq. (5 .5 )  corresponding to an 
exciton. By virtue of the condition (5 .5 ) ,  there exists a wide 

momentum range k g k ,  in which ( 4 . 5 )  is satisfied and its 
collisional damping is weak. 

The last two cases correspond to the presence in the gas 
of "pure excitons" not hybridized with photons. It should be 
noted that the characteristic mean free path 
I ( k )  = (dw/dk)r0  of these excitons with respect to sponta- 
neous radiative decay exceeds their de Broglie wavelength 
under the condition 

The criterion (5 .7 )  may turn out to be more stringent than 
(4 .15) .  It can, however also be readily met in the quantum- 
collision regime even for momenta k g k o ,  by virtue of the 
inequality ( 2 . 3 )  and the condition ( 2 . 2 )  that leads at T >  T, 
t o n d 2 g T .  

The authors are grateful to Yu. M. Kagan for interest in 
the work and for helpful discussions. 

"The region 1 Aol Snd 2, which is of interest from the standpoint of the 
appearance of spatial quantum correlations in optical characteristics of 
a gas, was considered earlier in Ref. 4. 

2' We do not consider open traps, where the temperature may be signifi- 
cantly lower, but n/l 2 <  1. 

" Strictly speaking, the collective mode connected with excitation trans- 
port in a gas, exists also in the high-temperature region, as can be seen 
directly from the solution of the problem in Ref. 5. In the high-tempera- 
ture region, however, the collective mode is always strongly damped 
(diffuse). 

+Such densities are attainable by compressing atomic hydrogen in a 
strongly non-uniform electric or magnetic field (electric or magnetic 
needle) .6 

' T. J. Greytak and D. Kleppner, New Trends in Atomic Physics, G. Grun- 
berg and R. Stora, eds., North-Holland, Amsterdam, Vol. 2, 1984, p. 
1125. 
I. F. Silvera and J. G . M. Walraven, Progress in Low-Temperature Phys- 
ics, D. F. Brewer, ed., North-Holland, Amsterdam, Vol. X, p. 139, 
(1986). 

'E. P. Bashkin, Usp. Fiz. Nauk 148,433 ( 1986) [Sov. Phys. Usp. 29,238 
( 1986) 1. 

4 Y ~ .  Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Pis'ma Zh. Eksp. 
Teor. Fiz. 48,54 ( 1988) [JETP Lett. 48, 56 ( 1988) 1. 
Yu. A. Vdovin and V. M. Galitskii, Zh. Eksp. Teor. Fiz. 51,1345 ( 1967) 
[Sov. Phys. JETP 24, 894 ( 1968 ) ] .  

'Yu. Kagan and G. V. Shlyapnikov, Phys. Lett. A 130,483 (1988). 
' E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon, 1981. 
V. M. Agranovich, Exciton Theory [in Russian], Nauka, 1968. 

Translated by J. G. Adashko 

466 Sov. Phys. JETP 70 (3), March 1990 0. V. Svistunov and G. V. Shlyapnikov 466 


