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The steady-state spherical expansion of a current-carrying plasma into vacuum is studied in the 
hydrodynamic approximation. The plasma can become supersonic at one value of a characteristic 
parameter of the flow. In this case the spatial variation of the hydrodynamic properties of the 
plasma is determined unambiguously by the integral electron and ion fluxes from a spherical 
surface of a given radius and can be calculated without specifying boundary conditions on this 
surface. A quantitative interpretation based on this theory for spherical expansion of a plasma is 
offered for the existing extensive experimental data on vacuum arcs. 

INTRODUCTION 

A detailed theory has now been derived for both the 
steady-state expansion1-' and the time-varying e ~ ~ a n s i o n ~ - ~  
of a current-free plasma, in the case in which ions are accel- 
erated by the ambipolar electric field which arises because 
the electrons move ahead of the ions. Also of substantial 
interest is the expansion of current-carrying plasma jets 
which are directed opposite a current flow. A situation of 
this type arises in vacuum in the upward-directed, 
current-carrying fluxes of 0 + which are formed in certain 
regions of the space environment of the earth, l o  and (appar- 
ently) in certain parts of the solar corona. 

The literature reveals no study of the steady-state ex- 
pansion of a current-carrying plasma in a general formula- 
tion of the problem. Steady-state hydrodynamic equations 
were solved in Refs. 11-15 for a vacuum arc for certain par- 
ticular values of the initial parameters of the problem, 
through the use of boundary conditions on a surface from 
which plasma is flowing. As a result, the solutions which 
were found were largely determined by these conditions. 
Furthermore, those papers ignored the effect of the electron 
thermal conductivity on the expansion process. 

Our purposes in the present study were to construct a 
solution for the problem in the general case, to analyze the 
behavior of the resulting solution as a function of the initial 
parameters of the problem, and to study the effect of thermal 
conductivity. We use the solution found here to analyze the 
extensive existing experimental data on current-carrying 
plasma jets in vacuum arcs. 

where N, and Ni are the electron and ion densities, V, and Vi 
are their average velocities, S is the cross-sectional area of 
the jet, and I, and I, are the electron and ion currents 
(I, - Ii = I is the current in the jet). 

The equations of motion of the electrons and ions along 
the jet axis reduce to the following form if we ignore the 
electron inertia and the viscosity: 

where mi is the ion mass, and @ is the electric potential. The 
transfer of momentum from electrons to ions is determined 
by the 

where j = e( Zi Ni Vi - N, V, ) = - I/S is the current den- 
sity; a =  Zie2/m,v,uei is the electrical conductivity; 
v, = (2T,/m, ) 'I2; a,, = S Z  fe4 ln A/ T f  is the effective 
cross section of the Coulomb interaction; and a, is the coef- 
ficient for the thermoforce (at Zi = 1 we have a, = 0.7 and 
S = 1.2; at Zi = 2 we have a, = 0.9 and S = 1.0; and at Zi 
= 3 we have a, = 1.0 and S = 0.9). 

The energy balance equation for the overall plasma can 
be written as follows (where we are using Vj = 0 and 
miVt&m,Y:): 

1. SYSTEM OF EQUATIONS 
( q e - a , ~ e i / c  + - 5 T.N.V. + mil'? - N , V , + ~ B )  S=H. ( 5 )  

We consider a fully ionized plasma consisting of elec- 2 2 
- 

trons (with a temperature T, ) and cold ions ( Ti = 0)  with 
an arbitrary charge Zie. Previous  calculation^^.^ have 
shown that the thermal spread of the ions has little effect on 
the solution for an expanding current-free plasma, because 
of the low thermal conductivity of the ions and their rapid 
cooling during the plasma expansion. The approximation 
Ti = 0 rests on an even firmer basis in the case of a current- 
carrying plasma (as is demonstrated by the results calculat- 
ed in Ref. 14), in which case there is a heating of electrons. 

We begin by writing hydrodynamic equations for a 
plasma jet, making use of the steady-state nature of the pro- 
cess. The continuity equations for the electrons and ions are 

Here q, = - x, (dT,/dr)  is the heat flux, x, = &,uT,/e2 is 
the thermal conductivity (for Zi = 1, 2, and 3 we have E,, 

= 1.61, 2.15, and 2.44, re~pectively),~~." and H is a con- 
stant of the flow. 

Instead of the Poisson equation for the potential we will 
use the quasineutrality condition N, = ZiN,; along with this 
condition, Eqs. ( 1 )-( 3 ) and (5)  constitute a complete sys- 
tem of equations, 

Since we have y = I,/Ii = V,/ K. = const under quasi- 
neutrality conditions (the case y = 1 corresponds to a cur- 
rent-free plasma), we can use Eq. ( 1 ) to eliminate the parti- 
cle density and the velocity V,. The system of equations then 

eN,VeS=Z,, ZieNiViS=Z,, (1)  reduces to three equations in the unknowns Vi, T,, and 
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(we will be replacing the velocity V, by the ion energy 
Wi = m, ~ 2 / 2 ) .  

We choose some point r = r. (an arbitrary point for the 
time being), and we denote the values of the properties at 
this point by N, = N,, W, = W., T, = T,, @ = @., and 
S = S.. We then transform to dimensionless variables 
x = r/r., n = N,/N., w = W,/W., t = T,/T., p = @/@., 
s = S / S . , s o t h a t a t x =  1 w e n o w h a v e n = w = t = s =  1. 
Since the origin of the scale can be put anywhere, we set 
@. = T. at the point r = r.. From Eqs. ( 1 )-(5) we then 
find 

t ds dt 
(6)  

where a = W, /Z, T., E = 1 - y - = I / I ,  (O>c>O), and h 
is a normalized constant of the flow. 

After solving Eqs. (6)-(8), we can find the particle 
density distribution from the algebraic relation nw112s = 1. 

Equations (7)  and (8)  contain the characteristic flow 
parameter 

which can be interpreted as the ratio of the Joule energy 
evolution I '/us to the convective heat removal (from a unit 
layer) T,N, V,S/r = T,I/e&r at the point r = r. [here 
u (  T, ) = a. 1. This parameter can also be expressed in terms 
of the Mach number M. = V,, /v,, and the Knudsen num- 
ber Kn. = A. /r, for the electrons [here A, = 1/N. a,, (T, ) 
is the effective mean free path of an electron at the point 
r = r . ] .  

Natural conditions on expansion into vacuum are the 
requirements T, -0 and N, -0 as r- oo (or t-0 and n -0 as 
x-  oo ). Taking these conditions into account, but not speci- 
fying boundary conditions on the surface of the source at 
r = r,, we turn to an analysis ofsystem ofequations (6)-(8). 

2. FLOW OF A NON-HEAT-CONDUCTING PLASMA 

Let us consider the problem of solving system (6)-(8) 
under the assumption p )  1, under which we can ignore the 
last term on the left side of (8),  i.e., the electron heat flux. 
From (6)-( 8) we then find 

from (9)  and ( 10) that a transition to supersonic flow is not 
possible for the steady-state current-flow expansion ( y  = 1, 
E = fi = 0)  of a non-heat-conducting plasma. A transition 
to a supersonic flow does become possible if there is a current 
( y > 1, p # 0).  We will examine this possibility in more de- 
tail for the spherical expansion of a plasma, with s(x)  = x2. 

We assume that the critical cross section, at which the 
numerator and denominator in ( 10) vanish simultaneously, 
is at the point r = r., i.e., at x = 1. For this point we then 
have t =  w = 1, and from ( l o )  wef inda= 5/6andfi= 5. 
Substituting these values into ( 10) and ( 1 1 ) , we find 

dt - 2t 2- (5-3tIw) /xtS/z ---- 
dx 31  l - t l w  

We see that Eqs. ( 12) and ( 13) contain no parameters 
ofthe flow at all. Consequently, their solution w(x) and t (x)  
(derived under the boundary condition w = t = 1 at x = 1 ) 
will be universal functions. Making use of the same bound- 
ary condition, we find the value of the flow from Eq. (8)  : 

For the values found for the parameters a and 0, the 
derivatives dw/dx = w; and dt /dx = t :, are indeterminate 
at the critical point, x = 1. Using L'Hhpital's rule, we find 
from ( 12) and ( 13 ) the algebraic equations 

Solving them, we find w; ~ 3 . 7 5  and t; ~ 0 . 7 5 .  Using these 
values, we can carry out a numerical integration of Eqs. ( 12) 
and ( 13) in both directions away from the critical point. The 
solution found is shown by the dot-dashed line in Fig. 1. 

The procedure for finding a solution [an integration of 
Eqs. ( 12) and ( 13) from the point x = 1 into the region 
x < 1 ] shows that there exists a unique supersonic solution 
w(x) ,  t (x) ,  whose form does not depend on the boundary 
conditions. The relative radius of the source, in this case 
x ,  = r,/r., can lie only in the interval 1 >x,>x,, where 
x ,  = x, = ~ 0 . 7 5 5  corresponds to the case of a source with 
w(x,) = 0, t(x,) = 0, i.e., to the acceleration and heating 
(by virtue of the current flow) of an initially cold plasma at 
rest. Any other (nonvanishing) values w(x, ), t(x, ) on the 
surface of the source must be found from the solution de- 
rived (Fig. 1). The relative position of the surface of the 
source, x ,  = r,/r., and of the critical point will also be deter-. 
mined by the solution shown in Fig. 1. 

Knowing the behavior w(x), t (x)  from Eq. (8) ,  on 
whose left side we discard the last terms, we can find the 
potential distribution [p, = p(x,) ] : 

Since the experimental data describe an acceleration of 5 w 9 (x) -qO = -( - + 3 f )  f a ~ .  
ions in current-carrying jets to velocities far higher than the 68 T 

(15) 

ion sound v e l o ~ i t y ' ~ . ~ ~  V, z (T,/m, ) 'I2, we restrict the dis- 
cussion below to those flow conditions which result in a This distribution is shown for various values of y and 2, 
crossing of the sound velocity. The condition for this cross- [since we have a, = a, ( Z ,  ) ] in Fig. 2. We see that the 
ing is the simultaneous vanishing of the numerator and de- potential distribution depends strongly on the value of y, in 
nominator in ( 10). For a monotonically increasing cross- contrast with the behavior w(x), t (x) .  
sectional area of the jet (ds/dx <O), we see in particular Knowing the characteristic flow parameter, fi  = 5, we 
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FIG. I .  Profiles of the electron temperature (1, l ' )  and the ion energy 
(2,2') along a plasma jet. Solid lines-Results of calculations with a ther- 
mal conductivity ( a  = 1/2, y = 10, 2, = 1,2,3); dot-dashed lines-re- 
sults of calculations without a thermal conductivity ( a  = 5 / 6 ) .  

can evaluate the validity of the two basic assumptions which 
we used in solving this problem. Since the parameter appears 
in the combination E , E ~ / ~  (where E, =:2) in the heat flux in 
Eq. (8 ) ,  the quantity E = 1 - y ' must be sufficiently small 
if we are to ignore the thermal conductivity. This condition 
is satisfied at about y < 2. The latter inequality can also be 
thought ofas the condition under which the thermal conduc- 
tivity has only a slight effect on the expansion of a current- 
carrying plasma. 

We can also evaluate the validity of the hydrodynamic 

FIG. 2. Potential profile along a plasma jet with (solid lines) and without 
(dot-dashed lines) a thermal conductivity. a-y = 10, 2, = 1-3; b- 
y=2-2o ,z ,  = 1. 

approximation [i.e., the validity of our initial equations, 
( 1 )-(5) 1. The validity of this approximation is not obvious, 
since as the plasma expands into vacuum it ultimately be- 
comes collisionless. Working from (9)  and the data in Fig. 1, 
we find the estimate Kn(x)  ,--Kn.x,-- (m,/m, )"'x, from 
which it follows that the hydrodynamic description of the 
plasma is valid to x < (m,/m, ) "'. 

3. EFFECTOFTHERMAL CONDUCTIVITY ON THE PLASMA 
EXPANSION 

We now consider the spherical expansion of a plasma 
with thermal conductivity. In other words, we turn to the 
solution of the complete system of equations in (6)-(8) with 
s = x2. With the critical point again at x = 1 (i.e., r = r ,  ), 
we work from the condition that the sound velocity is 
crossed to find a = 1/2 and 

from which we can determine the constant h. As a result, the 
system of equations to be solved becomes 

where 

F(w1 tl cp) 

From this system we can easily find the derivative 
dw/dx at the critical point [this value of the derivative is not 
determined by Eq. ( 16) alone] : 

where 5 = P/E ,E~ .  It can be seen from ( 16)-(20) that the 
solution of the system depends on the characteristic flow 
parameter fl [defined by (9)  1, which is still an unknown, in 
contrast with the case of the expansion of a non-heat-con- 
ducting plasma. 

A numerical solution of system ( 16)-( 18) has shown, 
however, that for an arbitrary value of 0 one finds solutions 
with a temperature which either rises at large values of x or 
drops rapidly to zero. The solution which corresponds to the 
formulation of the problem of expansion into vacuum ( T, 
-0 as x -0) runs along the line separating these two groups 
of solutions and is found at a strictly determined value offl, 
which is a unique value for given values of Zi and y. Figure 3 
shows a curve ofp(y)  found numerically for Zi = 1-3. We 
see that at small values of y the p ( y )  curve approaches the 
valuep = 5, found for a non-heat-conducting plasma, while 
at large values of y it reaches values about twice as high. 

Figures 1 and 2 show distributions of the temperature, 
the energy, and the potential calculated for y = 10. We see 
that, as in the case of a non-heat-conducting plasma, 
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FIG. 3. The characteristic flow parameter P versus the ratio of the elec- 
tron and ion currents, y, with (solid lines) and without (dot-dashed line) 
a thermal conductivity. 

t(x)and w(x) depend slightly on Zi (and also on y, as the 
calculations show). This fact was utilized for an approxi- 
mate calculation of the potential p ( x )  for Zi = 1 and 2 at 
large values ofx (the dashed continuation of the solid line in 
Fig. 2),  in which case the numerical calculations are not 
accurate enough to reveal the line separating the rising and 
sharply falling solutions t (x) .  For the value Zi = 3, it was 
found possible to identify this line (i.e., the supersonic solu- 
tion being sought ), up to x = 10'. 

A comparison of the solutions with and without ther- 
mal conductivity (Fig. 1 ) shows that the relative changes in 
the ion energy agree well (at x >  3) if the normalization 
Wi/Zi T. = aw(x)  is used, but they do not agree well when 
a normalization to the energy of the critical point, 
Wi/W. = w(x), is used. The relative changes in the tem- 
perature t (x)  are not greatly different in the initial region 
(after the critical point is passed), while at large values of x 
the thermal conductivity maintains the electron tempera- 
ture at a higher level. The ratio of the radius of the spherical 
source to the position of the critical point, x, = r,/r., in- 
creases to ~ ~ ~ 0 . 8 8  when the thermal conductivity is taken 
into account (Fig. 1 ) . In other words, the critical point ap- 
proaches the surface of the sphere. 

The thermal conductivity has an important effect on the 
potential difference p ( x )  - p,. While in the absence of a 
thermal conductivity there is essentially no dependence on 
the ion charge Z, [since this potential difference is due ex- 
clusively to the weak dependence a , (Zi )  according to 
( 15) 1, in the case at hand we find a well-expressed increase 
in the potential with increasing Z , .  It turns out that this 
potential increase stems from the appearance of an opposite- 
ly directed heat flux from the expanding plasma toward the 
surface of the source. A calculation shows that, although t 
vanishes as x-x, (Fig. 1 ), its derivative blows up 
(dt /dx- w ), and the relative heat flux to the sphere, 

remains nonzero, increasing rapidly with increasing Zi. Spe- 
cifically, for the values Zi = 1, 2, and 3, this relative heat 
flux has the values 0.01, 0.17, and 0.60, respectively. The 
thermal conductivity thus removes some of the Joule-heat- 
ing energy from the plasma jet, with the result that a greater 
potential drop is required in order to maintain a given cur- 
rent in the expanding plasma. 

4. DISCUSSION OF THE RESULTS OFTHE CALCULATIONS 

This study shows that during the steady-state flow of a 
current-carrying ( y > 1 ) plasma away from the surface of a 
sphere of arbitrary radius the plasma is heated and acceler- 
ated to supersonic velocities over a distance Ar 
= r. - r,zO.lro, near the surface of the sphere. A maxi- 
mum appears (at rz2r,)  on the temperature distribution as 
a result of the Joule heating of the initially cold and very 
dense plasma (T, -0 and N, - a, as r- r,) and the subse- 
quent cooling of this plasma due to the expansion ( T, -0 
and N, -0 as r- w ). The potential distribution for y > 2 
also has a maximum, which lies near the temperature maxi- 
mum and shifts to slightly greater distances as Z, is in- 
creased and y reduced (Fig. 2).  This shift is accompanied by 
a decrease in the negative potential gradient and an increase 
in the overall voltage drop along the jet, p, - p,. In the 
opposite case of large values of y, the peak in the potential 
distribution p ( x )  becomes sharper, and the overall voltage 
drop p, - p, decreases, approaching zero as y- W .  The 
physical reason for this effect is clear: At a low ion current 
I, 41e, the electron energy expended on accelerating ions 
decreases sharply. 

The positive potential gradient depends weakly on Z, 
and y and is realized in the interval 3r, > r > r,, which is also 
the interval in which the plasma is rapidly heated and accel- 
erated. Electrons are accelerated in this case by bo h the 
intrinsic pressure and the electric field, while the ions 'mov- 
ing opposite the field) are accelerated by the friction Iorce 

(an entrainment by the "electron wind" or "ohmic" accel- 
eration). l 9  This force remains predominant out to distance 
r 5 102r, (over which most of the acceleration occurs, as can 
be seen from Fig. 1). The electric field then assumes the 
leading role in the acceleration (the region of a negative po- 
tential gradient). The relative increase in the ion energy in 
this region, however, is fairly small. For the plasma jet as a 
whole (in view of its quasineutrality), we can say that the jet 
is accelerated by the gradient of the electron pressure which 
is maintained by Joule heating, itself a result of the current 
flow. 

As was shown in the preceding sections of this paper, a 
supersonic expansion of a current-carrying plasma of a cur- 
rent-carrying plasma is possible at only a single value of the 
characteristic flow parameter 0, which is a single-valued 
function of the ion charge Zi and the current ratio y = Ie/Ii 
(Fig. 3).  The spatial distributions of the dimensionless hy- 
drodynamic properties of the plasma, w( t), t (x) ,  and n (x )  
and that of the potential p ( x )  also depend on Zi and y alone. 
This dependence is very weak in the cases of w, t, and n. To 
find the distributions of the absolute values, W, (r) ,  T, ( r ) ,  
Ni ( r ) ,  and @(r) ,  we need to also specify the current 
I = I, - I, and the radius of the sphere from which the plas- 
ma is emerging, r,. Specifically, if we take account of the 
dependence u( T, ) and assume 6 z 1 and r,,/r, ~ 0 . 9 ,  we find 
from (9)  

where C ~ 3 . 7 5 . 1 0 - ~  eV5'2 cm/A, & = I - y - I ,  
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P =P(y,Z,)  (Fig. 3),  and fl is the solid angle in which the 
current I is flowing. Since all the other dimensional quanti- 
ties can be expressed in terms of T, and the dimensionless 
solutions w(t), t (x) ,  p (x ) ,  we see that all the characteristics 
of the current-carrying plasma during its spherical super- 
sonic expansion are determined unambiguously by a specifi- 
cation of the integral currents I, and Ii (or I and y), the 
sphere radius r,, and the parameters Zi and m, of the plasma 
particles. It is not necessary to specify boundary conditions, 
i.e., local values ofthe hydrodynamic parameters of the plas- 
ma ( N , ,  Wi, T, 1, at the surface of the sphere. 

5. APPLICATION OF THE THEORY OF SPHERICAL 
EXPANSION OF A PLASMA TO VACUUM ARCS 

5.1. General characteristics of arcs 

Let us use the solution which has been found to analyze 
experimental data on the vacuum arc, which is an electric 
discharge in an evacuated gap between electrodes. This anal- 
ysis is convenient since the plasma in such systems propa- 
gates away from the cathode (the cathode material is the 
material from which the plasma is produced) toward the 
anode in the form of a quasisteady, expanding, current-car- 
rying jet. In addition, many years of research on vacuum 
arcs have provided us with extensive experimental data, 
which have not previously been analyzed as a whole from a 
common standpoint. 

The plasma jet in a arc flows out of local regions near 
the surface of the cathode: cathode spots. Arcs are put in two 
categories on the basis of the characteristic dimension (di- 
ameter) of these spots. The first category is that of arcs with 
acontracted spot, witha=: l o 3 - 1 0 -  cm (Ref. 8 and 20), 
and the second is that of arcs with a diffuse spot, with 
a z  10- '-lo0 cm (Refs. 14 and 2 1 ). The experimental data 
support the suggestion that when the source of plasma in a 
contracted-spot arc is a single spot (this case is observed at 
I < I,,, , where I,,, depends on the cathode material) the 
spot diameter is proportional to the current: I / a  
zconst z lo4 A/cm (Refs. 20 and 22). 

In order to apply the theoretical results to vacuum arcs, 
we need the radius (r,) of the sphere from which the plasma 
is merging, the solid angle fl (in which the current 
I = I, -I, is flowing), the ratio of electron and ion fluxes 

Measurements have s h o ~ n ~ ~ * ~ ~  that for a contracted- 
spot arc the ratio of electron and ion currents, y = 10-12, is 
essentially a constant, independent of the size of the elec- 
trodes, the distance between the electrodes, the current 
(I = 50-1000 A) ,  and the properties of the cathode materi- 
al. For diffuse-spot arcs without special cathode heating, 
this ratio again is approximately a constant ( y = 9-20; Ref. 
2 1 ), while with deliberate heating we find y z  8-30 (under 
the assumption Zi = 3).14 In all the calculations below we 
use the value y = 10. 

In comparing the theoretical results (calculated for a 
plasma witha single ion species) with experimental data, we 
use as the ion charge Zi its average value 2 ; .  In a contracted- 
spot arc, this average value has been measured for various 
cathode materials. The results reported by different investi- 
gators usually agree within 10% (Refs. 7, 20, 25, and 26). 
Corresponding values of are shown in Table I. No direct 
measurements of Z, are available for diffuse-spot arcs; all 
that is known is that these values are smaller than for con- 
tracted-spot 

5.2. Theoretical expressions for a vacuum arc 

Using the typical value y z  10 (and thus P=: 10 and 
~ ~ 0 . 9 )  and 1, we find from (1)  and (21) 

T, (r) = fZi2/st (x) , Wi (r) =fZ;lsw (x) 12, (22) 

C3p*% 
N ,  (r) = - I 

Zii.'f'" t[w(x)]" ' 

where 

f =Co ( I la )  a/5. (24) 

Here Co = 0.1 e V . ~ r n ~ / ~ / A ~ / ~ ,  C1 = 7.10" ~ v " ~ / ( A - c ~ ) ,  
pi is the ion mass in atomic mass units, r = z + a, 
x = z/a + 1, and z is the distance from the surface of the 
cathode along the axis of the plasma jet. Since the vast major- 
ity of measurements in vacuum arcs are carried out at dis- 
tances z) 1 cm, for contracted-spot arcs (a z l o 2  cm) we 
have r z z ,  x z z / a  2 10' and w(x) ~ 2 0 ,  t ( x )  5 0.3. For dif- 
fuse spot arcs (a  =: 1 cm) we have x z  2-10 and t (x)  z 1. 

The overall voltage drop in the arc is determined by the 
equation 

( y - I,/I, ), and the ion charge Zi .  eU=fZ:/jAcp, Acp=cp (x,) -90, 
According to the measurements, the plasma jet of a con- 

tracted-spot arc has an angular size O o z  30" (Refs. 7, 15, and wherex, = I /a + 1, and Iis the distance between electrodes. 
23). From this figure we find an angle To calculate the properties of the arc we need data on 
fl = 27~( 1 - cos 0,) z 1. Approximately the same values the size of the cathode spot, a ( I ) ,  as can be seen from (22)- 
are found for diffuse-spot arcs.I4 In this case the assumption (25). If we use the experimental estimate above, and if we 
ro z a  is fairly accurate. assume that the ratio I /a =: lo4 A/cm is approximately con- 

TABLE I. Average ion charge in vacuum arcs with various cathode materials. 

Element I zn I cd / c I AX I cd I MI. I I NI 
- 
Zr 1 1 I I 1 I i.4 1 1.5 1 l j  I 1.5 1 1.5 

Reference [201 [ 7  201 [ l i l  [251 [251 1251 i7.251 17.251 

Element 1 st I L a  I TI  I ~i I ~r I ~a I bio 

Z+ I i.5 1 1 8 t b 1 2 0  1 2.2 1 2.7 1 2.0 1 2.8 
Reference 120,261 [20.23,261 [261 [261 [251 1251 [251 [261 
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FIG. 4. Profile of the ion density (at 1 ~ 1 0 0  A )  along the arc axis. 
Hatched region-Data of Ref. 8; points-data of Ref. 9; line--expression 
(23)  (w l"N ,  a r 2 ) .  

stant, we find f z 4  eV from (24). In the discussion below, 
however, we will not postulate a value off at the outset; we 
will instead find it from an analysis of the fairly diverse ex- 
perimental data (ion energies, ion density distributions, and 
the overall voltage drops across the arcs). 

5.3. Density distribution 

Direct measurements of the electron density far from 
the cathode by and also near a cathode spot in a 
contracted-spot arc by spectroscopic methods8 have made it 
possible to construct spatial profiles of the normalized flux 
density, W'/~N, ( r )  (Fig. 4).  The results of these measure- 
ments can be approximated satisfactorily by a power law 
w' /~N, a r P 2 .  From the proportionality factor in this law 
and from (23) we find f z4 .6  eV (for Zi=:1.8, I= 100 A, 
and pi ~ 5 0 ) .  From (24) we then find the radius of the 
sphere which is the plasma source: r , ~ a ~ 0 . 7 -  1 0  cm. 

5.4. Energy of the ions 

Figure 5 shows values of the directed energy of the ion 
fluxes in contracted-spot arcs with various values of the 
average charge T , ,  taken from the most detailed measure- 
ments of the ion energy distributions with separation by 
~ h a r g e . ~ ~ . ~ ~  According to (22) and (24), the slope of the 
straight line approximating the experimental results in Fig. 5 
yields f ~ 4 . 0  eV. From this value and the known current 
I = 100 A, we find the radius of the source surface to be 
r , z az lO- '  cm (here wz20  cm; see Fig. 1).  

FIG. 5. Average ion energy (at x z  10'-10' and I = 100 A)  versus the 
average ion charge. @-According to data of Ref. 25; 0-according to 
data of Ref. 26. 

For the most part, the data in Fig. 5 [in particular, the 
values Wi (Mo) z 150 eV, and W, (Ti) z 7 0  eV] were found 
at large distances from the cathode: r k 50 cm. The ion ener- 
gy distributions measured with grid probes (without separa- 
tion by charge) at smaller distances yield substantially 
smaller values of Wi; at r z 2 5  cm, for example, we have 
values Wi (Mo) 5 30-60 eV (Ref. 23 ), and at r z  20 cm we 
have W, (Mo) 5 30 eV (Ref. 18). A similar conclusion re- 
garding arcs with cathodes of other metals ( Al, Ag, Ni, Cu) 
follows from a comparison of the results of Ref. 7 with those 
of Refs. 25 and 26. 

Direct measurements of the ion energy distributions at 
various distances from the cathode carried out with the help 
of a movable grid probe in a contracted-spot arc'' have re- 
vealed a substantial increase in the directed energy of titan- 
ium ions, A W, z 4 5  eV, between r = 15 cm and r = 40 cm. In 
this region, the acceleration mechanism described in the 
present paper is no longer effective (Fig. 1 ). The circum- 
stance allowed Borzenko et a1.I8 to suggest an anomalous, 
turbulent nature of the electron-ion friction force in (4) ,  
which is responsible for a transfer of momentum from elec- 
trons to ions in this interval. Further evidence in favor of this 
suggestion comes from measurements in Refs. 9 and 18 of 
the potential profile p (x ) ,  which turned out to be a growing 
profile, in contrast with the theoretical predictions. The 
measured increase in the potential, S p z 4  eV (Ref. 9) (or 
Sp  5 eV in Ref. 18) would lead to an ion-energy increase 
AWi(Mo)zZiySpz80 eV (Ref. 11) [AW,(Ti) 5 2 0  eV], 
in reasonable agreement with the results reported. 

5.5. Potential profile 

The potential distribution in the gap of a vacuum arc is 
still under discussion. In a effort to explain the fast-ion fluxes 
seen experimentally, Plyutto et al.' suggested that there is a 
potential maximum ("hill") near the cathode and that be- 
yond this maximum, i.e., in a region of a field which acceler- 
ates ions, atoms generated by the cathode are ionized. In 
Ref. 11, in contrast, the potential profile was assumed to be a 
monotonically increasing profile, and the ion acceleration 
was linked with an entrainment of the ions by a stream of 
electrons moving in an accelerating field from the cathode to 
the anode. 

The results of numerical calculations on the plasma 
flow in a vacuum arc reveal a potential hill for certain specif- 
ic values of the flow The conditions for the 
existence of this hill, the dependence of the height of the hill 
on the flow parameters, and the role played by this hill in the 
ion acceleration process, however, were not explained. The 
potential profiles in Fig. 2(b) show that a hill appears even 
at small values of the parameter showing the extent to which 
the flow is of a "current" nature: y > y,,, =. 2. The height of 
this hill, p,,, - p, =. pm,, - p ( X  z lo5), increases with in- 
creasing y. The potential hill is thus a characteristic feature 
of specifically systems which are of a current nature. 

Figure 2 also shows that the potential reaches a maxi- 
mum at x = x, 5 2. In the case of a contracted-spot arc 
(r ,5  l o p 2  cm), this result corresponds to a distance 
r, = x, ro 5 2.10 cm from the cathode, and it would be 
essentially impossible to observe a hill in this case. For dif- 
fuse-spot arcs (r, k 1 cm) the value of r, can reach several 
centimeters and would be quite amenable to measurements. 
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In fact, a potential hill has recently been observed experi- 
mentally under these conditions.*' 

u, v 
30 - 

5.6. Total potential drop across an arc 

2 
2/5 

6 
zi A g o  

It follows from Fig. 2(a)  that as the gap length in a 
contracted-spot arc is varied over the wide range I = 0.5-50 
cm (correspondingly, x ~ 5 . 1 0 ' - 5 . 1 0 ~ )  the value of Ap 
changes by -30-40%. In other words, the total voltage 
drop across the arc also depends weakly on the gap length 
according to (25). This fact has been noted repeatedly in 
experiments (e.g., Ref. 24). 

The quantity U is known for various experimental con- 
ditions, i.e., for various cathode materials, arc currents, and 
gap lengths. Figure 6 shows U in contracted-spot arcs with 
various cathodes as a function of the parameter Zf'5Ap, 
where Z, is also known, for each cathode material, from 
measurements (Table I ), and Ap (Z, ) has been calculated 
[Fig. 2(a)].  It follow from Fig. 6 that a linear law, as in 
(25), is a satisfactory description of the relationship 
between these parameters, with a coefficient fz4 .8  eV. 
From (24) we then find a source radius ro = a-0.6. 10W2 
for a current IZ 100 A. 

Using this value off, and assuming that it remains con- 
stant as the current is varied, we can find the dependence 
U(I), i.e., the current-voltage characteristic, for a contract- 
ed-spot arc. This behavior arises because the quantity a in- 

- 

TABLE 11. 

FIG. 6. Total voltage drop across the arc ( I =  100 A)  versus the average '10 io l o  i o  ' i o  ,io zio J', I, h 
ion charge. *-According to data of Ref. 25; A-Ref. 26; &Ref. 24; FIG, 7, ~ ~ ~ ~ ~ ~ t - ~ ~ l t ~ ~ ~  characteristics of vacuum arcs, solid lines- A-Ref. 7. 

Theoretical; dot-dashed lines-data of Ref.25; dashed lines--data of Ref. 
7 (shown in parentheses are the values of Z,  for the corresponding cath- 
ode material). 

creases with increasing current under assumption. In other 
words, the normalized gap length I/a decreases. It can be 
seen from Fig. 2(a)  that the value of Ap, i.e., U, increases. 
Figure 7 shows experimental current-voltage characteristics 
of contracted-spot arcs for various cathode materials, along 
with theoretical characteristics for arcs with various ion 
charges. It can be seen from Fig. 7 that (first) the behavior of 
the theoretical characteristics is similar to that of the experi- 
mental characteristics; specifically, there is a slight increase 
in U(I).  Second, the values of U are themselves approxi- 
mately the same for materials with various Z,. The value of 
Uincreases with increasing Zi. Third, there is a sharper rise 
of the U(I) curve for materials with large Z,,  both theoreti- 
cally and experimentally. We might add that the last two of 
these effects arise in the calculations specifically because a 
thermal conductivity was taken into account [Fig. 2(a);  this 
conductivity also leads to a fairly strong dependence of Ap 
on Z, ] in order to reconcile the theoretical results with the 
experimental results. 

5.7. Electron temperature 

Table I1 summarizes the results of the measurements 
and calculations of T, in a contracted-spot arc. We see from 
this table that the theoretical values ( T f )  and the experi- 

Cathode 
material T,(T),  eV T ; ~ ) ,  e~ Method for measuring T,; I I reference 

From charge composition 

Pb 
of ions; Ref. 7 

Cu 1 i,8 1 i 1 6 2 1  From relative intensity of 
Cu2+ spectral line; Ref. 8 

Cu 

tf 
Ag 

Mo 1 20 (2.8) 1 I 1 0.8 ( 1 0 )  1 3 1 Langmuir probe; Ref. 23 

Ti 1 1.8 1 - ( l i 3 )  1oi I 0.8-0.6 1 1.2-(5 1 Langmuir probe; Ref. 9 

1.8 
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mental values ( T f )  agree fairly well near a cathode spot, 
with similar tendencies to increase with increasing Zi,  in 
accordance with (22). With distance from the cathode we 
see a decrease in the temperature in both cases, but T f ( r )  
decreases considerably more slowly than T T(r), possibly be- 
cause of the turbulence effect mentioned above. That effect 
would lead to anomalously low values of the conductivity 
and thus to a power level of the Joule heating of electrons 
higher than that found in the calculations. 

5.8. Distinctive features of diff use-spot arcs 

Working from these results, we can offer a qualitative 
explanation for certain trends which have been observed ex- 
perimentally in the transition from contracted-spot to dif- 
fuse-spot  arc^.^'*^' This transition corresponds to an in- 
crease in the size of a cathode spot by one or two orders of 
magnitude. The normalized coordinate x = r/ro decreases 
by the same factor (i.e., the arc becomes "short"). In addi- 
tion, the value of the factor f in (22)-(24) decreases by a 
factor of three to ten. It follows that this transition should be 
accompanied by a decrease in the total voltage drop across 
the arc; this conclusion corresponds to experimental data of 
Ref. 21. Furthermore, according to (22) and Fig. 1 there 
will be decreases in the directed energy and the temperature 
of the electrons, so the average ion charge, Zi, which is deter- 
mined by T,, will also decrease. These effects have also been 
seen e~perimentally.~' The ratio U/T, = A p / t  [see (22) 
and (25) 1 depend on only Z, (and then only weakly ), and 
for the experimental conditions of Ref. 14 we would have 
U/T, - 4 5  according to the calculations, while the mea- 
surements yield U/T, -2.5-5, while the quantities them- 
selves vary by a factor - 6. Finally, the experimental values 
of the electron temperature and density near a cathode spot 
are also close to the values found theoretically: T6T' =. 1 eV, 
N6T'- (2-10).1013 ~ r n - ~ ,  TaE'=.2-4 eV, NaE' 
~ ( 1 - 3 ) - 1 0 ' ~  cmP3  (Refs. 14and 21). 

5.9. Estimate of the effect of the magnetic field 

Since the plasma does not flow out from the entire sur- 
face of the sphere in the case of a vacuum arc, but only from 
some solid angle R = 2?r( 1 - cos 8,), the current flowing in 
the plasma creates an axisymmetric magnetic field B(r,B). 
To estimate the effect of this field on the plasma outflow, we 
ignore (as above) the variation of the plasma parameters 
across the plasma cone O(8,. The magnetic field at 8 ~ 8 ,  is 
then given by 

4nz 1 - cos 0  
B(r, 0 )  =- 

cQr sin0 

Using ( 1 ) and (2 1 ), we can derive an expression for the 
parameter Dp =p,/p,, the ratio of the gas pressure 
p, = N, T, to the magnetic pressurep, = B 2/8a and a mea- 
sure of the effect of the magnetic field: 

I, t ( x )  ( sin 0  )' 
BP (r, 0 )  = - I [w(x)]" l - c o s e  ' 

where k=: lo2 A4'5 ~ m " ~ .  For the typical parameter values 
of a vacuum arc (R/E =: 1, pY5/Z P.' - 5 - 10, I /ro =: lo4 

A/cm, y=.P=: 10) the quantity I,, lies in a narrow interval 
and has values close to I, =. 300 A. 

Let us estimate the ratio 0, at the edge of the cone 
( 0  = B,), where the magnetic field is at its strongest. Assum- 
ing 8,,=.30", we find from (26) 

(I is the current in amperes). We thus see that in the critical 
cross section (x  = t = w = 1 ) we would have P, k 3 at cur- 
rents I S  lo3 A, and we could ignore the effect of the magnet- 
ic field. At distances r=. 1 cm from the cathode ( x z  lo2, 
t z l ,  wl/* z 5 )  we find Dp =.600/1; at r k  10 cm ( x 2  lo3, 
t S 10 - ' , w " ~  =. 5) we find P, S 60/I. The last of these esti- 
mates agrees with experimental dataz3 at r = 30 cm. These 
data are evidence that the self-magnetic field begins to have 
an effect at currents I 2  100 A. 

Calculations show (Fig. 1) that we have 
t ( x ) / [ w ( ~ ) ] ' / ~  -0 (and thusp, -0) asx-x, andx-  W .  

This result means that the magnetic pressure begins to ex- 
ceed the gas pressure at both large and small distances from 
the cathode. It may be that by incorporating the effect of the 
magnetic field near the cathode we would be able to calculate 
the angular size of the jet, 0,, and the size of the cathode spot, 
a =: r,, which we have been treating as given parameters. 

If we assume that a pinch effect is caused in the plasma 
jet by the self-magnetic field at 0, < 1, then by setting Dp = 1 
we could determine the boundary surface of the jet, 
8, = 8, ( r ) ,  from (26). For the typical current value 1- lo2 
A at x S  lo2, this surface would be conical, with 
8, -6, = const (in agreement with  measurement^^^ at r 5 2 
cm), while at large distances the jet would occupy only part 
of the original cone; i.e., we would have 8, ( r )  < 8,. 

We can draw some conclusions from this analysis. 
First, incorporating the magnetic field has no significant ef- 
fect on the basic relations, (21)-(24), since they were de- 
rived from the conditions for crossing of the critical point, at 
which the inequality PP ) 1 holds quite well at 15; 10) A. 
Second, the self-magnetic field should lead to a pinch effect 
in the plasma jet both with increasing distance from the cath- 
ode and in the immediate vicinity of a cathode spot. Third, 
the shape of the plasma jet can be estimated by equating the 
gas pressure to the magnetic pressure. 

CONCLUSION 

This study has shown that the supersonic expansion of a 
plasma is controlled completely by the (integral) initial pa- 
rameters, and it is not necessary to specify boundary condi- ' 
tions at the surface of the source. Incorporating thermal con- 
ductivity leads to (first) the appearance of a heat flux 
toward the cathode, which intensifies rapidly with increas- 
ing ion charge, and (second) a significant dependence of the 
potential profile on the ion charge. 

Our application of this theory of the spherical expan- 
sion of a current-carrying plasma to vacuum arcs has made it 
possible to tie together many pieces of experimental evi- 
dence, on the basis of essentially nothing more than the re- 
quirements of hydrodynamics, without consideration of ef- 
fects occurring at the electrode surface. In particular, the 
source radii found by comparing the theoretical results with 
these groups of independent experimental data (on the ion 
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energy, the density distribution, and the total voltage drop 
across the arc) turn out to agree well with each other and 
also with experimental estimates of the size of the cathode 
spot. In this model, the problem of determining the spot size 
and the ion charge (these properties have been treated as 
given parameters here) as functions of the cathode material 
thus remains a problem of analyzing the thermal and electri- 
cal processes which occur at the cathode surface and also the 
elementary processes which occur in the plasma of a cathode 
spot. 
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