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The ability of ordered electrodynamic media of the ferroelectric type to localize lines of force of 
the electromagnetic field of external charges in the form of compact configurations of the "string" 
and "bag" type is discussed. This leads to the appearance offorces (of confinement or 
anticonfinement) that are independent of distance and couple two unlike charges inside a 
medium of this type, and also to opacity of the medium to fast charged particles. 

1. INTRODUCTION 

Material media in a low-symmetry state with a nonzero 
order parameter (OP) have a number of distinct properties 
that have been widely illuminated in the literature. Less well 
known is the ability of such ordered media (OM) to localize 
the lines of force of a field of external sources in the form of 
three-dimensional compact configurations ("bags") or qua- 
si-one-dimensional compact configurations ("strings"). 

For a long time, this property of OM has been discussed 
only in connection with vortex filaments in superconductors 
and superfluids. Interest in it has grown sharply as a result of 
progress in the theory of the strong interaction, which has 
pushed color-field and quark-field configurations of the 
string and bag type to the forefront. The phenomenon of 
confinement, i.e., the appearance of forces of attraction that 
do not fall off with distance and lead to the confinement of 
color, is attributed to such configurations in a particular ex- 
ample of an ordered medium-the physical vacuum. 

Localization of the lines of force of an electromagnetic 
field is a consequence of the "superdielectric" ( E  = 0 )  and 
"superdiamagnetic" ( p  = 0 )  properties of the OM,where E 

andp are the static long-wavelength values ofthe permittivi- 
ty and magnetic permeability of the OM, connecting the 
field inductions and intensities by the relations 

From the condition that the free energy D2/2& or 
B * /2p be a minimum it follows that the induction lines of 
force are expelled from such an OM, and it is this, in combi- 
nation with the condition that the flux of the induction be 
constant, that leads to localization of the induction lines of 
force. 

The Meissner effect and the appearance of vortex fila- 
ments in superconductors are explained in precisely this 
way. It is necessary to emphasize that a quantity of a non- 
electromagnetic nature-the wave function Jt of the conden- 
sate of Cooper pairs-serves as the OP of the superconduc- 
tor. The superdiamagnetism of a superconductor (a  medium 
that is not ordered in the electromagnetic sense) is a conse- 
quence of the anomalously strong spatial dispersion of the 
magnetic permeability 

where k is the wave vector and x a l$I is the inverse penetra- 
tion depth. In the image of the superconductor a number of 
models of confinement in quantum chromodynamics 
(QCD) have been constructed, in which either condensates 
of Higgs particles (or of magnetic monopoles) or auxiliary 

scalar fields ensuring superdiamagnetism have been intro- 
duced (see Ref. 1 ) .  Essentially the same mechanism gives 
rise to the vortex filaments in a rotating superfluid, in which 
localization of lines of the angular velocity R = +curl v oc- 
curs ( v  is the velocity of the liquid). This follows from the 
correspondence 

between magnetic and rotational quantities, where m = J R  
is the angular momentum of the liquid and J i s  its moment of 
inertia. Superdiamagnetism corresponds to the condition 
1/J = 0, which means simply that the liquid, with a given 
angular momentum, cannot be dragged by the rotation of 
the vessel, i.e., that the angular-velocity lines are expelled 
from the volume of the liquid (the analog of the Meissner 
effect). 

Another mechanism that leads to superdielectricity or 
superdiamagnetism and localization was pointed out in gen- 
eral form by one of the authors2 and is the basis of confine- 
ment models of another type (see the review by Adler and 
Piran". We have in mind ordered media with an electro- 
magnetic order parameter E ( H ) that arises spontaneously 
in the absence of an induction D ( B ) ;  this corresponds to 
zero permittivity E (permeability p ) .  It is important to 
stress, however, that the effectiveness of the mechanism in 
QCD cases doubt on its applicability in electrodynamics. 
This is connected with the fact that, on the level of interest to 
us, the electromagnetic and color fields have opposite prop- 
erties: The former are characterized by screening ("zero 
charge"), and the latter are characterized by antiscreening 
(asymptotic f r e e d ~ m ) . ~  This is manifested in the fact that 
the known stable electrodynamic OM possess a spatially uni- 
form order parameter D ( a  ferroelectric) or B ( a  ferromag- 
net), but not E or H. 

The general analysis carried out below shows that sta- 
ble electrodynamic OM with a uniform order parameter E or 
H do not, indeed, exist." When created artificially they be- 
come inevitably rearranged, going over into stable ferroelec- 
tric or ferromagnetic states. However, there exist conditions 
under which such a transition turns out to be difficult, and 
the states of interest to us are rather long-lived. It is then that 
compact field configurations and forces that are indepen- 
dent of distance arise in a macroscopic medium. 

More surprising is the fact that, as noted the authors,' 
similar phenomena can also arise in an equilibrium OM-in 
a ferroelectric or ferromagnet, in which the permittivity or 
permeability is not only not zero but, on the contrary, is large 
or even infinite. The corresponding mechanism of localiza- 
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tion of the field and of the appearance of forces that are 
independent of distance differs substantially from that con- 
sidered above. 

The questions touched upon in this section constitute 
the content of the present article. For simplicity, we confine 
ourselves to only homogeneous, nongyrotropic media with a 
uniform (in the absence of external sources) order param- 
eter of the electric type. The corresponding generalization 
does not give rise to difficulties and leads to qualitatively 
similar conclusions. In the article we use Heaviside units and 
the velocity of light is taken equal to unity. 

2. GENERAL RELATIONS 

Static fields in the medium are described by the Max- 
well equations 

a )  rot H=j, 6) divD=p, 

B) rot E=O, r )  divB=O, 

where p and j are the densities of the external charges and 
currents, and by the constitutive equations relating D (or the 
polarization P = D - E of the medium) to E, and H (or the 
magnetization M = B - H of the medium) to B. In linear 
media these relations have the form of a proportional de- 
pendence between the corresponding Fourier components, 
from which, according to (2.1 c,d),  

in which the subscripts 1 and t ,  here and below, correspond to 
the longitudinal (potential) and transverse (solenoidal) 
components of the vector. For a geometry that eliminates 
depolarization nd demagnetization effects, D and H coin- 
cide with the quantities E, and B,,-the fields of the same 
external sources in vacuo, as follows from the equalities 

In nonlinear media the quantities P, and M, are non- 
zero, and the corresponding terms (2.2) can radically 
change the configuration of the D and H lines of force, mak- 
ing it, in particular, compact. These terms have opposite (in 
the sense of longitudinality and transversality ) properties in 
respect of the first terms in the expressions (2.2). This makes 
it possible to simulate effects due to the nonlinearity of the 
medium by introducing into the right-hand side of Eq. 
(2. Id) a source of longitudinal magnetic field-the magnet- 
ic-monopole charge density p, and by introducing into the 
right-hand side of Eq. (2. lc)  (with the opposite sign) a 
source of transverse electric field-the monopole-current 
density 3: 

The above pertains, in particular, to nonlinear media under- 
going spontaneous ordering with the appearance of an elec- 
tromagnetic OP (polarization or magnetization) that can be 
simulated by a monopole solenoid or a monopole capacitor, 
respectively. Below, we shall convince ourselves that such a 
simulation is useful. 

Going over to the analysis of the energetics of an OM 
with a uniform electric order parameter P ,  we start with 
forced ordering that is induced by an external (but indepen- 
dent of the state of the medium) action and vanishes togeth- 

er with the latter. There are two types of such actions, for 
which the trigger is provided by either the induction D or by 
the intensity E. It is also possible to realize these actions in 
two ways. The first consists in placing a sample of the medi- 
um inside a capacitor whose plates are charged to a given 
charge density or, respectively, are shorted across a battery 
with a given potential difference (see Refs. 5 and 8) .  The 
second way corresponds to choosing the sample of the medi- 
um in the form of a thin but macroscopic plate, oriented 
arbitrarily in an external field E,. The boundary conditions 

(the subscripts n and T denote the directions perpendicular 
to and along the plate) show that a plate oriented perpendic- 
ular to the lines of force of the external field is acted upon by 
the induction D, while one oriented parallel to the lines of 
force is acted upon by the intensity E. The second way is 
preferable in the discussion of energetic questions, in that it 
makes allowance for such factors as the work done by the 
battery unnecessary. 

The change of the free energy of the medium (per unit 
volume) under the influence of an external field E, is deter- 
mined by the expression for the energy ofa dipole in an exter- 
nal field and has the form S F  = - PSE, (unlike the stan- 
dard expression ESD, here the energy E,SE, of the field in 
vacua is absent). The conditions (2.3) lead to the expression 

which corresponds directly to what was said above about the 
fields acting on a plate. 

Spontaneous ordering, which is what we shall be dis- 
cussing below, arises in a medium free from external in- 
fluences. It can also have a dual character, depending on the 
conditions in which the ordering occurs: A spontaneously 
arising order parameter P can be manifested either as an 
induction D or as a field intensity E. Thus, for ordering in- 
side a capacitor with uncharged or completely absent plates 
( D  = 0 )  the quantity E serves as the order parameter, while 
if the plates are shorted or grounded (E  = 0 )  the order pa- 
rameter coincides with D. But in the case of a plate with 
E, = 0, when, according to (2.3) D, = 0 and E, = 0, two 
types of ordering are possible: with order parameter D,, par- 
allel to the plate, and with order parameter E,, , perpendicu- 
lar to the plate. For brevity, states of the OM with order 
parameters D and E will be called hereafter D- and E- 
phases. 

Spontaneous ordering is a consequence of instability of 
the medium-the growth of small polarization fluctuations. 
The corresponding information is contained in the effective 
potential (Landau functional8 ) V(P)-a quantity that is 
defined for all (including nonequilibrium) values of the OP 
and has a minimum at the point of equilibrium, where it 
coincides with the free energy F. The latter leads to the effec- 
tive potential upon a Legendre transformation from the ar- 
gument E, to the OP itself. According to (2.4), 

6V (P)  =Dn6P,,+E,6P,. (2.5) 

The effective potential has the form of the sum of the 
quantity V, (P),  specified by its power expansion in the spir- 
it of Landau theory, and the quantity V, = pf, /2, which is 
the energy of the dipoles in their own (depolarizing) field; 
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also, 

This relation determines (in implicit form) the constitutive 
equation of the medium and the permittivity tensor 

The conditions for stability of the medium require first 
of all that the derivatives of V with respect to P,, and P, be 
equal to zero: 

and, in addition, that the tensor S2V,,/SP,SPh be positive- 
definite: 

[see (2.5) and (2 .7)] ,  where&,, a n d ~ , ( r =  r , ,  r,) arethe 
principal values of the tensor E, , one of the principal axes of 
which is assumed to be perpendicular to the plate. 

3. AN ISOTROPIC AND UNIAXIAL MEDIUM 

In applying the general relations of the preceding sec- 
tion, we shall start from the case of an isotropic medium, for 
which the potential V ,  depends on Pf, + P :  ( a  derivative 
with respect to this argument is indicated by a prime). The 
equations (2.8), which take the form 

have, for a medium capable of spontaneous ordering, two 
nontrivial solutions: 

P,=O, Vo' ( P t 2 )  =o 

(the D-phase), and 

(the E-phase), The principal values of the tensor E, [see 
(2.7) ] have the form 

whence, in the D-phase (the r, axis is the direction of spon- 
taneous polarization), 

~,=e , ,+m,  e,,=I+(4P,2V0")-', (3.1) 

and, in the E-phase, 

For V;' > 0 it follows from (3.1 ) and (3.2) that the D- 
phase is stable (both the criteria (2.9) are fulfilled) and the 
E-phase is unstable (the second of these criteria is violated). 
This instability is manifested in a transition to the D-phase 
state by a rotation of the vector P parallel to the plate, and is 
associated with the inequality V, > 0 (Sec. 2),  i.e., with the 
extra work (against the depolarizing field) that is required 
for creation of the E-phase. The local instability of the E- 
phase (the corresponding extremal point of the effective po- 
tential is of the saddle-point type) means that this phase has 
a short lifetime. 

In a uniaxial medium with its easy-polarization axis 
perpendicular to the plate, because rotation of the vector P is 
not favored it would appear that stabilization of the E-phase 

is possible. The effective potential of such a medium has a 
different dependence on P:, and P: and can be taken, for 
simplicity, in the form (the dots denote higher-order and 
gradient terms) 

the inequality a >f l  means that the axis of easy polarization 
is perpendicular to the plate, and the opposite inequality 
means this axis lies parallel to the plate. In fact, a trivial 
generalization of the relations given above for an isotropic 
medium shows that for sufficient anisotropy, namely, for 

both the stability criteria (2.9) are fulfilled in relation to the 
E-phase. 

This stability, however, has only a local character, and 
there exists a more stable (corresponding to a deeper mini- 
mum of the effective potential) state of the medium, corre- 
sponding to a multi-domain structure with domains in the 
form of thin plates oriented perpendicular to the original 
plate (one of these domains is shown shaded in Fig. 1 ). In- 
side a domain the medium is in the D-phase state (the easy 
axis, along which the vector P is oriented, lies in the plane of 
the plate-domain), and there is no depolarizing field. That 
such a situation is favored also follows from the violation, in 
the E-phase, of the corresponding stability criterion [more 
stringent than (2.9) 1 

which can be obtained from (2.9) by a simple relabeling of 
indices: n ,  , T , ,  7 2  + T , ,  r2 ,  n. At the same time, when the 
condition (3.4) is fulfilled the E-phase state is metastable, 
being separated from the multi-domain state by an energy 
barrier, and so lives relatively long (this is the justification 
for analyzing it further2' ). 

When the condition (3.4) is violated the E-phase is lo- 
cally unstable against transition to the D-phase. If at the 
same time the easy-axis case is realized (/?<a <f l  + 1 ), 
then, because the criterion (3.5) is violated, the multi-do- 
main D-phase state of the type considered above will be the 
most stable. In the easy-plane case ( f l>  a ) ,  on the other 
hand, the single-domain D-phase state will be absoluteiy sta- 
ble. 

Up to now we have not taken into account the gradient 
terms in (3.3), which correspond to the energy associated 
with the nonuniformity of the polarization distribution. 
These terms determine the characteristics of the domain 

FIG. 1 
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wall and the shape and size of the domains. The gradient 
terms raise the energy of the multi-domain phase in propor- 
tion to the surface-to-volume ratio of the domains, while not 
affecting the criteria for local stability of the medium. 

We note that the above qualitative features of the pro- 
cess of electric ordering are possessed not only by a plate but 
also by a sample of arbitrary shape placed inside a capacitor 
with uncharged plates (giving the E-phase) or shorted 
plates (giving the D-phase) (see Sec. 2).  Thus, the E-phase 
instability, associated with the additional work needed to 
create the electric field outside the medium, will be manifest- 
ed in a transition to the D-phase with the appearance of a 
nonuniform (in particular, multi-domain) structure. As re- 
gards the ordering inside a capacitor with shorted plates, it 
leads to the appearance of a stable single-domain D-phase if 
the easy axis or easy plane is orthogonal to the plates. 

To complete this section, we give the constitutive equa- 
tions of the OM near extremal points of the effective poten- 
tial (for small external fields): 

where P i s  the spontaneous polarization and a is the index of 
the principal axes of the tensor E, . In an isotropic medium, 
for the D- and E-phases, respectively we have [see (3.1 ) and 
(3.2) 1 

In a uniaxial medium with an easy axis (a = 1 ), in the D- 
phase we have 

and in the E-phase we have 

with analogous expressions in a medium with an easy plane. 

4. CHARGES INSIDE AN ORDERED MEDIUM (THE E-PHASE) 

In this section and Sec. 5 we consider the configuration 
of the lines of force and the law of interaction of test (heavy) 
charges placed in a medium with an electromagnetic OP. 
Specifically, we shall be concerned with a dipole with 
charges f Q and length r, in the direction of the unit vector 
v:  

We begin by discussing the OM in the E-phase state. 
The case of an isotropic medium is not realistic because of 
the instability noted above. However, a medium with a con- 
stitutive equation 

close to the second relation (3.6) is an electrodynamic mod- 
el of the ordered QCD vacuum; the changed sign in (4.2) 
reflects the property of asymptotic freedom (see Sec. 1) .  
This model has been considered by one of the authors,' by 
Adler and Piran,' by Lehmann and Wu," and by the other 
author." Its properties are as follows. 

In the simplest case E,, - oc the exact solution of Eqs. 
(2.1b,c) and (4.1 ), (4.2) has the form 

E-vPQI I Q 1, D=Qv dt 6 ( x - t v )  . (4.3) 
0 

It can be seen that the induction lines of force are localized in 
the form of an infinitely thin string connecting the charges. 
The law of interaction of the charges is given by the r-depen- 
dent part of the free energy JdxJEd D of the medium: 

The onset of confinement can be explained by the propor- 
tionality ofthe energy ofa  uniform string to its length, by the 
one-dimensional Coulomb law, or simply by the action of 
constant forces Q E = + 1 Q 1 Pv  pulling the charges together 
(the direction of the field E is fixed by the vector v ) .  

For finite E, ,  the induction lines of force are localized in 
the form of a bag containing the charges inside it, and are 
stretched out into a string of finite thickness upon increase of 
the distance between the charges. In fact, the length of a 
force line of D has an upper limit. This can be seen by writing 
( 2 . 1 ~ )  in the form 

where the integrals are taken along lines of force, of which 
one makes a "straight" connection between the charges 
while the other has an arbitrary length L. When (4.2) is 
taken into account, this equality acquires a term PL that 
grows without limit with L and violates the equality. Outside 
the volume of the bag, D = 0 and E = P. The surface of the 
bag is a singular element of the system of equations (2.1b,c), 
(4.1 ) , (4.2) : Going over to the potential E = - Vp leads to 
the coefficients a, in the leading derivatives a,, Vi V, , and 
the determinant deta = 1 - P2 / (Vp)*  of these coefficients 
vanishes exactly on the boundary of the bag. The singular 
character of the boundary is clear from the pattern (drawn 
in Fig. 2)  of the E lines, which inside the bag coincide with 
the D lines and outside the bag form a family of straight lines 
[their curvature Icurl(E/E)/ = 0, by virtue of ( 2 . 1 ~ )  and 
the fact that E = PI, with the bag boundary as their enve- 
lope. 

The pattern of the localization of the induction lines is 
especially lucid in the language of magnetic monopoles (Sec. 
2 ) .  On the usual longitudinal induction field of the charges is 

I C I 

FIG. 2. 
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imposed the transverse field of a monopole solenoid; near the 
axis of the dipole these fields reinforce each other and far 
from the axis of the dipole they cancel each other [see 
(2.2)l .  

In the above system of equations for the fields of the 
dipole in the medium it is possible to change to the dimen- 
sionless variables x/r, E/P, and D? // Q I and to the param- 
eter I I  = PE,, r2/lQ 1 .  This gives the following energy of inter- 
action of the charges: 

Here, x - - I I  ' as A - 0 (Coulomb's law - Q /E,, r acts 
fo rP  = 0) ,  andx-  1 as A -  [for&,, - m the formula (4.4) 
is valid]. Therefore, with increase of r, and, corresponding- 
ly, of A, the interaction changes from the Coulomb law to a 
linear law corresponding to the transformation of the bag 
into a string with a transverse size determined by the param- 
eter ( lQ J/PE,, ) 

A similar picture arises in the case of the relatively sta- 
ble E-phase of a uniaxial electromagnetic medium if the di- 
rection of the vector v in (4.1 ) is along the axis of easy polar- 
ization. The constitutive equation of such a medium is taken 
in the form (3.8), which also has meaning outside the range 
of its applicability (in large fields). Calculation of the free 
energy [see (4.4) ] leads in this case as well to a linear law of 
interaction of the charges. However, because of the different 
signs, what arises in the right-hand sides of Eqs. (3.8) and 
(4.2) is anticonfinement-a distance-independent repulsion 
of unlike charges (at large distances between them). 

The situation with the localization of the induction lines 
of force will be different from that described above. Com- 
plete localization in a uniaxial medium does not occur: The 
above analysis of the length of a line of force gives, when 
applied to (3.8), an upper bound not on this length itself but 
only on its projection onto the easy axis. Therefore, we 
should speak rather of a "pancake" of finite thickness in the 
direction of this axis. 

Nevertheless, here too we can speak of a bag and a string 
(albeit with diffuse boundaries), since the induction falls off 
rapidly in the directions perpendicular to the pancake axis 
(more rapidly than any finite power of the distance). The 
point is that the character of this decrease is determined by 
the nonzero multipole moments of the system of charges and 
currents [according to (2.2), when referring to the induc- 
tion, we should speak of the sum of the electric moments of 
the charges and the magnetic moments of the monopole cur- 
rents simulating the nonlinearity of the medium]. The very 
fact of the localization along the pancake axis shows that 
these sums are equal to zero for all degrees of multipolarity, 

and it is this which implies the absence of a power decrease in 
a direction perpendicular to the axis. 

In conclusion, we note that the formation of string-like 
configurations is also possible in a disordered nonuniform 
medium (e.g., inside a semiconducting cylinder with a per- 
mittivity greater than that of the surrounding medium" ). 

5. CHARGES INSIDE AN ORDERED MEDIUM (THE D-PHASE) 

Localization of lines of force and confinement also arise 
in an equilibrium OM with an order parameter D ( a  ferro- 
electric). To be dealing with a single-domain structure, we 
place a sample of the medium between shorted or grounded 
plates of a capacitor, which become charged upon ordering 
of the medium (E  = 0, D = const; see Sec. 2) .  It is assumed 
that the dipole (4.1 ) of the external charges is normal to the 
plates and opposite to the dipole of the plates themselves 
(Fig. 3) .  

We start from the case of an isotropic D-phase. Com- 
paring its constitutive equation [the first equation (3.6)]  
with (4.2), we may expect localization of the lines of force 
not of the induction, as in Sec. 4, but of the intensity of the 
field. In fact, the force lines of E (generated by the external 
charges) do occupy a finite region of space: Gauss's theorem 
[see (2. l b )  ] and the inequality D>P, which follows from 
(3.6), place an upper bound equal to / Q I/Pon the area of the 
equipotential surface. For an isolated charge Eqs. (2.lb,c) 
and (3.6) give 

and the field E does indeed vanish on a sphere of radius 
r, = ( lQ 1/47.rP) I". Thus, the charges inside a nonconduct- 
ing (!) equilibrium OM experience complete screening in it. 

Despite this, confinement arises in such a medium as 
well. To display its mechanism it is useful to begin from the 
exactly solvable planar problem of two charges in a two- 
dimensional OM. The analog of (5.1 ) in polar coordinates, 
viz., 

DP=Q/2np, E,= ( l - - p l p o ) D p l ~ r ,  D1=E1=O, ( 5.2) 

shows the E = 0 outside a circle of radius p, = lQ 1/2n-P 
about each charge, where the induction is determined by the 
equations 

cliv D=O, D=P.  (5.3) 

The general solution of (5.3) has the form [ F ( x )  is an arbi- 
trary function] 

FIG. 3 
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Not for any F + O  does it go over into the solution 

D,=P cos cp, D,=-P sin cp, (5.5) 

corresponding to the plane-parallel case and to the absence 
of external charges, with increase of the distance from the 
dipole in a transverse direction (p  + co , q, = 71/2). There- 
fore, lines of discontinuity arise on which the external solu- 
tion (5.5) matches (with satisfaction of the boundary condi- 
tion that the normal components of the induction be 
continuous) with the internal solution in the region contain- 
ing the dipole. 

The internal solution also has a piecewise character. 
corresponding to the continuation of the solution (5.2) into 
the region with E = 0 is the choice F ( x )  = arccos(p,/x): 

D,=Pp~lp, D,=ztP ( I - ~ , , ~ / ~ Z ) ~ / ~  (5.6) 

(we are considering only one of the charges, which is taken 
to be at the coordinate origin). The boundary conditions for 
the matching of (5.6) with (5.5) and with the solution that 
differs in sign from (5.5) determine the lines of discontinuity 
a and b (Fig. 3) .  The line of discontinuity c separates oppo- 
site parallel induction fields. Its appearance, as the boundary 
of a 180-degree domain, is due to Gauss's theorem: The flux 
of the induction between the charges should be smaller (by 
an amount / Q  I ) than the flux around the plates. It is the lines 
c that lead to confinement. Owing to the gradient terms (Sec. 
3),  whose contribution to the energy has the form 

x J dx (rot D) Z ,  

the domain wall has a finite thickness ( x / a )  [see (3.3) ] 
and a line tension a- (xa) " 2 p 2 .  Correspondingly, the en- 
ergy of interaction of the charges is 

The generalization of the solution obtained to the real 
three-dimensional case corresponds to going over from the 
planar picture of Fig. 3 to the corresponding picture that is 
axially symmetric about the axis of the dipole.' However, in 
the three-dimensional case there is also another solution in 
which the indicated symmetry is broken, corresponding to 
induction lines of force in the form of helical lines wound 
onto the axis of the dipole in the gap between the charges (a  
rotating domain wall prolate because of the absence of ani- 
sotropy ). In both solutions the quantity curlD in this gap is 
constant over the length of the gap, and the energy of the 
gradient terms is proportional to the distance between the 
charges, implying the appearance of confinement. 

Breaking of the axial symmetry is absent (because devi- 
ation of a line of force from the direction of the easy axis is 
not favored) in a uniaxial OM with the easy axis normal to 
the plates, to the analysis of which we now turn. The consti- 
tutive equation of such a medium is given by Eq. (3.7), 
which leads to the inequality ID, I )P. Therefore, Gauss's 
theorem for the equipotential surface places an upper bound 
/ Q  I/P not on the actual area of this surface but only on its 
projection onto the plane of "hard" polarization. This leads 
to localization of the field E within a cylinder of radius ro 
with its axis along the axis of the dipole, implying, simulta- 
neously, that all the multipole electric moments of the total 
(external and induced) charge density are equal to zero. 
From this it follows that the field E is localized ( to  within 

terms that fall off more rapidly than any finite power of the 
distance) in the direction of the axis of the dipole (see the 
end of Sec. 4 ) .  

If the distance between the charges is sufficiently large, 
then, in by far the greater part of the gap between them, E is 
small, ID, 1 r P, and D ,,, r 0. Therefore, as in the case of an 
isotropic medium (see above), the necessary deficit in the 
flux of induction in this gap is a consequence of a reversal of 
the direction of some of the lines of force, i.e., of the appear- 
ance of an axially symmetric intermediate layer (in the limit, 
a domain wall) in which the direction of the induction is 
reversed. It is the surface tension of this layer, which arises as 
a consequence of the gradient terms, that leads to the con- 
finement.4' 

6. CONCLUSION 

The account given above substantiates the statement 
made in the Introduction that the localization of lines of 
force with the formation of compact configurations of the 
string and bag type and the appearance of distance-indepen- 
dent forces (confinement or anticonfinement) can be re- 
garded as a general property of ordered media with an elec- 
tromagnetic order parameter. Depending on the conditions 
under which the ordering of the medium occurs, the basis of 
the mechanism of the phenomena enumerated is either the 
vanishing of the permittivity (magnetic permeability), lead- 
ing to expulsion of the induction lines of force, or the appear- 
ance of a nonzero lower bound on the induction, impeding 
the unlimited divergence of its lines of force. 

The clearest manifestation of this property of an equi- 
librium ordered medium ( a  ferroelectric) is its "opacity" to 
an isolated external charge-even one possessing apprecia- 
ble energy. A particle with energy E cannot penetrate a dis- 
tance greater than E /a [ a  is the string tension; see ( 5.7) 1 
into an ordered medium from the side of the capacitor plate 
of the same charge. But if the particle is penetrating from the 
side of the capacitor plate of the opposite charge, it must 
surmount an energy threshold aL, where L is the macro- 
scopic size of the sample of the medium. A quantity of the 
same order also characterizes the threshold for lateral pene- 
tration by a particle. Having penetrated the medium, the 
particle is pushed toward the plate of like charge with a force 
that is independent of the distance separating them. These 
effects are the result of the formation of a string-like configu- 
ration linking the charge with the plate of like charge (see 
Fig. 3, in which the right-hand plate must be moved into the 
gap between the charges). 
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