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A method of determining the positions of resonances in the absorption coefficients, without 
laborious computation of these coefficients, is developed for individual components of strong 
polychromatic radiation with equidistant spectrum. Computer experiments show that the 
predicted positions agree well with the resonances on the calculated absorption curves of separate 
multimode-radiation components. 

1. INTRODUCTION 

Following the detailed investigations of the interaction 
of an atom with a strong monochromatic radiation, the first 
step towards consideration of polychromatic radiation was 
the development1 of a mathematical formalism describing 
the interaction between a strong bichromatic field and two- 
level atoms in the quasiresonance approximation, with arbi- 
trary frequency distances A between the components of the 
bichromate spectrum and with arbitrary component intensi- 
ty ratio E :/E i (where E,, and E, are the intensities of the 
perturbing and probing bichromate fields). Simple analytic 
equations for the polarization of the medium were obtained 
in the following cases: a )  both fields are saturating, but one is 
much weaker than the other ( 1 < x E  < XE i ,  where x is the 
saturation coefficient) ; b) for large 
A ) y [ l + x ( E : + E i ) ] ,  wherey=T; ' i s thewidthof  
the atomic levels; c) E:/Ei is arbitrary but A/y--0. The 
latter case was later realized in ex~e r imen t .~ .~  The results 
turned out to agree fully with the t h e ~ r y . ~ . ~  This effect was 
named "anomalous" absorption. 

A subradiation structure6y7 was observed in 1978 in the 
absorption spectrum of a separated component of a bichro- 
matic field: Absorption extrema were observed at frequency 
differences between the components A of a bichromatic 
field, obeying the rule 

A,=*AR/n, n=l ,  2, 3, . . . , (1.1) 

where A, is a characteristic frequency of the "field + atom" 
system, named the generalized Rabi frequency. As shown in 
Fig. 1, the maxima for one component corresponds to mini- 
ma for the other c ~ m ~ o n e n t . ~ . ~  A theoretical expression for 
the Rabi frequency of a bichromate was obtained in Ref. 4: 

where E i and E: are the intensities of the bichromatic-field 
components. The absorption coefficients of the components 
and the dependences on their frequency differences1' were 
also obtained in Ref. 4 and compared with the experimental 
dependences7 Good agreement was obtained between theo- 
ry and experiment (see Fig. 1 ) . 

Peculiarities in the absorption coefficients of a strong 
bichromatic field, due to the influence of the strong field on 
the atomic-system dynamics, manifest themselves in two 
situations, saturation and nonlinear interference effect 
(NIEF). The latter causes a redistribution of the absorbed 
energy among the components (see Fig. I ) ,  and produces 
negative absorption (amplification) without population in- 

version and multiphoton parametric resonances at the fre- 
quency differences given by Eq. ( 1.1 ). 

Sources of intense radiation in the optical band are la- 
sers, a feature of which is an emission spectrum with equidis- 
tant or almost-equidistant longitudinal modes. It is there- 
fore of interest to extend these investigations to include 
polychromatic radiation. 

We shall show in the present paper that the extrema of 
the absorption coefficients of individual components are de- 
scribed by Eq. ( 1.1 ) also in the case of strong polychromatic 
radiation with an equidistant spectrum. We determine the 
generalized Rabi frequency A,.  We consider two ap- 
proaches to the interaction of a strong polychromatic field 
with a medium. Following Ref. 8, we investigate the connec- 
tion between the multiphoton resonances ( 1.1 ) and the qua- 
sienergy level crossings of a "dressed atom" (Ref. 16) 
(atom + strong radiation). This enables us to obtain the 
Rabi frequency A, without laborious computations of the 

FIG. 1 .  Plots of the nonlinear relative absorption coefficient (K,/K) of 
the perturbing field (E,) (4,5,6) and of the test field ( E l )  ( 1,2,3) vs the 
detuning of the test field from the line centers at constant values of the 
parameters o, = o,, , I? = y, G, = 11.1 r and at the following values of 
p = E , / E , : p =  l.Zforcurves3and4;p= lforcurves2and5;p=0.8for 
curves 1 and 6. The experimental curves taken from Ref. 4 aiz marked on 
the figure. 
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TABLE I. Locations of parametric resonances in the absorption spectra of bichromatic-radi- 
ation components. 

- -- - 

Number of resonance 
Value 

Remarks. The positions of the resonances for modes 0 and 1 (max and min, respectively) were 
calculated with a computer (A,,,, ); A ,  --experimental values taken from Ref. 4; A,,,-xalculat- 
edfromEq. (3.9)attheparametervaluesoU,, = o , , , r =  y ,G, ,=11 .1  r , G , = l . l G .  

absorption coefficient. The quantitative estimates of Ref. 8, 
however, are obtained in an approximation that is adiabatic 
in the phase of the total field and is valid in a narrow range. 
We do not use here the adiabatic approximation, but find the 
quasienergy levels, and hence also the Rabi frequency A,, 
accurately in the framework of the formulated problem. 

On the other hand, using a computer solution of a sys- 
tem of nonlinear algebraic equations that follow from the 
equation for the density matrix, we calculate the spectra of 
the absorption coefficients of individual components for 
three-, four-, and five-mode emission with an equidistant 
spectrum as functions of the intermode distance A. These 
calculations can be called computer experiments. Good 
agreement is obtained between the computer-generated po- 
sitions of the resonances on the absorption-coefficient curves 
of individual field components and those calculated from 
Eq. ( 1.1 ), in which A, is calculated from the intersection of 
the quasienergy levels (see Tables I and I1 below). We hope 
that our computations will stimulate physical experiments 
in this field. 

2. CALCULATION OF THE QUASIENERGY OF AN 
"ATOM+ MULTIMODE FIELD" SYSTEM 

2.1. We consider the interaction between a two-level 
atom and multimode electromagnetic radiation with equi- 
distant spectrum in the semiclassical formalism. 

The equations for the probability amplitudes Ca and C, 
of a two-level atomic system are: 

iti (dC.ldt) = V,Cb exp (iod j , 

where 

is the matrix element of the Hamiltonian of the interaction 
with the field in the dipole approximation; p, = w,  - wab; 
G, = (dE,/fi)exp(ip, ). 

We substitute Vab and V,, in (2.1 ). In accordance with 
the "rotating field" approximation, we discard the high-fre- 
quency exponentials exp( + 2iwab t )  and make the following 
change of variables: 

We transform the obtained system into a second-order dif- 
ferential equation with periodic coefficients for So, equiva- 
lent to the system (2.1 ). 

Using the substitution 
. - 

S.=T[G(t) JK, ~ ( t )  =z GI exp(-il At)  (2.3) 

we obtain:'' 

TABLE 11. Locations of parametric resonances in the absorption spectra of four-mode radiation. 

Remarks. The resonance positions on the individual modes were calculated on a computer, the 
values of A,,, were calculated from Eq. (38) at the following parameter values: w ,  = o,, - A/2, 
~ = ~ , G , , = I ~ . I ~ , G , = I . ~ G , , , G ~ = O . ~ G ~ , G ~ = O . ~ G , , .  

Type of Number of resonance 

Z I 4 I B l i l 9 ( U I i 2  
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2 
3 
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A,,, 1 - 

min 

:g min 

3.7 
3.8 
3.8 
3.6 

10.7 1 5.27 1 3.5 [ 3,O 1 2.33 [ 2.1 1 135 

10.3 
10.3 
11.3 
9.0 

5.6 
5.6 
5.1 
5.1 

1.7 
1,7 
1.7 
1.7 

2.2 - 
- 
2.1 

2 3  
2.9 
3.0 
2.8 

- 
2.3 
2.3 - 



FIG. 2. Nonlinear absorption coefficients of three-mode radiation compo- 
nents vs the frequency difference between the fields in the cases of syn- 
chronized and nonsynchronized radiation (curves 2 and 3-absorption 
coefficients of zeroth and second harmonic; 1 and k f  the first harmon- 
ic; 1 and 3-synchronized radiation; 2 and rlnonsynchronized radi- 
ation; the parameter values are; o, = o,, . r = y, 
/ G,, = 1 GI 1 = 1 Gz 1 = 1 1 . 1  r ;  for nonsynchronized radiation Go = I G,,I, 
GI = IG,lexp( - in/2), Gz = /Gz/ .  

Equation (2.4) is a second-order differential equation with a 
periodic coefficient. It is called the Hill equation and has 
been thoroughly investigated in the mathematical litera- 
ture.'' 

We examine now the dependence of the upper-level 
population IC, l 2  on the phase constants p,. Using a time- 
origin shift 

t=tr+(cpl-cpo)/A, 

we can show that the functions I G ( t  ' ) I and Q ( t  ') depend on 
the phase combinations 

y. l=cpl- lcpl+(2-l)cpo 

(1  = 1,2, ...) (see Fig. 2 ) .  Consequently the functions 
/ T ( t  ') I 2  and, ultimately IC, 12, also depend on the phasesx,. 
In the bichromate case we have I = 1, X, = 0, and there is no 
dependence on the initial phases. This agrees with theoreti- 
cal calculations, l 8  where the dependence of the upper-level 
population on the experimental constant phase difference pl 
- p, was of the components was attributed to a contribu- 

tion of high-frequency terms neglected in the equations for 
the probability amplitudes in the rotating-field approxima- 
tion. According to the foregoing, the theory developed in 
Ref. 19 in the rotating-field approximation, which leads to a 
dependence of the upper-level population I C, I on the initial 

component phase difference pl - po of the bichromate is 
incorrect. 

It is interesting to note that in a polychromate field with 
an arbitrary number of components, the phases of which are 
synchronized, i.e., the condition p, = p, + lp, is met, and 
the phase combinations X ,  = 0. Thus, the interaction of the 
atoms with the synchronized radiation does not depend on 
the constant phases of the fields. 

2.2. We expand the periodic function Q contained in 
(2.4) in a Fourier series and separate the zeroth term. As a 
result, (2.4) takes the form 

m 

d2Tidtz+T [ Q ,  + b, exp ( in At )  ]= 0. 

According to the Floquet-Lyapunov theorem, Hill's equa- 
tion has a solution in the form 

wherep, called the characteristic exponent of the Hill equa- 
t i ~ n , ~  takes on two values p, and p,. 

2.3. We obtain the characteristic exponents p,,, by a 
method described in Refs. 20-22. We must generalize here 
the case of the even real function Q considered in these refer- 
ences to include our situation, in which Q is a complex peri- 
odic function having no definite parity. We substitute the 
solution (2 .6)  in Hill's equation and equate coefficients of 
like powers of the exponentials: 

Dividing the equation by the coefficients of A ,  we obtain an 
infinite system of homogeneous linear algebraic equations: 

m 

This system has a solution only if its principal determinant 
D ( i p )  is zero. From the condition D ( i p )  = 0 we can deter- 
mine the value of p. 

Consider the convergence of the principal determinant 
D ( i p )  of the system (2 .7) .  An infinite determinant con- 
verges absolutely if: 1) the product of the diagonal terms 
converges absolutely and 2 )  the sum of the off-diagonal ele- 
ments converges absolutely. The condition 1 ) is met in our 
case, since the product of the diagonal elements is equal to 
unity. 

To verify the satisfaction of condition 2 ) ,  we must 
prove the convergence of the series 

The sum over n converges, since it is made up of coefficients 
of a Fourier series of a function that is differentiable more 
than once. The sum over m also converges, since the denomi- 
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nator contains m2 and the numerator unity. Thus, D(ip) 
converges absolutely for all finite values of p ,  provided only 
that the denominators ( p - imA)* + Qo differ from zero. 

The determinant D(ip)  is a function of complex vari- 
able. Let us examine its parity. Replacement of p by - p is 
equivalent to replacement of m by - m, and since 
m E ( - W , W  1 it follows that D(ip)  = D( - ip),  i.e., 
D(ip),  is an even function with period A relative to ip. 

We omit the details of the calculation of the p,,, that 
satisfy the condition D(ip)  = 0, since they are described in 
the cited references. For the sought p we have the relation 

cos (2x ipA- ' )  =I-D, [ I -cos (2nA-'Q,'") ] =B, (2.9) 

where Do = D(ip) I,, _ ,, . 
The left-hand side of (2.9) contains the cosine of a com- 

plex quantity. We use therefore Euler's formula and solve 
the quadratic equation for exp (2~pA- ' ) :  

exp  ( 2 n p A - ' )  =B=ti(l-BZ)'h.  (2.10) 

Expressions (2.10) are the exact values of the multipliers of 
the Hill equation (2.4). 

2.4. In Sec. 2.3 we found the characteristic exponentsp, 
andp, and the periodic functions $(t) contained in the solu- 
tion (2.6) of the Hill equation (2.4). We can therefore ex- 
press, on the basis of equations (2.2), (2.3), and (2.6) the 
solutions of Eqs. (2.1 ) in the form 

C,= [G ( t ) ]  'I2 exp [ - i ( p o / 2 )  tl { e x p  ( p J ) $ t , ( t )  +exp ( F Z ~ )  $2 ( t )  1, 
c,= [ G * ( t ) ]  '" exp [ i ( p o / 2 )  t ]  { e x p  ( p i t ) $ ~ ( t ) + e x ~  ( ~ z t ) % ( ~ )  1. 

The connection between the function pairs $, ( t )  and $,(t); 
$2(t) and $,(t) is determined by Eqs. (2.1). 

From (2.1 ) follows the obvious stationarity condition 

d( lC,IZ+iCa12) /d t=0.  (2.12) 

Substitution of the functions (2.11 ) in (2.12) leads to the 
conclusion that the equality (2.12) holds only if p, and p2 
are pure imaginary. Using this fact in (2.9) and (2.10), we 
find that B is real and 

It follows in this case from (2.10) that p,  = - p, = ip 
= iA (277) - 'arccos B. 

In accord with Ref. 16, the quasienergy levels are 

W a f  fie, ,=Waf  [ P + p a / 2 f  n a A ] f i ,  

For the upper states we have a = a and pa = -po and for 
the lower a = b and pa = p,; n, and ma are positive inte- 
gers. Therefore the levels a and b each split in a multimode 
field into two systems of sublevels. By analogy with the high- 
frequency Stark effe~t ,~ '  the quasienergy level splitting ef- 
fect described above should be referred to as a high-frequen- 
cy Stark effect generalized to include the case of 
polychromatic radiation. 

The conditions for the quasienergy-level crossing are 
the same for both states:' 
w,+ [ ~ + ~ , / 2 & n , ~ ]  f i=  W a + [ - B + p a / 2 * m a ~ ]  h, a=a, b. 

Comparing (2.14) with ( 1.1) we can conclude that 
(2.14) is a generalization of the resonance condition ( 1.1 ) to 
include polychromatic radiation. The resonances in the ab- 
sorption coefficients of the individual modes are due to tran- 
sitions that begin and end at the quasienergy level-crossing 
points of the upper and lower states. The frequency 2fi is 
called the generalized Rabi frequency. 

Our definition of the generalized Rabi frequency differs 
from that introduced in Ref. 24. The point is that if fl de- 
pends on A Eq. (2.14) must be regarded as an equation for A. 
We shall show below that D,  depends weakly on A and that 
in most cases the characteristic exponents are solutions of a 
quadratic equation, so that two sequences of resonance fre- 
quencies can be obtained.,' Tht: resonance frequencies of 
these sequences for n = 1 were in fact called in Ref. 24 gener- 
alized Rabi frequencies. A quantitative estimate of the gen- 
eralized Rabi frequency was obtained in Ref. 24 only with 
allowance for the diagonal terms of an infinite determinant 
of an algebraic-equations system equivalent to the equations 
for the density matrix. Comparison with our results shows 
that this approximation is inadequate. 

Our definition of the generalized Rabi frequency fol- 
lows directly from the formalism that describes the quasien- 
ergy levels, and has a clearer physical meaning. In addition, 
under our definition there exists for any set of fields only one 
generalized Rabi frequency which is the difference of the 
characteristic exponents (2.10) of the Hill equation and de- 
pends, in the general case, on the amplitudes and constant 
phases of the fields, on the intermode spacing A, on the posi- 
t i o n ~ ~  of the spectrum relative to the line center, and on the 
dipole moment d of the transition. 

3. ANALYSIS OFTHE EXPRESSIONS FOR THE GENERALIZED 
RABl FREQUENCY AND THE PARAMETRIC RESONANCES 

3.1. The expression (2.10) for p contains the determi- 
nant Do which depends on the Fourier components of the 
function Qcontained in Eq. (2.4). Let us calculate the Four- 
ier components of the function Q. We put y = exp( - iAt) 
and transform G( t)  into 

where k, is the number of the different roots of the polyno- 
mial 9' ( y) of degree k - 1, sj is the multiplicity of the 
jth root, and a, is the root of the polynomial. 

By definition, 

Q-.= (2n) - '  J Q e r p  ( i n  A t )  d(Af), n>O. 

We make in the integrals (3.2) the change of variable 
x = exp(iAt) and transform to integration on the complex 
plane along the contour 1x1 = 1. As a result we obtain 

It follows hence that 

431 Sov. Phys. JETP 70 (3), March 1990 G. I. Toptygina and E. E. Fradkin 431 



We write for Qo a separate equation 

Note that in Eqs. (3.3)-(3.5) the symbol 

6 

must be taken to mean summation over only those numbers 
jfor which la, I >< 1. In addition, it follows from (3.3) and 
(3.4) that the series 

of (2.8) converges if la, I # 1. Our equations for Q + . are 
therefore not valid when the root (3.1) of the polynomial 
9 ( y)  (3.1 ) has a unity modulus. In these cases the Fourier 
coefficients must be calculated in a different manner, but 
everything said above is valid here, too. 

The simplest expressions for Qo (at arbitrary k )  can be 
obtained in two cases: 

1 ) all the roots of the polynomial 9 ( y)  (3.1 ) are larg- 
er than unity in absolute value, and then 

2)  all the roots of the polynomial 9 ( y )  are smaller 
than unity in absolute value, and then 

for in this case 

i.e., to the degree of the polynomial 9 ( y) ,  and 

3.2. In cases (3.6) and (3.7) Q, is real and positive. 
Recognizing that the parameter B (2.9) is real, we can state 
in these cases that Do is a real number. The region of validity 
of this statement can apparently be substantially expanded. 

Computer calculations of the determinant Do for a bich- 
romatic field have shown that Do is close to unity. Assume 
that this situation obtains also in the case of several fields 
with equidistant spectra. We put D, = 1 and determine on 
the basis of (2.9), (2. lo),  and (2.14) the positions of the 
resonances of the absorption coefficients: 

A,.. =2Q,"ln, n=l, 2, 3 , .  . . . (3.8) 

The approximate values P = Q A'2 require no computer 
calculation, and agree well with the curves of Figs. 1 and 2 
(see also Fig. 4 below), as demonstrated in Tables I and 11. 
They permit a relatively simple calculation of the positions 
of the resonances on the absorption-coefficient curves of the 
polyharmonic radiation component, in sufficiently large 
ranges of the parameters. 

Let us examine the quasienergy level-crossing scheme. 
We take the particular case of three fields with parameters 
G , = l l . l T , G o = G , = 0 . 2 5 G 1 , ~ = y , a n d p o =  -A.At  
k = 3 the polynomial 9 ( y )  is of second degree and its roots 
are therefore easy to determine: 

a,, 2=-Gi (2Gz) { [G, (2G2) -'I 2-GoG2-1)'b . 
In the example considered we have 

2 

and 2a, (a, - a, = - 0.155. It follows from this 
expression that 0 depends on A. Thus, for A = 0 we have 
2P = 11.77 r, and for A = 1 l T we have 2 P z  11 T. The 
quasienergy levels are correspondingly not straight lines bu't 
parabolas, as shown in Fig. 3. 

In Fig. 3 are separated the quasienergy level-crossing 
points with n = 2 (see the dash-dot line). The resonant tran- 
sitions are those beginning at the upper-state quasienergy 
level crossing points and terminate at lower-level quasien- 
ergy crossing points. Thus, the transition 

with frequency 

a= (W.-Wb)lA=aab 

will be resonant and will lead to a maximum or minimum at 
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FIG. 3. Quasienergy level-crossing diagram for the upper and lower states 
of a two-level atom. The subscripts "a" and "b " label the upper and lower 
levels; the numbers on the axes correspond to the case of three fields. The 
quasienergy levels E,, = P + A/2  f n, A  and E,, = ,9 - A / 2  * n, A  are 
shown by solid lines, and E,, = - P  + A / 2 + m , A  and 
E,, = - P - A/2  * mb A  by dotted ones. A dashed line shows the de- 
pendence ofpon A. The Greek letters on the A / r  axis denote the crossing 
points of quasienergy levels with different values of n  and with corre- 
spondingvaluesof A / r  = 2 P / n ;  at the point&: n  = 1, A / r  = 2 8 = A , ,  at 
the point (: n = 2, A / r  = p,  at the point v: n  = 3, A / r  = 2 p / 3 ,  at the 
point 8: n  = 4, A / r  = p / 2 ,  and at the point (: n  = 5 ,  A / r  = 2 p / 5 .  

the first harmonic whose frequency coincides with w,, . Oth- 
er similar transitions can also be considered. The transition 

at the frequency w = w,, + f l  and those similar to it cause a 
resonance in the second component having this frequency. 
The transition 

at the frequency w = w,, - f l  gives rise to a resonance in the 
zeroth harmonic. One can consider transitions that cause 
resonances in combination tones, etc. 

The resonances are numbered from the line wing 
towards the center, so that by increasing n, i.e., by decreas- 
ing A, we obtain the quasienergy level crossings and conse- 
quently also the resonances on the absorption-coefficient 
curves of individual components of multimode radiation 
with equidistant spectrum with ever increasing number n, 
until these resonances merge (i.e., until the sum of the half- 
widths of two neighboring resonances exceeds the distance 
between resonances). 

Since the quasienergy levels in our case are parabolas 
whose branches are oppositely directed (the coefficient of A2 
is negative), the quasienergy levels with numbers n, = ma 
= 0,1,2, ... intersect. Resonance transitions can therefore ex- 

ist at n = 0. If A2 has a positive coefficient, the first few 

resonances may be absent. An example of the absence of a 
resonance at n = 1 is contained in Table I. In the three-field 
case chosen by us a zero resonance is possible at A, = 29.9 T. 
The error in the determination of the resonances by Eq. 
(3.8), compared with the resonance positions of the reson- 
ances on the computer-calculated absorption-coefficient 
curves does not exceed 3% for n > 1 and 9% for n = 1. 

3.3. We consider two examples of radiation containing 
equidistant monochromatic strong fields. We shall use the 
approximate equation ( 3.8 ) in the analysis of the resonance 
positions. 

a )  k = 2. Two mode field-example of radiation syn- 
chronized at any instant of time. In the case of a bichromate 
P (  y)  is a polynomial of first degree, and its root is 
a ,  = -G,/G,. If la,l> l,i.e., G,>G,, wehave 

and the condition obtained for resonance to occur at p, = 0 
coincides with the result of our earlier paper.4 In the same 
paper we have compared the experimental data with those 
obtained with a computer and from Eq. ( 1.2) at Go > GI. If 
la,I<l,i.e., Go<G,, then 

Table I shows the case p, = 0 and consequently 
I p ,  I = A. The condition (3.8) for quasienergy level crossing 
is here an equation for A. Its solution is 

It follows from (3.9) that at Go < GI there is no first 
resonance, and the numbering of the resonances begins with 
the second (see Table I ) .  The error in the position of reson- 
ances as given by (3.9) obtained from (3.8) does not exceed 
5% for n>3. The error for n = 2 is 12%. 

b)  k = 4. For the four fields in the example given in 
Table 11, the root la, I < 1 and the roots a, and a, are complex 
conjugates, with la21 = la,l > 1. We have accordingly 

p ,  = - (A/2) and A,,, = 439.8597/(n2 - 0. 15)'12. The 
error in the calculation of the resonance positions does not 
exceed 6%. The position of the first resonance, calculated 
from the approximate equation, is 22.7 T. 

The examples given here have shown that our assump- 
tion that Do is equal to unity is valid in a rather wide range of 
the parameters of our problem, and leads to good agreement 
between the compared resonance positions on the absorp- 
tion-coefficient curves of individual polychromatic-radi- 
ation harmonics calculated from Eq. (3.8), on the one hand, 
and those obtained by computer solution of the equations for 
the density matrix. 

433 Sov. Phys. JETP 70 (3), March 1990 G. I.  Toptygina and E. E. Fradkin 433 



4. CALCULATION OFTHE ABSORPTION COEFFICIENT OF AN 
INDIVIDUAL HARMONIC OF POLYCHROMATIC RADIATION 

4.1. Formulation of problem. Multimode radiation 
with an equidistant spectrum is incident on a medium con- 
sisting of two-level atoms with a homogeneously broadened 
transition line.5' The characteristics of the medium are the 
transition half width r = T ;  ', the level widths ya and yb, 
the transition dipole moment d, and the transition frequency 
a,, . To simplify the equations we assume equal level widths, 
ya = yb = y = T ;  '. The radiation is characterized by an 
intermode distance A, a zeroth-harmonic frequency w, (the 
frequency of the wl th harmonic is o, = o, + IA), and radi- 
ation component intensities El and phases p,. 

No synchronism conditions are imposed on the field- 
component phases in the solution of the equations for the 
density-matrix elements. The radiation can either be syn- 
chronized or not. 

The difference between the half width r of the homo- 
geneously broadened transition and y makes it possible to 
take phenomenologically into account the dephasing pro- 
cesses in the model of homogeneous absorption-line broad- 
ening. We denote by A, and A, the stationary pumps to the 
levels a and b, respectively (i.e., the number of atoms excited 
per unit time in a unit volume into a given state). 

The equations for the density matrix element of a two- 
level system are, in the rotating-field approximation, 

o=pd e x p  ( h o t ) ,  

N=p.,-pbb, A=&-hb. 

We introduce the dimensionless quantities T = Tt, f = A/r, 
x = y/T, f, = (aab - o0)/T. The system of equations 
takes then the form 

where 
h-1 

4.2. We express the stationary solution of the system in 
terms of Fourier series 

and take No to be a real quantity. 
We substitute the series (4.3) in the system (4.2) and 

equate coefficients of like arguments of the exponentials. We 
substitute in turn the expressions obtained for a,, in the 
equation for N,, . After gathering like terms we obtain 

j- 1 j-i 

DnVj =L Gm-jGm* (2I'y) { ( l + i [ f o -  ( n f  m-j) f])-' 

Since N -  = Nf in (4.4) at n = 0, and the coefficients 
of N ,  are complex conjugate, this equation is real. 

The system (4.4) is an infinite inhomogeneous set of 
linear algebraic equations. Let us prove that it has a solution. 
We construct the principal determinant of the system. This 
is an infinite ribbon-like determinant with a ribbon width 
2k - 1 terms, and with all diagonal terms equal to unity. 
Obviously, the determinant is not equal to zero, since all the 
rows of the ribbon determinant are linearly independent. 

Let us prove that the infinite determinant converges. 
The condition 1 ) (see Sec. 2 above) is met, since the afore- 
mentioned product is in this case also equal to unity. The 
condition 2) is met if the series 

converges. This is indeed the case, since the relations IB,, , I, 
ID,, , I ( l/n2 are satisfied if n is large enough. 

The infinite determinant of the system (4.4) is thus 
nonzero and converges. The system has therefore a solution. 

The system (4.4) was solved on a computer. The num- 
ber n is chosen to satisfy a given computation accuracy, after 
which a solution is obtained for a finite system of 2n + 1 
linear algebraic equations with 2n + 1 unknowns; the sys- 
tem contains equations with numbers from - n to + n. 
Equations with numbers larger than n and smaller than - n 
were not considered. In the chosen equations, values of Nm 
with numbers larger than n and smaller than - n were as- 
sumed to be zero. The solutions o *, at the field frequencies 
I = 0,1,2 ,..., k - 1 depend on N, having the same number. A 
value n = 20 to 25 was necessary to calculate N/ for k = 2 
to 6. 

4.3. Knowing N,, we can determine om and determine 
with the latter the absorption coefficient of the harmonic 
numbered m in the presence of other strong fields: 

A computer was used to determine the relative absorption 
coefficient Km /K, where K is the linear absorption coeffi- 
cient at the line center, 

d is the matrix element of the transition, E, is the dielectric 
constant of the medium without allowance for the reso- 
nance-transition contribution, and c is the speed of light in 

where vacuum. 
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FIG. 4. Dependences of the nonlinear absorption coefficients on the com- 
ponents of five-mode synchronized radiation from the following param- 
eter values: w = o , , ,  T = y ,  G , = l l . l  T, Gl=G,=1 ,2  G,, 
Go = G4 = 0.8 G,, curve 1-K,/K, 2-K ,,/K, 3-K,,/K. 

In addition to the absorption coefficient we can, know- 
ing a,, and meaning alsop,, (4.1 ), find the polarization (the 
response of the medium to the action of a multicomponent 
field) : 

It follows from (4.6) that the response of the medium is 
formed not only at the frequencies of the fields themselves, 
but also at the combination frequencies w, + nA. 

Note the following circumstance: the spatial structure 
plays an essential role for optical fields. The spatial depen- 
dence was not specified in the expression for the perturba- 
tion. This makes it possible to use expressions (4.4)-(4.6) to 
solve a large number of problems involving the interaction of 
fields with a medium having a homogeneously broadened 
absorption line (a  detailed explanation of this question is 
contained in Ref. 4). 

As shown by the computer calculations (Figs. 1, 2 ,4)  
the plot of the absorption coefficient of a component of mul- 
timode radiation with an equidistant spectrum consists of a 
set of resonances whose positions obey the conditions 
(2.14). Figure 2 shows absorption-coefficient plots of the 
harmonics of synchronized and not synchronized three- 
mode radiation. It can be seen that the absorption coeffi- 
cients of the individual harmonics of complex radiation de- 
pend on the specific set of field phases. 

The positions of the resonances on the absorption-coef- 
ficient curves, calculated with a computer and from Eq. 
(3.8) ,  are given in Tables I and 11. The type of resonance- 
maximum or minimum-is also indicated. All the absorp- 
tion-coefficient resonances of an individual component of 

complex radiation satisfying the condition (2.14) are of the 
same type. 

The absorption-coefficient curves have regions of nega- 
tive absorption (gain) of individual multimode-radiation 
components (see Figs. 1, 2, and 4).  The greatest gain is ob- 
served on these curves in the central component of the five- 
mode radiation (see Fig. 4). The component without popu- 
lation inversion is amplified by energy transfer from other 
radiation components. The most typical is the gain of the 
central component at the expense of the sideband compo- 
nents (see Figs. 2 and 4). 

5. CONCLUSION 

Let us summarize our main results. 
1. A Hill equation was derived for the probability am- 

plitudes of a two-level system acted upon by multimode radi- 
ation with equidistant spectrum, and the characteristic ex- 
ponents of this equation were determined. A connection is 
found between the characteristic exponents of Hill's equa- 
tion and the "dressed-atom" quasienergy, an expression for 
which contains both the parameters of the system itself and 
the characteristics of the radiation. 

The quasienergy level splitting is treated as a manifesta- 
tion of the high-frequency Stark effect due to the action of 
the multimode radiation on the atomic system. 

2. We have shown that transitions starting at the cross- 
ing point of the upper-state quasienergy levels and terminat- 
ing at the lower-state quasilevel crossing points are resonant 
and cause maxima or minima to appear on the plots of the 
absorption coefficients of the monochromatic radiation of 
the components. 

3. The density-matrix formalism was used to calculate 
the absorption coefficients of individual components of 
polychromatic radiation. The computer-calculated reso- 
nance positions on the curve were compared in detail with 
the resonance positions given by the quasienergy-level cross- 
ing. This comparison has shown good agreement between 
the two approaches to the problem on hand. 

In conclusion, the authors thank V. I. Perel' for a help- 
ful discussion of the results. 

"Individual details of bichromate-component absorption processes are 
explained in theoretical papers.'-" 

"The coefficient Q(t)  becomes infinite at G(t) = 0. We shall therefore 
assume that G, = IG, lexp(ip, ) (1 = 0,1,2, ... ) are chosen to make 
G(t) #O at any instant of time t. It will be shown in Sec. 4 that the 
solutions arecontinuous in the parameters GI and in the detunings A. We 
seek therefore the solutions of (2.4) under the condition G(t)  #O and 
extend it to include the set of instants t a t  which G(t,, ) = 0. 

"It is known that the characteristic exponents of the Hill equation are 
determined accurate to nA,  i.e., i f p  is a characteristic exponent of Hill's 
equation, thenp + n A  is also a characteristic exponent of this equation 
for any integer n. 

4'The asymmetry of the absorption profile of a strong test wave in the 
presence of a strong perturbing wave shifted relative to the line center 
was described by us in Refs. 9 and 12. 

''The problem of three-mode interaction was first solved Yankauskas" 
for an amplitude-modulated signal. A different approach to the solution 
of the problem was used later in Ref. 26. The polarization of a medium by 
a strongly modulated signal was investigated also in Refs. 27 and 28. 
Also noteworthy are Refs. 29 and 30, in which the action on a medium by 
strong multicomponent radiation with an equidistant spectrum was con- 
sidered. In Ref. 29 was calculated the polarization of a medium by the 
action of multimode radiation in the case of large frequency spacing 
between the modes, A > GI. In Ref. 30 was considered the case when the 
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amplitude of one strong field was much larger than the amplitudes of 
several other strong fields. 
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