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The Lienard-Wiechert potentials are used to obtain approximate formulas for the fields E(  t)  and 
H( t )  in the vicinity of a point charge as functions ofu(t),  u( t ) ,  i i(t) ,  and r, where u is the velocity 
of the charge and r is the radius-vector joining at the instant t the charge and the observation 
point. Formulas are obtained for the bunches which permit one to determine the effect of the 
proper field. In particular we calculate the deceleration, which determines the power of the 
coherent radiation ofthe bunch, for a thread-like filament of angular length @moving on a circle. 
For u 4 c the calculation is valid for arbitrary @. For u z c  a more exact expression is found that is 
valid only for small @, which, however, may satisfy the inequality @ % ( 1 - u2/c2 ) ''* ; when this 
inequality is satisfied the expression found coincides with the familiar asymptotic formula. 
Circumstances are indicated under which the results of the calculation are applicable to bunches 
moving in a plane undulator. 

INTRODUCTION 

In recent years in connection with the employment of a 
forced radiation undulator and various applications of pow- 
erful relativistic electron beams certain problems of classical 
electrodynamics have again become of interest. These in- 
clude the determination of the power of spontaneous radi- 
ation of bunches, on whose value depend the initial condi- 
tions for the production of forced radiation, as well as the 
calculation of the proper field of charged bunches. In both 
cases it is advisable to make use of the field of a point charge, 
which is, in effect, the Green's function for problems of clas- 
sical electrodynamics connected with application to charged 
bunches. However the Lienard-Wiechert potentials deter- 
mine the field of a point charge only indirectly, since at every 
observation point it is necessary to solve a transcendental 
equation in order to determine the retardation time 
T = t - t ' that enters in these potentials. 

In the general case T can be determined only by numeri- 
cal calculations. In calculating the radiation power of a point 
charge this difficulty is immaterial since the power is deter- 
mined by integration of the current of the Poynting vector in 
the wave zone at a fixed value of T. However in passing to 
bunches, whose length is comparable to the wavelength of 
the radiation field, the problem becomes substantially more 
complicated. Even in the simplest case of motion of relativis- 
tic bunches on a circle, one is able to calculate only the 
asymptotics for sufficiently long bunches, that significantly 
exceed the wavelength at the maximum of the radiation 
spectrum (see, e.g., Ref. 1 ), or one has to fall back on nu- 
merical  calculation^.^ We note that difficulties also arise for 
the point charge in the calculation of the field in the near 
zone, where all the terms in the Lienard-Wiechert potential 
are of comparable size, while the value of T changes signifi- 
cantly with a shift in the observation point. 

In this paper we find an analytic solution to the indicat- 
ed problems. In the vicinity of the point charge, moving with 
arbitrary velocity on the specified trajectory, we find ap- 
proximate expressions for the electric and magnetic fields 
E ( t )  and H ( t )  at the instant of time t as functions of the 
distance to the charge ra t  that same time and the velocity of 
the charge u ( t )  and its derivatives u ( t )  and ii ( t )  . The calcu- 
lation is carried out using the method of expansion in a series 

in the small parameter r/tO, where to is a characteristic time 
of variation of u( t )  in motion along the trajectory; in this 
expansion we keep terms inclusive up through second order. 
Previously such formulas have been obtained only for the 
turning points, where the velocity of the charge vanisheP 
and the problem simplifies substantially - we note that mis- 
takes were made in a number of papers leading to incorrect 
 result^.^.^ 

The new formulas for the field of a point charge solve, in 
particular, the above-mentioned problem: the calculation of 
the power radiated by a nonrelativistic bunch of arbitrary 
length moving on a circle. In the case of relativistic motion 
we find a more exact expression, applicable to bunches 
whose angular length @ lies in the interval 0 < @ < @,,, , 
where @,,, satisfies the inequalities I/? 4 a,,, 4 27~. For 
@ -0 this expression describes the power radiated by a point 
charge, for @ %  l/? it coincides with a previously found 
asymptotic f~ rmu la , ' . ~  and for intermediate values of it 
agrees with the results of numerical calculations.' The cir- 
cumstances are indicated under which this expression can be 
applied to the calculation of undulator radiation, and the 
powers of incoherent and coherent spontaneous radiation 
are compared. 

1. THE NEAR FIELD OF A POINT CHARGE 

We shall write the field of a point charge, determined by 
the Lienard-Wiechert potentials, in the form 

Here r is the radius-vector to the observation point from the 
point where the charge finds itself at the time t; R is the 
radius-vector to the same observation point from the point 
where the charge was at the timet ' with R = c(t  - t '); v(t  ') 
and v(t ') are the velocity and acceleration of the charge; 
s = Rc - (Rv), where c is the velocity of light; the magni- 
tude of the charge e is taken to be unity. 

Using the Taylor series we express R, v( t  ') and v(t ') in 
terms of r, u, u, and ii, where the velocity of the charge u and 
its derivatives refer to the time t. Substituting these expres- 
sions into Eq. (1)  we obtain formulas for E and H in the 
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form of a power series, in which we shall keep the main terms 
(order l/?), first order of smallness terms ( a u/r) and sec- 
ond order of smallness terms ( a ii and a u2). The terms of 
the expansion that are ignored are proportional to rlul', 
r(uii), rii, r2u4, ... Whence follows that this approximation is 
legal for arbitrary dependence u ( t )  provided r is sufficiently 
small. The condition of smallness of r is given below. We 
shall find the retardation time T = t - t ' by representing T in 
the form of the expansion T = T() + 7-1 + T~ (T() cx r, T~ a r2u, 
r2 a r3u2, ?ii) and solving the equation R2(7)  = c ~ T ~ ,  where 
the radius-vector R is represented by its Taylor series. 

We omit the rather unwieldy intermediate steps and 
present the final formulas valid for arbitrary velocity u: 

A B . [ r i ]  (ru) 
H=--[ru]+-[uu]+ --- 

C C p3c3 

3 f  . . D .. P[N] + - [ru] (UU) + -[uu] + - 
2 p 5 ~ 5  c 2p3c3 ' 

(2)  

The coefficients A,  B, and D in these formulas are given by 
the following 

1 1 A=---- {[p2cZ-3 (ru)'] ( r i )  +3r2 (ru) (u;) 
yzp3 2p5c4 

3 + - r4u2-f (ru) (iu) +f (UU) ) 
4 

3 f  + - { [p2c2-5 (ru) '1 ( r i )  '+lo? (ru) (&) (ub) -5rP (&)'}, 
Sp7c6 

Here y = ( 1 - u2/c2) is the relativistic factor and 

is the effective value of r, which depends on the angle 6,) 
between the vectors r and u. 

For u ( t )  E const only the leading terms of order I/? 
survive in Eq. (2)  and describe in that case the field for 
arbitrary r. The results in that case, naturally, coincide with 
familiar formulas. Below we shall refer to these terms condi- 
tionally as the Coulomb field (for E )  and the Biot-Savart 
field (for H )  not only for uniform but also for accelerated 
motion. Together they form what we shall call the accompa- 
nying field, since for uniform motion it shifts together with 
the particle. We shall call the remaining terms the radiation 
field [in Eq. ( 1 ) this field depends on v and in Eq. (2)  it 
depends on u and ii]. It is seen from Eq. (2)  that both the 
accompanying field and the radiation field exhibit the "flat- 
tening" effect in the direction of motion with increasing ve- 
locity of the charge, since for 6,) = 0 we havep = r while for 
6, = a/2 the effective distance is reduced (p  = r/y). 

Let us compare the formulas (2)  with the familiar ex- 
pressions. This method of calculation was first used by Lor- 
entz3 for u = 0 and ullii, i.e., at the turning point of the 

charge in rectilinear motion. Formula (2 )  for E(r , t )  coin- 
cides with the expression obtained in Ref. 3. However there- 
after in calculating the field E in the case of u = 0, but for 
arbitrary u and ii (see, e.g., the first edition of the mono- 
graph, Ref. 4, or Ref. 5)  an error was made: in the expansion 
in the Taylor series the retardation time was taken equal to 
T = T(, = r/c, whereas even for u = 0 one must consider r ,  
and r2. In application to a uniformly charged sphere the 
obtained incorrect formulas by chance give the correct 
expression for the radiation reaction, which can be indepen- 
dently obtained from energy considerations. For this reason 
the error remained unnoticed for some time. In the third 
edition of Heitler's monograph (see Ref. 4)  the error is cor- 
rected. We also note that if the field is calculated with the 
help of the potentials used in Ref. 6 in the derivation of the 
Darwin Lagrangian, then it will coincide with the first order 
terms in formula (2)  if one expands them in u/c accurate to 
terms - u2/c2. 

Let us estimate the near zone in which the approximate 
formulas (2 )  are valid. An analysis of the omitted terms 
shows that they are small compared to the terms that were 
kept provided 

Here p is the introduced above effective distance from the 
charge to the observation point; u is the longitudinal accel- 
eration of the charge (it can be represented as the result of 
the motion of a particle of rest mass m in the longitudinal 
electric field E,,) ; I u 1 is the transverse acceleration (repre- 
sented as the result of motion in the transverse magnetic field 
H,,). The first of the inequalities (3)  is valid for arbitrary 
velocity. The second inequality was obtained for u z c ,  and 
for u < c  it depends additionally on u/c, and in that case the 
near zone includes the whole circle on which the charge is 
rotating in the magnetic field. It should be emphasized that 
the wave zone, in which the radiation field exceeds signifi- 
cantly the accompanying field, nowhere intersects with the 
near zone. 

The formulas (2)  are convenient as they readily permit 
the determination of the radiation reaction for an arbitrary 
charge distribution. This is done simplest by staying with the 
following procedure. One calculates first the total force act- 
ing on some pair of elements of the charge. Here one com- 
bines the forces with which the elements of the charge act on 
each other, and most of the terms in the expression (2 )  mu- 
tually cancel. This is followed by a double integration over 
the volume occupied by the charge, which allows taking into 
account all such pairs. For a sufficiently small bunch or for 
the procedure of mass renormalization of the charged parti- 
cle the velocity of all the elements of the charge may be taken 
to be the same, and for each pair only those terms in (2 )  
contribute to the total force which do not change sign upon 
the replacement of r by - r. Here the first order of smallness 
terms (corresponding to the force f , )  depend both on the 
size and the shape of the region occupied by the charge, and 
this force determines the size of the electromagnetic mass of 
the charged particle that enters into the total observable 
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mass, while for the bunch the force f,  gives the constituent of 
the radiation reaction which is not connected with energy 
losses to radiation. 

The terms of second order of smallness determine the 
radiative friction force, which depends neither on the size 
nor the shape of the charge, and the total action of this force 
compensates the energy loss to radiation. This force f, equals 

where e is the charge of the particle or the total charge of the 
bunch, and f, and f, are due to the action of the electric and 
magnetic fields respectively. The quantity - (f, u )  gives the 
power of the energy loss to radiation (averaged over the tra- 
jectory ), i.e., the irreversible energy loss by the particle or 
the bunch, while the work of the force f, determines the 
reversible energy change in acceleration or braking. Ex- 
panding the double cross product in Eq. (4)  and combining 
the forces f, and f, we arrive at the familiar expression for 
the radiative friction force,' however the previous derivation 
did not allow the separation of the electric and magnetic 
constituents. 

2. RADIATION BY THE BUNCH IN CIRCULAR AND 
UNDULATORY MOTION 

The power radiated by a point charge is readily found 
by making use of Eq. ( 1 ) and integrating in the wave zone 
the flow of the Poynting vector through the surface of a 
sphere of radius R = const. However for an extended bunch 
such calculations becomes drastically more complicated, 
and only asymptotic formulas have been obtained for suffi- 
ciently long bunches,' rotating on a circle. We will find the 
radiated power for bunches of arbitrary length by calculat- 
ing the work done by the mutual forces with which different 
parts of the bunch act on each other. Such deceleration by 
the proper field determines the power I of energy loss to 
radiation, and in view of the stationary nature of the problem 
(motion on a circle) this quantity is equal to the radiated 
power, i.e., the flow of energy P through a distant fixed sur- 
face. 

In the motion of bunches in a magnetic field the accel- 
eration is directed normal to the trajectory, therefore the 
power is emitted mainly in the direction of the velocity, par- 
ticularly for relativistic bunches. As a result the decrease in 
the radiated power, due to the interference of the fields of 
different parts of the bunch, depends first of all on the longi- 
tudinal dimension of the bunch. Moreover in most setups 
this dimension substantially exceeds the transverse one. For 
these reasons the problem may be simplified by confining the 
considerations to thread-like bunches, i.e., bunches whose 
transverse sectional area equals zero and for which all the 
elements of the charge move on one and the same circle 
(compare Refs. 1 ,2) .  If the length of these bunches is com- 
parable to or exceeds the wavelength of the radiation field 
then one may not use the familiar formulas for dipole, qua- 
drupole, or magnetic dipole radiationh and it is necessary to 
perform the calculations in the manner indicated above. 

FIG. 1 .  For calculation of radiated power by relativistic bunches. 

The geometry of the problem is shown in Fig. 1. The 
bunch rotates counter clockwise with speed u on the circle of 
radius a. The position of the bunch at the instant of time t is 
marked by the heavy line (the start of the bunch is the point 
"s" with angular coordinate p, = 0, the end of the bunch is 
the point "e" with p, = @ - the angular length of the 
bunch). The points 1 and 2 mark the first and second ele- 
ment of the charge between which the interaction is calculat- 
ed at the time t ,  r is the radius-vector from the point 1 to the 
point 2. The point 1' denotes the position of the first element 
of the charge at a previous instant of time t ', chosen so that 
the retarded field arrives from this point at the point 2 at the 
time t. In this geometry the field of the first element chases 
after the second element, and therefore we shall refer to this 
picture as co-travelling motion. The point 2" corresponds to 
the position of the second element of the charge at a previous 
time t ", such that the retarded field from the point 2" reaches 
the point 1 at the time t .  This picture will be referred to as 
meeting motion, since the field of the second element moves 
to meet the first element of the charge. 

For long bunches the decelerating force f, [see Eq. 
( 4 ) ]  cannot be applied to the bunch as a whole, since the 
velocity u varies along the bunch while Eq. (4)  was derived 
on the assumption of it being constant. However one may 
apply a convergent calculational procedure consisting of 
combining elements in pairs and for each pair calculating the 
work done by the mutual forces with which these elements of 
the charge act on each other. In this process there takes place 
mutual cancellation of all terms that become infinite as r-0, 
if use is made of Eq. (2),  or as R - 0, if use is made of Eq. ( 1 ). 
In order to take into account all possible pairing combina- 
tions of the elements of the charge it is necessary to integrate 
twice over the volume occupied by the charge and for the 
thread-like bunches under consideration we obtain the for- 
mula 

@ 

I = - j ( i ~ )  d v  = - Ljj [ (uiE2,) + (u2Eiz) Idq ,  d k .  ( 5  20" 

Here q is the charge of the bunch; p, and p, are the angular 
coordinates of the points 1 and 2; u, and u, are the velocities 
of the first and second elements of the charge at the time t; 
E,, and El, are the fields at the points 1 and 2 at that same 
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instant of time, produced by the second and first element of 
the charge respectively. 

We calculate first Zby substituting into Eq. ( 5  ) expres- 
sion (2)  for the field E(r,t)  and taking into account that 
El, = E(r,u,) and E,, = E (  - r,u2), where the vector r is 
shown in Fig. 1. As was already mentioned, one may not take 
u, = u, and therefore the decelerating force f, cannot be 
used directly to calculate the slowing down of the bunch by 
its proper radiation field. The calculation shows, however, 
that nearly all the terms in the expressions for (u,,E,, ) and 
(u,EI2 ) are odd functions of the difference p2 - p, and mu- 
tually cancel upon summation. There remain only two even 
terms, which coincide with the expression for (u, f:'" ), 

where i,k = 1,2, independently of whether it is calculated in 
point 1 or point 2. For circular motion of the charge we have 
(uli) = 0 and but one term remains, proportional to (ui ii, ), 
which gives after integration 

where0 = u/c and y = ( 1 - f i  ,) - is the relativistic fac- 
tor. 

Let us discuss this result. As was mentioned in Sec. 1, 
for 04 1 these formulas are valid at all points of the circle 
round which the bunch is rotating, i.e., the angular length @ 
of the bunch may have any value. In particular, for @ = 2n- it 
follows from Eq. (6)  that I = 0, which is quite natural since 
for this value of @ we have a uniform ring of current which 
does not radiate electromagnetic waves. With decreasing @ 
we are dealing with a long bunch and coherent spontaneous 
radiation takes place. The power of this radiation goes up 
with decreasing length of the bunch, and simultaneously the 
range of values of 0 for which formula (6)  is applicable 
increases. In particular, for @ -0 the formula is applicable 
for any 0 and I-Zo@4, which coincides with the familiar 
formula for the radiation from a point ~ h a r g e . ~  

For small but finite values of @ and p=: 1 the form- 
factor in formula (6)  leads to a certain decrease in the power 
Z as compared to the point charge. However, on comparing 
Eqs. ( 3 )  and (6)  in this case we see that Eq. (6)  is only valid 
for sufficiently small @ (@ < l/?) so that the form-factor is 
close to unity. The familiar asymptotic formula, first ob- 
tained by Schwinger (see, e.g., Ref. 1 ) , is valid for @ $ l /Y. 
To calculate the radiated power for relativistic bunches of 
intermediate length, when @- l/?, i.e., the length of the 
bunch is comparable to the wavelength at the maximum of 
the radiation spectrum (see Ref. 6), we make direct use of 
the initial formula ( 1 ) by calculating the retardation to 
higher precision than was done in deriving formula (2).  In 
the case of the simplest circular trajectory this turns out to be 
possible. 

To determine the retardation time we consider Fig. 1. 
For the co-travelling motion in the time t-t ' the light covers 
the distance R (the chord 1'-21, while the charge moves on 
the arc between the points 1' and 1. In the meeting motion 
the light's path length c( t  - t "1  is equal to the chord 2"-1 
(this chord is not shown in Fig. 1, it corresponds to the angle - 
8),  while the charge moves on the arc 2"-2. Taking these 
geometric conditions into account one may write the tran- 
scendental equation 

28 sin 0=28-9, 28 sin 6=$-28, $=cp,-9, (7)  

for the angles 8 and 8; given these angles and having calcu- 
lated the length of the chord 1'-2 (see Fig. 1 for the co- 
travelling motion) and the chord 2"-1 which subtends the 
angle 2 8 for the meeting motion we can determine the retar- 
dation times t - t ' and t - t ". 

We confine ourselves in the following to the ultrarelati- 
vistic case ( y) 1 ), and under that condition we can only 
consider sufficiently short bunches for which not only @ < 1 
but also 84 1. This turns out to be possible because the co- 
herent radiation begins to fall for @- l / f ,  and both the 
indicated inequalities, as will be seen below, are consistent 
with the condition @ $  l/?, i.e., they permit the solution of 
the problem for the full range of values of @ of practical 
interest. 

Exploiting the smallness of 0 and 8 we expand Eq. (7)  
in a power series accurate through cubic terms and solve the 
resultant cubic equations. We obtain 

where 6 = +@? and the second of formulas (8)  is obtained 
from the first by the replacement @- 1C, and power series 
expansion in the small parameter $ f .  It is not hard to see 
that the parameter 6 may take on values ($1, since then 
Ox z (3@)'/3 and the initial assumptions are fulfilled pro- 
vided < 1. 

When that condition is satisfied we have 8, 4 1, hence 
certainly 8, 4 1, and therefore the trigonometric functions 
that enter the integrand in Eq. (5)  -let us denote it by the 
letter Q - can also be expanded in a power series in 8 and 8. 
Changing at the same time the integration variables with the 
help of Eq. (7)  we obtain 

We break up the integral in Eq. (5)  in two parts correspond- 
ing to the third formula in Eq. (9) ,  and in each of the parts 
we successively go from the variables p, and p2 to IC, and then 
to 8 and 8, respectively, making use of the first two formulas 
in Eq. (9) .  In this procedure the terms having 8- and 8- 
dependent singularities at the lower limit of integration 
(8-0, 8-0) mutually cancel and we obtain the final 
expression for the power loss due to radiation: 

where I, = 2q2cy4/3a2 is the power loss due to radiation for 
a point charge of the same size as the charge of the bunch and 
moving with the same velocity [more precisely, having the 
same energy - compare with Eq. (6)  for 0z 1 ] while S and 
S were defined in Eq. (8 ) . 

Let us compare Eq. ( 10) with known formulas. For 
@ - 0 and 6- 0 one may find an approximate expression for 
S (accurate up to6  ') by making use of the second formula in 
Eq. (8) .  Substituting S(6) into Eq. ( 10) and making use of 
the power series expansion in we find Z = I,, i.e., Eq. ( 10) 
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correctly describes the radiation due to a point charge. For ing mirrors with the result that the main part of the energy 
f > 1 the first formula in Eq. (8)  yields S- (26) If Ss 1 lost by the bunch remains within the working volume and 
[but S< y since otherwise Eq. ( 10) is inapplicable] then the acts again on the bunch. Therefore in calculating the initial 
first term in Eq. ( 10) dominates all others and we obtain the conditions for the production of forced radiation it is pre- 
asymptotic formula cisely the magnitude of the losses I that matters, and not the 

1 2.7 1.6 energy flow P through a fixed surface. 
- W - = -  
lo gal3 @4,3T49 (1 1) Since the radiation by the bunch is formed in the angu- 

lar length 8, , determined by expression (8)  and exceeding 

which agrees with known results (see, e.g., Refs. 1 and 2). 
For intermediate values of6 the expression ( 10) gives slight- 
ly bigger radiated power than was obtained in Ref. 2 by nu- 
merical calculation. For example, for = 15 our value of I is 
larger by a factor of 1.5 than the value in Ref. 2. This differ- 
ence is, apparently, related to the fact that in Ref. 2 was 
studied the radiation due to a thread-like bunch with para- 
bolic charge density distribution along the length of the 
bunch while in the present work it is assumed that the charge 
density is constant. The fall in I starts for a length of the 
bunch for which 6- 1. The physical significance of this re- 
sult is obvious: this value of 6 corresponds to a wavelength 
for which the power of synchrotron radiation is maximal." 

Our formulas may be used to compare the power of 
coherent and incoherent spontaneous radiation by bunches. 
It is clear that with increasing 6 the quantity I does not tend 
to zero, as would follow from Eq. ( 1 1 ), but is bounded from 
below by the power of the incoherent radiation I = I,,/N, 
where Nis the number of electrons in the bunch. Comparing 
this value with Eq. ( 11 ) we see that the coherent radiation 
dominates for N >  0 .6@~ '~  f .  The high power of y in this 
inequality leads to the result that for high-energy electrons 
(hundreds of MeV and above) the total energy losses are 
determined, in essence, by the incoherent radiation by the 

the length Q, of the bunch, Eq. (10) may be applied to the 
undulator provided 8, 9 Y, where is the angular length of 
the trajectory coinciding with the turning angle of the veloc- 
ity vector in each of the magnets of the undulator. In that 
case the contribution from the transition segments (at the 
edges of the magnets) is not large, and the energy losses by 
the bunch due to coherent spontaneous radiation in each 
period of the undulator amount to 2Ia\Y/c, where the power 
I is given by formula ( 10) and a is the radius of curvature of 
the trajectory in the magnetic field of the undulator. 

It is clear from physical considerations that the interfer- 
ence between fields from different parts of the bunch sup- 
presses first of all the short-wavelength part of the spectrum, 
which serves to "prime" the forced undulator radiation. 
However, for a relativistic point charge in circular motion 
the synchrotron radiation spectrum has a sharp maximum in 
precisely this region (see, e.g., Ref. 6).  After taking into 
consideration all the indicated factors in undulators with 
short electron bunches for comparatively low electron ener- 
gy one should take into account the possible effect of sponta- 
neous coherent radiation of the bunches (compare Ref. 8).  
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