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Theoretical and experimental investigations were made of the diffraction of optical radiation by 
metal bodies in the penumbra region. Asymptotic expressions for the wave field in the diffraction 
problems were obtained by generalization of the Leontovich boundary conditions which is valid 
when v =  l/ka 4 1 and 6 = kd 5 1 ( k  = 2n-/A is the wave number, A is the wavelength of the 
incident radiation, d is the thickness of the skin layer in the absorbing body, and a is its 
characteristic size). An experimental study of the scattered radiation in the bright and dark parts 
of the penumbra was made by illumination, with a Gaussian optical beam (A = 0.63,um), of one 
"edge" or the whole cross section of cylindrical metal filaments with a diameter 2a = 15-1 500 
,urn. A comparison of the experimental and theoretical results showed that the agreement was 
good for the calculations based on the asymptotic expressions derived in the present paper. 

The interest in the diffraction of optical radiation by 
metallic bodies has recently increased for the following three 
reasons: 

1 ) the developments in laser technology, which make it 
possible to observe the diffraction of optical radiation by 
convex bodies using compact laboratory apparatus; 

2) the feasibility of checking experimentally under lab- 
oratory conditions the predictions of the hf theory of diffrac- 
tion; 

3 )  the use of the optical radiation diffraction in moni- 
toring various technological processes. 

Classification of the possible cases of the scattering of 
the incident field by absorbing convex bodies characterized 
by a complex refractive index N = N ' + iN " can be made on 
the basis of two parameters: < = k,d and 7 = l/k,a, where 
k, = 2r/A0 is the wave number, A, is the wavelength of the 
incident radiation outside the reflecting body, d = ilo/2rN " 
is the thickness of the skin layer or the depth of penetration 
of the field inside the absorbing body, and a is the character- 
istic size of this body. 

Up to now the theory of diffraction of electromagnetic 
waves by conducting bodies has been concerned mainly with 
the scattering of radiowaves by ideal or good conductors. In 
suchcaseswe have<=Oor{gl ,  7 5 1  01-741. Ifthein- 
equality 4'4 1 is satisfied to a high degree of precision on the 
surface of a conducting body, the Leontovich boundary con- 
ditions are obeyed.' 

In the optical range of frequencies the electrical con- 
ductivity o is approximately 100 times less than the static 
value and for typical metals it is of the order of 1015 s - I .  
Since in the optical range the angular frequency of the oscil- 
lations of light w, is of the order of 1015 s -  I, it follows that 

I \ ; " - ( 2 n d ~ ~ )  '"GI 

and the condition < = 1/N " 4 1 is replaced byi )  < 5 1. The 
inequality 7 < 1 is satisfied even by bodies of small macro- 
scopic dimensions. 

We can thus see that the theory of diffraction of optical 
radiation by metallic bodies should be developed and be val- 
id for low values of the parameter 7 in the range 7 4 1, and 
moderately low values of the parameter f i n  the range 5 5 1, 
i.e., it should apply to refractive indices in which the imagi- 
nary part N "  is close to or slightly greater than unity. The 

first question that arises in the development of such a theory 
is whether the Leontovich impedance conditions remain val- 
id when <S 1 and 74  1 and whether we can exclude from 
consideration the interior ofan absorbing body by some rela- 
tionships that apply to an external field, are satisfied on the 
surface of the absorbing body, and replace the Leontovich 
conditions. 

We shall provide the basis of an asymptotic theory of 
diffraction of optical radiation by convex metallic bodies, 
describe experiments involving the scattering of laser beams 
by metal filaments, and compare the theoretical predictions 
with the experimental data. We shall show that such an ex- 
periment demonstrates that the proposed theory, which uti- 
lizes not the usual but the generalized Leontovich condi- 
tions, describes much better the experimental dependences 
particularly in the case of TE-polarized light. 

1. ASYMPTOTIC BOUNDARY CONDITIONS AND 
DIFFRACTION EQUATIONS VALID IN THE PENUMBRA OF A 
WAVE FIELD SCATTERED BY A METALLIC BODY 

The approximate boundary conditions on the surfaces 
of strongly absorbing bodies (good conductors) can be de- 
rived by asymptotic expansion of the field in the surface lay- 
er of an absorbing body and subsequent matching by the 
boundary conditions to the external field. In 1940, Rytov 
obtained an asymptotic expansion of the field for a surface 
layer in powers of the skin layer thickness d (Ref. 3 ). Essen- 
tially this was an expansion in terms of a dimensionless pa- 
rameter 6 = d /a < l on the assumption that 7 - l .  In 1973 
Kravchenko proposed an asymptotic expansion of the field 
in the surface layer in powers of the quantity < 4 1 (q is a 
natural number), i.e., in fractional powers of the parameter 
< (Ref. 4).  In this case it was assumed that 7 < 1 and that the 
parameters 7 and < are related by 7 a fp'q for some natural 
number p. The main terms of the Rytov and Kravchenko 
expansions (in the three casesp < q,p = q, andp > q) lead to 
the Leontovich conditionsi on the surface S of an absorbing 
body. In all these cases the correction terms are different and 
they allow us to determine the influence of the curvature of 
the surface S and of the gradients of the parameters of the 
absorbing medium on the validity of the Leontovich condi- 
tions for the relevant values of the parameters <and 7. 

The correction terms to the Leontovich conditions in 
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the cases when l< 1 and g - 1 were also investigated by Pan- 
ych.5 The case when c5; 1 and g <  1, i.e., the situation of 
main interest in the scattering of optical radiation by metals, 
was considered also in Refs. 6 and 7 for a homogeneous ab- 
sorbing medium bounded by a plane and a cylindrical sur- 
face. In the case of an arbitrary convex surface and an inho- 
mogeneous medium the boundary conditions corresponding 
to f 5 1 and g 4  1 were obtained in Ref. 8. 

We can easily see that both when f < 1 and 0 < g 5; 1, as 
wel laswhenO<f51andg~l , theproduc t f=  g f = d / a i s  
a small quantity: 6< 1. We shall obtain an asymptotic expan- 
sion of the field in the surface layer of an absorbing body in 
powers of f g  1 on the assumption that N " 2 1. Such an ex- 
pansion is important not only on its own merits (for exam- 
ple, it can be used to calculate the quantity of heat released in 
an absorbing body allowing for the curvature of the surface 
and the refractive index gradients), but it can be used to 
obtain the asymptotic boundary condition satisfied by the 
external field on the surface S. Obviously, this expansion 
should contain the Rytov and Kravchenko expansion, 
which should be derivable from it subject to additional as- 
sumptions about the values of the parameters g and 6. The 
asymptotic boundary conditions make it possible to calcu- 
late the corrections to the Fresnel reflection expressions 
which are governed by the curvature of the surface S and by 
the gradient of the refractive index N. 

All our calculations will be made for two spatial vari- 
ables. Generalization to the case of vector wave fields and 
three spatial variables does not require any new fundamental 
concepts. 

We shall consider a two-dimensional region R with a 
smooth convex boundary S on a plane R2; we shall use 
N(r )  = N ' ( r )  + iN " ( r )  to describe the complex refractive 
index of an inhomogeneous absorbing medium filling the 
region R. We shall assume that the wave field is 

where U b and U are the fields incident on and reflected by 
R, and that this field satisfies the Helmholtz equation with a 
coefficient which is discontinuous on the surface S: 

1, r=R2/SZ, 
A (r) 0 ,  x (r) = { 

NZ(r), ~ E Q ,  (1)  

and we shall postulate that the following contact conditions 
are satisfied at the interface S between the media: 

Here, d /a, represents differentiation along the normal to S 
(n > 0 outside R ) and K is a function defined on S. Moreover, 
the reflected field Uh should satisfy the principle of emission 
of radiation. In the case of the Maxwell equations the planar 
diffraction problem can be reduced to a scalar formulation of 
Eqs. (1)  and (2)  by introduction of the Hertz potentials. 
For TM-polarized light (with the vector H in the R2 plane) 
we have x = 1, whereas for TE-polarized light we find that 
x = N 2 ( r )  IS. 

We shall first obtain an asymptotic expansion of wave 
field in the boundary layer R adjoining the illuminated part 
of the interface S. We shall adopt dimensionless variables 

x = r/a (we shall assume that the characteristic size a of the 
region R does not exceed the radius of curvature of the 
boundary S) and the reduced refractive index 

where we now have 

f = [min (N" (r) I ,,,) ] -'. 
We shall assume t h a t N ( x )  and the derivatives o f N ( x )  are 
of the order of unity. The latter assumption means that over 
distances of the order of the size of thk region R the refrac- 
tive index N(r )  does not vary more than severalfold, i.e., 
that the medium filling the region R is continuously inhomo- 
geneous. Since N " ( r  ) is a function of r, the depth of penetra- 
tion of the field into R is different at different points of the 
boundary S. We shall use the symbol d to denote the maxi- 
mum value of this depth ( d  = k ;  'l ) and still assume that 
the parameter 6 = d /a is small, so that it satisfies f 4 1, i.e., 
that the dimensions of the region R are much greater than 
the maximum depth of penetration of the field inside R. 
Therefore, if IN(r) I 2 1.2, we can ignore reflections2' of the 
field refracted into the region R. Subject to this assumption, 
we shall seek the wave field in R in the form of an expansion 
in powers of6 with a single eikonal describing the wave trav- 
eling from the boundary into the region 

U ,  = exp [ait-'r (x) ] u (i, 1) , u (x, 5 )  = zri (x) (-it) j. 

In the vicinity of the boundary S we shall introduce two 
dimensionless coordinates s and n: we shall use n to denote 
the dimensionless (divided by a )  distance along the normal 
from a given point to the boundary S, and we shall denote by 
s the dimensionless length of arc of S measured from a cer- 
tain point on S to the base of the normal. We shall assume 
that the convex boundary S is smooth. This assumption im- 
plies that the dimensionless (divided by a )  radius of curva- 
ture p(s)  has derivatives which are comparable with this 
radius. The coordinates (s,n ) of the convex boundary S are 
regular in the range n > - p(s)  and they can be used to cal- 
culate the refracted field U ,  in a layer adjoining the bound- 
ary Sand of thickness much less than the depth of penetra- 
tion d; we shall not consider the field U, outside this layer 
because it is then a negligible exponentially small quantity. 

Substituting the expansion of Eq. ( 3 )  into Eq. ( I ) ,  re- 
writing the latter in dimensionless variables, and equating to 
zero the coefficients in front of various powers of 6, we ob- 
tain the eikonal equation for the function ~ ( x ) :  

and the transfer equations for the coefficients uj (x) .  The 
solution of the eikonal and transfer equations will be ob- 
tained in terms of the coordinates (s,n) as an expansion in 
powers of n: 
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Substituting the expansion ~ ( x )  into the eikonal equation 
(4) ,  expanding its right-hand side in powers of n 

and equating the coefficients in front of different powers of n 
on the left- and right-hand sides, we obtain a recurrent sys- 
tem of algebraic equations from which we can determine 
consistently the coefficients 7 ,  ( s ) ,  where m >  I. The coeffi- 
cient T , ( s )  cannot be deduced from the eikonal equation: it 
can be found from the contact conditions of Eq. ( 2 )  if the 
incident field Ub is specified. The coefficients r , ( s )  and 
T ~ ( s )  in the first two equations of the recurrent system are 

The root branch is fixed by the condition 
Im [J"J?, - rh2(s)  ] ' I2 > 0, and the minus sign is selected by 
the need to ensure that the field is attenuated as it penetrates 
the region R, i.e., as - n increases. 

If the wavelength of the incident radiation is much less 
than the characteristic size of the region R (7 < 1 ) , the inci- 
dent and reflected fields can be described by the following 
ray expansions: 

u; = exp[iq-'r ' ( x )  1 u: ( x )  (-iq)'.  

It then follows from the condition ( 2 )  that 

q - ' ~ '  ( x )  l x c 8 = q - i ~ r ( ~ )  1 r E E = t - l ~ O ( ~ ) .  

Hence, we obtain 

% ( S )  =Eq-lr' ( x )  Ixes=%rl ( x )  I.,s 

and 

ds 

where 8 is the angle of incidence. Therefore, in this case we 
obtain 

( s )  =- [JY/ro2 ( s )  -b2 sin' 0 ( s )  ] '". 

If the wavelength of the incident radiation is compara- 
ble with the characteristic dimensions of the region R 
( 7 -  I ) ,  it follows that r ( , ( s )  -c and in the first approxima- 
tion we have to assume that r ( , ( s )  = 0. We then find that 
T ,  ( s )  = - J%(s).  The coefficients u,,, ( s )  in the expansion 
uj ( x )  are defined similarly. The coefficients u,,, , where j>0, 
are found from the contact conditions given by Eq. (2) .  

The expansion ( 3 )  for the wave field U ,  in the boundary 
layer allows us to exclude the field inside the region R from 
the contact conditions given by Eq. (2) and thus obtain an 
asymptotic form for the boundary condition which must be 
satisfied by the external field U,: 

= x-' exp [ik-'rO ( s )  ] 
rn 

In Eq. ( 8 )  the expression 

represents polynomials in powers of d /d s  with coefficients 
dependent on s. In particular, the zeroth-order polynomial is 

The left-hand side of Eq. ( 8 )  yields the leading terms of the 
boundary condition, whereas the right-hanu side provides 
the correction terms that introduce the radii of curvature of 
the boundary S and of the front of the incident wave, the 
derivatives of these quantities, and the derivatives of the re- 
fractive index into the boundary conditions. Moreover, 
higher-order tangential derivatives appear in the approxi- 
mate boundary conditions if, for example, we replace an 
elastic plate between liquid-filled half-spaces with the ap- 
proximate contact boundary conditions of Ref. 9. 

When an hf wave (7 4 1 ) is incident on a metallic body, 
we find that 7;; ( s )  may be described by the following expres- 
sions: 

zo" ( 8 )  =b{-pW'(s)  *R- ' (s )  [lkR-' (s) ] - I  cos 0)cos 0, 

where R ( s )  is the dimensionless radius of curvature of the 
front of the incident wave [the plus sign of R ' ( s )  corre- 
sponds to the reflection of a diverging wave and the minus 
sign corresponds to the reflection of a converging wave]. 
Apart from the correction terms, we find that an incident hf 
wave obeys the boundary condition 

The condition (9)  satisfied on the illuminated part of 
the boundary is called in Ref. 7 (where it is derived from the 
exact solution of the problem of diffraction by a circular 
homogeneous cylinder) the generalized Leontovich condi- 
tion. If ( N  1 %  1, wecan simplify this generalized condition by 
dropping the term sin2$ within the radicand which then 
yields the ordinary Leontovich condition. 

If the wavelength of this incident wave is comparable 
with the dimensions of the reflecting body (7 - I ) ,  the 
boundary condition of Eq. ( 8 )  together with the first correc- 
tion can be written in the form 

which is identical with the condition derived in Ref. 3. 
If in the boundary condition of Eq. ( 8 )  we replace 
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U,, = Ub + U; with the ray expansions of Eq. (7 )  and 
equate terms of the same order of magnitude, we obtain the 
Fresnel reflection expression for the principal term of the 
expansion of the amplitude u; and the reflection expressions 
for the higher terms u;, where j> 1. 

The asymptotic boundary condition in the vicinity of 
the points of tangential contact Cbetween the incident beam 
and the boundary S, i.e., in the penumbra, can be derived 
similarly. Using reduced variables 

(when the length of an arc s is measured from the point C 
and we haves > 0 in the shadow zone) this asymptotic condi- 
tion can be written as an expansion in terms of fractional 
powers of the parameter = d,/a (d, is the depth of pene- 
tration at the point C) : 

h 

Here, B, (u,d /du) are polynomials which are functions of u 
and d /do. In particular, the first-order polynomial is 

Equating the left-hand side of Eq. ( 10) to zero, we obtain the 
following expression for the boundary condition in the pen- 
umbra which is valid in the principal (leading) approxima- 
t i ~ n : ~ '  

" [N2(C)- I ] '  UOIB=O. (1 1) 

It is identical with the condition (9)  if we substitute 8 = ?r/2 
in Eq. (9).  

The asymptotic boundary condition for a three-dimen- 
sional vector problem with the Maxwell equations on the 
surface of a conducting body when q 4 1 and 0 < { 5: 1 can be 
obtained by similar methods. On the illuminated part of the 
surface we find that in the principal (leading) approxima- 
tion this condition is 

0 e' (e'k-sinz 6) -" 
0 

where a and0  are the orthogonal coordinates on the surface 
S; 8 = 8(a,p)  is the angle of incidence of the beam and 
E' = E + 4 i r u / ~ ~  (E and p are the permittivity and the mag- 
netic permeability, respectively). The condition ( 12) repre- 
sents the generalized Leontovich condition for an electro- 
magnetic field. Higher terms of the boundary condition ( 12) 
contain matrix differential operators along directions tan- 
gential to S. The first correction describes diffusion of the 
polarization on reflection, since the matrix operator of the 
first correction contains nonzero diagonal elements. The 
derivation of the boundary condition for the Maxwell equa- 
tions in the penumbra is fully analogous to the procedure 
adopted in the two-dimensional scalar problem, although it 
is somewhat more cumbersome. 

Applying the generalized Leontovich boundary condi- 
tion ( 1 1 ) in the penumbra, we obtain an expression describ- 
ing the scattered wave field in the bright part of the penum- 
bra at some distance behind a convex absorbing cylinder. We 
shall give this expression without derivation:" 

Here, x and y (C) are the dimensionless radius vectors of the 
point of observation and of the point C; Jo is the geometric 
divergence described in terms of "evolvent" coordinates 
(grazing rays); s,  is the dimensionless length of an arc corre- 
sponding to the point of detachment of a grazing ray5' (in 
the bright part of the penumbra we have s,,<O); a,, is the 
reduced length of the arc up to the point of detachment; 
F (x )  is the Fresnel integral described by 

F (x) = 5 exp (io,c -/- i9c2) d t ,  
, . ,4ni/3 

R (C) and p (C) are the dimensionless radii of curvature of 
the phase front of a diverging cylindrical wave and of the 
investigated cylinder at the point C; in terms of the Fock 
integrals cP, ( x )  and cP, (x )  (Ref. 10, p. 133) the impedance 
can be described by 

Q=imx-' [N2 (C) -11 Ih. (15) 

In the most interesting (from the point of view of opti- 
cal experiments) case of the far-field zone, Ix 1 Bp (C), and a 
near-planar phase front, R ( C )  )p (C), the condition $4 1 is 
obeyed and we have F ( x )  z - i/u,, so that Eq. (13) be- 
comes invalid at low angles of tilt p of a grazing angle rela- 
tive to the tangential angle [for typical values of the param- 
eters used in our experiments such a replacement of F (x )  in 
Eq. ( 13 ) gives rise to an error smaller than 10% if p 2 lo]. 

In the dark part of the penumbra it is preferable to con- 
sider the complete field U,, = U;, + UI,,  where U,, is de- 
scribed (in the range u,,>O) by Eq. (13) if the integration 
contour in Eq. ( 14) is replaced with [O, w .e'r's ] and the 
sign of the integrand is reversed. An expression for the scat- 
tered field in the bright part of the penumbra, characterized 
by a constant angular distribution, is obtained in Refs. 11 
and 12 and in this expression the Fresnel integral is replaced 
with the Kirchhoff integral. (An asymptote of the scattering 
diagram of a plane wave incident on absorbing cylinder is 
also obtained in Ref. 12. ) 

The asymptote of the angular distribution of the scat- 
tered radiation in the penumbra can be described by a sum of 
two terms representing waves scattered in the vicinity of the 
points of contact C and C '  of the extreme rays representing 
the boundary of the shadow zone. The term U; correspond- 
ing to the point C can be calculated from Eq. ( 13 ) allowing 
for the fact that Q,, < 0, whereas at the point C '  we have to 
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assume that oh ;, 0 in the expression of U,. 
Calculations of the behavior of the scattered radiation 

in the penumbra and of the angular distribution of this radi- 
ation, carried out for the case when the generalized Leonto- 
vich condition applies at the boundary of a body, are de- 
scribed in Sec. 2 in connection with an analysis of the 
experimental results on the diffraction of a laser beam by 
metal filaments. 

2. EXPERIMENTAL INVESTIGATION OFTHE DIFFRACTION 
OF LIGHT BY METAL FILAMENTS AND COMPARISON OF THE 
EXPERIMENTAL AND CALCULATED RESULTS 

The published experimental investigations of the dif- 
fraction of electromagnetic waves by metal cylinders have 
been carried out mainly in the microwave range, i.e., in the If 
diffraction range ( 7 -  1) and in the near-field zone 
(1x1 = lrl/a 2 1).  There have been very few studies in the 
optical range (7 4 1 ) and in the far-field zone ( 1x1 % 1 ). In 
the published experimental studies of the optical range the 
stress has been on determination of the integral scattering 
coefficient and the local structure of the scattered field in the 
penumbra region has been practically ignored. We shall con- 
centrate our attention on the scattered light in the penumbra 
because it is of greatest interest in a comparison with our 
calculations based on asymptotic expressions. 

We used an He-Ne laser emitting at A,, = 0.63 ,um 
(k,,=: 10,um ). Our experiments were carried out on metal 
filaments with a diameter 2a = 15-I500,um so that the di- 
mensionless parameter 7 '  = k,,a was within the range 
7- I = 75-2500. A cylindrical lens formed a Gaussian light 
beam with an elliptic cross section and the phase front of the 
beam was nearly planar at the point of incidence of the beam 
on the filament, so that in the interpretation of the experi- 
mental results we could use the asymptotic theory of the 
diffraction of a plane wave. Two linear polarizations of the 
beam incident on a filament at right-angles to its axis were 
selected: TM and TE. A photodetector with a narrow entry 
slit was used to measure the intensity I ( p )  of the scattered 
field as a function of the scattering angle p in the far-field 
zone at a distance r = 55 mm from the axis of the cylindrical 
filament. The intensity of the field on the beam axis was I,, in 
the absence of the scattering filament. The polarization of 
the scattered radiation was investigated with an analyzer in 
the form of a film Polaroid. 

Two quite distinct series of experiments were carried 
out deliberately. 

We investigated the diffracted radiation separately in 
the bright and dark regions of the penumbra when only one 
"edge" of a cylindrical filament was illuminated with a "nar- 
row" focused beam (Fig. 1 ). A "waist" of the caustic surface 
of the incident field formed at the point of incidence of the 
beam on the filament. The minor semiaxis I = 28 ,urn of the 
elliptical cross section of the beam, perpendicular to the cyl- 
inder axis, satisfied the inequalities a > l%A. This method 
allowed us to eliminate in practice the diffraction effects at 
the other edge of the filament and to ensure that the size of 
the geometric shadow was considerable (I11 in Fig. 1 ). The 
illuminated region (11), including the bright part of the pen- 
umbra, was located on the other side ofthe transmitted beam 
(1). 

A study of the diffraction of the radiation in the penum- 
bra was also made in the second series of experiments when 

FIG. 1 .  

the whole cross section of a cylindrical filament was illumi- 
nated with a "wide" beam with I = 320 ,um ( I>  a % A )  and 
the radius of curvature R of the phase front of the beam 
satisfied the condition R $ a  (Fig. 2 ) .  In this case the shadow 
zone was located within the transmitted beam region ( I )  and 
the angular size of region I was < lo. On both sides of it there 
were two symmetric illuminated regions including the 
bright part of the penumbra. This method allowed us to re- 
veal the diffraction effects associated with the scattering 
from both edges of the filament. (The details of our experi- 
ments and a study of oblique incidence of a beam on a fila- 
ment were reported elsewhere.''-l6 ) 

An investigation of the polarization of the scattered 
light in these experiments showed that in the case of the 
normally incident beam with a linear TM (TE) polariza- 
tion, the scattered field had the same TM (TE) polarization. 
If the polarization in the incident light was intermediate 
between TM and TE, the polarization of the scattered wave 
was elliptic and the parameters of the ellipse depended on the 
angle of observation p. In the case of illumination of the 
filament at grazing angles within the range a<30° relative to 
the filament axis, the vectors describing the scattered radi- 
ation in the penumbra retained in practice the orientation 
parallel to that in the incident beam. This was in agreement 
with the boundary condition (12) and associated with the 
absence of the diagonal elements in the matrix describing the 

FIG. 2. 
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principal approximation for the boundary condition. 
In the first series of experiments (Fig. 1 ) we found that 

illumination of one edge of filaments 2a = 50-500 pm in 
diameter with a narrow beam gave rise to a "tail" of the 
scattered radiation intensity in the dark penumbra region 
(111) and this tail decreased rapidly in intensity to a back- 
ground illumination level as the angle of observation was 
increased. On the other side of the transmitted beam in the 
bright part of the penumbra (11) the intensity of the diffrac- 
tion field (which will be called the satellite) also fell rapidly 
on increase in q, and merged with the growing field due to the 
geometric reflection. 

Figure 3 gives the angular dependences of the intensity 
of the scattered light obtained for a constantan filament 
2a = 100 pm in diameter (7 - ' = 500). The black dots in 
Fig. 3 represent the TM polarization and the open circles 
correspond to the TE polarization of the incident beam. This 
figure includes also continuous curves representing the re- 
sults of our calculations of the satellite intensity in the bright 
part of the penumbra (q ,  < 0),  carried out for both polariza- 
tions on the basis of Eq. ( 13 ), where the Fresnel integral was 
replaced by the expression - i/a,. In calculation of the 
theoretical curves the value of Q was assumed to be cu for the 
TM polarization (curve 1 ) , whereas for the TE polarization 

FIG. 3. 

(curve 2)  it was described by Eq. (15) in accordance with 
the generalized Leontovich condition ( 11 ) . It is clear from 
Fig. 3 that curve 3 representing the intensity of the scattered 
fields calculated using the model of a perfectly conducting 
cylinder is completely unsuitable for the description of the 
experimental dependence in the case of the TE polarization 
(Q  = 0).  Curve 4 corresponding to the conventional Leon- 
tovich condition for the TE polarization, Q = imN(C)x  - ', 
describes - on a logarithmic scale - the experimental data 
on the average 10% poorer than curve 2 calculated using our 
condition ( 11 ). It follows from a numerical analysis that the 
expressions such as Eq. ( 13) go over continuously to the 
Fresnel reflection expressions and, beginning from Iq, I k 20°, 
the scattered field can be described with satisfactory preci- 
sion by the geometric-optics approximation. 

Similar results follow from a comparative analysis of 
the tails in the dark part of the penumbra (p > 0).  Curves 3 
and 4 represent the field calculated for the TE polarization 
using the model of a perfectly conducting metal and the con- 
ventional Leontovich condition, respectively; the calcula- 
tions were carried out by reducing Eq. (13) for p > 0 to a 
series of residues by analogy with the procedure adopted in 
Ref. 13. Curve 2 was obtained for the total field Uh by calcu- 
lation based on Eq. ( 13) specifying Q in accordance with Eq. 

FIG. 4. 
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( 15). We can see that in the case of the TM polarization the 
results of the calculation based on the model of a perfectly 
reflecting cylinder (Q = w ) and utilizing Eq. ( 13 ) are in 
satisfactory agreement with the experimental data (curve 
1 ). For comparison, Fig. 3 gives (chain curve) the calculat- 
ed dependence of the intensity of the scattered field formed 
by diffraction of a plane wave by a half-plane with a sharp 
edge. l 3  

In the second series of experiments (Fig. 2) we illumi- 
nated the whole cross section of filaments with diameters 
2a = 15-50 pm with a wide beam and observed high-con- 
trast oscillations of the scattered light intensity in the pen- 
umbra on both sides of the transmitted beam; these results 
were analogous to the diffraction by a strip and the ampli- 
tude of these oscillations decreased rapidly on increase in the 
observation angle. An investigation of the process of forma- 
tion of these oscillations was made by scanning a filament 
across the beam. It was found that the oscillations in the 
penumbra were the result of spatial interference of the waves 
from the diffraction tail due to one edge of the filament and 
the satellite due to the opposite edge. 

The black dots and open circles in Fig. 4 represent the 
angular dependences of the peak-to-peak amplitudes of the 
oscillations in the bright part of the penumbra (I1  in Fig. 2)  
obtained for a Manganin filament 2a = 30 pm in diameter 
(7 - ' = - 150), representing the results obtained respec- 
tively for the TM and TE polarizations of the incident field. 
This figure includes also the dependences of the phase shift 
(advance) Y, (p)/.rr of the oscillations representing a practi- 
cally equidistant distribution of extrema of the intensity on 
the scale of the angle p.  The amplitudes of the oscillations 
calculated for a Manganin cylinder with N = 4.1 + 2.6i are 
represented in Fig. 4 by continuous curves ( 1 for the TM 
polarization and 2 for the TE polarization). It is clear from 
this figure that the results of calculations of the angular dis- 
tribution of the scattering of a plane wave by an opaque cyl- 
inder'*.'' (see also Ref. 17) are in good quantitative agree- 
ment with the experimental dependences. The chain curve in 
Fig. 4 shows also a fall of the peak-to-peak oscillation ampli- 
tudes calculated using the model of diffraction by an opaque 
strip of width 2a (Ref. 13). 

Experimental results similar to those presented in Figs. 
3 and 4 were obtained by us for a wide range of diameters and 
materials of the filaments and they differed only in respect of 
the slopes of the angular distributions. 

These experimental and theoretical studies of the dif- 
fraction of optical radiation by conducting cylinders charac- 
terized by large values of the parameter k,a revealed a good 
qualitative (and in most cases also a quantitative) agree- 
ment between the experimental results and those found by 
calculation employing the asymptotic expressions derived 
above. This allowed us to draw the following conclusions. 

1. The proposed experimental method is suitable for the 
investigation of the diffraction of optical radiation by convex 
metallic bodies in the penumbra where the diffraction 
(wave) effects are dominant. 

2. In the penumbra the TE-polarized light exhibits, in 
contrast to the TM polarization, a strong dependence of the 
angular distribution of the intensity on the complex refrac- 
tive index. Therefore, the behavior of the TE-polarized light 

in the penumbra is best used in determination of the comdex 
refractive indices of metals which can be obtained bv com- 
paring the calculated and experimental data. For example, 
such a comparison shows that the complex refractive index 
of Manganin is N = 4.1 + 2.6i at the wavelength A, = 0.63 

3. The models of perfectly and strongly conducting con- 
ductors (corresponding to the ideal boundary conditions 
and the conventional Leontovich conditions) are insuffi- 
cient for a satisfactory description of the diffraction of opti- 
cal radiation with the TE polarization by metallic bodies, 
particularly in the penumbra. A satisfactory agreement 
between the experimental results and the calculated curves 
are obtained for the TE polarization only if the scattering 
properties of such metallic bodies are described by the gener- 
alized Leontovich boundary condition. 

I '  For example, at the frequency of v = 5.5 x lOI4 s ' the complex refrac- 
tive index of copper is 0.62 + 1.59i (Ref. 2); the thickness of the skin 
layer is then d-0.4X l o 5  cm and we also have 6-0.6. 
If N "  (N',  the attenuation of the refracted field inside R is proportional 
to exp( - 6 -  ' I/a) ,  where Iis the length of the segment of the refracted 
ray traversed by the wave. In the case of a homogeneous cylinder of 
radius a the minimum length of the refracted ray (corresponding to the 
tangential ray) is 2a(N1' - 1) "2/N' and the attenuation of the field 
along this ray is by a factor of at least exp( - g '  ) if N1>1.15. If 
N u  a N', such ray constructions are invalid and the attenuation of the 
field at a depth a [see Eqs. ( 3 ) ,  (5),  and (611 is proportional to 
exp( - ~ - l I m ~ l ) < e x p (  - 6 . ' ) .  

"The factors ( - i)' are introduced into the expansion (3 )  for conven- 
ience in calculations. 

4'  It is pointed out by FockI0 that if the expression for the wave field in the 
penumbra obtained on the basis of the conventional Leontovich condi- 
tion is modified by replacing N' with (N'  - 1 )I", then its accuracy 
increases. Such a replacement corresponds to a change from the conven- 
tional Leontovich condition to the boundary condition of Eq. ( 11) (see 
also Ref. 6).  

5' The penumbra is identified by the inequality isol 5 2m ' . 
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