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We consider the reduced Wess-Zumino-Witten sl(3) model by making use of two free fields; the 
result possesses global sl( 3 ) invariance. In this theory the operators W2 and W, introduced 
previously are Noether currents. Our analysis directly generalizes the results obtained by 
Alekseev and Shatashvili, which treated thesl(2) cases (two-dimensional gravitation). 

Two-dimensional theories employing specific chiral 
W,, algebras remain somewhat puzzling.-It has recently been 
suggested4 that these theories are actually invariant under 
ordinary sl( n ) symmetry operations. The W operators then 
couple to Casimir combinations of the generators for Kac- 
Moody algebra, W,, -tr S' + ... .h Furthermore, the Wop- 
erators themselves can be looked upon as Noether currents 
responsible for some symmetry of the theory, in the same 

. way as the Sugawara energy-momentum tensor -trJ '  turns 
out to be a Noether current in the Wess-Zumino-Witten 
(WZW) model, a consequence of general coordinate trans- 
formations. These ideas have been discussed by Alekseev 
and Shatashvili4 as they relate to s l (2)  symmetry. Here we 
extend their results to the first nontrivial example of sI(3) 
algebra. 

1. We review here the basic assertions relating to two- 
dimensional gravitation made in Ref. 4 (see Refs. 5,7-9, and 
a more detailed description in Ref. 10). This theory can be 
considered a Hamiltonian reduction of the WZW s1(2), 
model. Representing the currents in terms of free fields (see 
Ref. 1 1 and references therein) ,' ' 

Jf=exp (2"i+/q)$', 

The corresponding central charge is c = 1 - 6(q - l/q)'. 
This is the same as the charge in the minimal M,,,, model if 
q' = m/n (Ref. 10). 

In place of (2) ,  we may rewrite the action in terms of 
the field $: 

Note that at the quantum level, S, is not the same as S , :  the 
difference stems from the change in quantum measure in the 
functional integral. This difference shows up in the replace- 
ment of the parameter k by q' = k + g = k + n = k + 2, 
and in the appearance of the term R, in Eq. (2)  (a  detailed 
explanation may be found in Secs. 2.3 and 3.3 of Ref. 11 ) . All 
quantities expressed in terms of $ and y, (in particular, the 
Noether currents) are changed by the replacement of k by q' 
and by a contribution associated with the term Rg, (the lat- 
ter contribution to the Noether current appears any time a 
symmetry transformation fails to leave the metric invar- 
iant). The representation (5 )  has an advantage over (3):  
antiholomorphic sI(2) symmetry is obtained quite simply- 
the action S = S ,  is invariant under the substitution 

I-=esp (2Ihi$/q) $'X2- 2"Vq~@'+ (2-4') X' , [which is the infinitesimal form of the ~iecewise-linear 

and the reduction condition J + = 1 means that transformation $-. (a$ + b)/(c$ + d )  1. We may therefore 
treat $ as a complex coordinate in the space CP ', and Sas  the 

$'=exp (-2"i+/q). (2)  invariant action, which depends solely on the homomorphic 
coordinates in that same space (no recourse to antiholomor- 

Another consequence of reduction is that it is possible to put phic coordinates). Of course, the Lagrangian in ( 5)  cannot x = 0. In this gauge, the action in the WZW model be- be invariant under sI(2); it constitutes a separate class of 
comes' ' Wess-Zumino term, and varies like a total derivative when $ 

1 2'" i P ' 
S,=-.~($@~+-R@)= 2 o - T j  lp'p1-2-14 (3)  is replaced by $ + E _ $'. In terms of the original free field g7, sl(2) symmetry can 

where R is the two-dimensional curvature, R = (logy)", y is 
the two-dimensional metric ( y = y,, ), g, = 2"* i#/q, 
q' = k + g = k + 2. The energy-momentum tensor is deter- 
mined by the variation of coordinates z-z - ~ ( z ) ,  with the 
field q, transforming as Sq, = ~ y ,  ' + E' (Ref. 5 )  (the term E' is 
related to the fact that it is $and not q, that is a scalar field, 
transforming according to 6$ = E$') and Sy = ~ ' y  + ..., so 
that SR = t" + ... and 

6 s  - - 5 LT, 
qZ 1 T =-(acp)Z --(q2-1)d2ql 
4 2 (4)  

only be realized by nonlocal transformations: 

6cp=e0+2e- J e9dz+e+'e-v+e.'e-9J b B + ~ - ' e - ~ ( j  evdz)' . 
(7) 

(Notice that the "positive" sI(2) operator does not affect y, 
if E'+ = 0, but it changes $e,dz: SJe'fdz = E + + ... .) We 
must emphasize that in contrast to the general form of field 
theory, nonlocal transformations in the conformal theory 
are well-defined. The problem is usually that after a nonlocal 
field transformation, the correlators start to depend not just 
on the points, but on the integration paths as well. In the 
conformal theory, however, where the conformal blocks de- 
pend on the points holomorphically, the integrals no longer 
depend on the path, and the nonlocal expressions turn out to 
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be no worse than the local ones. ( In  the boson version of the 
theory, this is ensured by the Feigen-Fuks-Dotsenko-Fateev 
projection, wherein a delta function is inserted into the cor- 
relators, forcing the integrals along unrestricted paths to 
zero; see Ref. 11 for details.) Be that as it may, it is more 
convenient to study the symmetry of the theory using the 
representation (5 ) :  most Noether currents are nonlocal 
functions of g,, but locally they depend on $. 

Here we are dealing with three Noether currents, corre- 
sponding to the three generators of sI(2) algebra, and two 
currents, associated with the homomorphic and antiholo- 
morphic coordinate transformations: 

The expressions for the sf(2) currents take the form 

and only the homomorphic energy-momentum tensor is lo- 
cally a function of the field g, [see (4)  ] : 

It is easy to show that 

2. We now repeat these arguments for the case ofsf(3), 
algebra. The only Noether currents, which may be expressed 
locally in terms of g,, will be W2 and W3. The nonholomor- 
phic partner of W, ought to be identical with trT3, a condi- 
tion analogous to ( 1 1 ) . 

In the general case of the algebra G = s l (n ) ,  the action 

where g, is a scalar field, as manifested by a vector with rank 
G = n - 1 components, and q' = k + g = k + n. In general, 
there are different types of $fields. Recall (all details may be 
found in Ref. 1 1 ) and the $ fields emerge from the Gaussian 
expansion of the group elements of G, for n = 3, we have 

FIG. 1. Roots and weights for s l ( 3 )  algebra. 

tions-are defined in Fig. 1 ). These $ fields are labeled by 
the positive roots of the algebra G = sl(n).  There is an in- 
teger characteristic that goes along with each root a-its 
weight 

( A  + is the set of positive roots). The weight assigned to the 
simple roots is h ,  = 1, and for the remaining roots the 
weight is greater than one. The assumption in the Hamilto- 
nian reduction of Drinfeld and Sokolov is that all currents 
J + responsible for simple roots are equal to unity, and all 
other J + are zero. For s l (3)  algebra in the gauge in which 
xn = 0, this means that 

J + a , = e ~ p ( - a l ~ )  $ i l - l ,  

J + a , = e ~ p ( - ~ 3 c p )  $,'=i, (13) 

J+a2-($z'-$i~3') exp ( - -azp)  =O. 

Therefore, 

and 

The action ( 12) can then be rewritten as 

while in terms of the fields g, we have 

S.--S(P+$(T). k--q2) - SRP(P. 

The variation of the action takes the form 

Rather than $, and $,, however, the proper fundamental 
variables are more likely to be $, and $,, with $, being ex- 
pressed in terms of the latter via ( 15). These variables are to 
be considered complex coordinates in the space 
C P  ' = CP', and they transform piecewise-linearly under 
sf(3):  

1 01 01 arp,+b$~+c d $ ~ + e $ ~ + f  
O I 0s " * ~ $ ~ + t $ ~ + r  ' I s  - p%+t$.+r ' (18) 

The transformation law for 3, is induced by the transforma- , . 
(the vectors p-the weights of the fundamental representa- tions in ( 18), and looks rather less trivial. There is no need to 
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substitute (15) into Eqs. ( 16) and ( 17); instead, we derive 
expressions for the infinitesimal variations of $,, $*, and $, 
under ( 18), and make use of ( 17) to find the Noether cur- 
rents. This then yields the infinitesimal version of (18): 

The antiholomorphic Noether currents 7, which generate 
the sI(3) algebra, can be determined from ( 17) : 

8 

where (see Fig. 1 ) 

Then 

k 1 Yi' ' k 1 Pi' ' 
J~=- - - [Y~+$~( - )  3 $3 41 1, ~ a s - T ( ? )  3 $3 9 

k 1 $3 Pi' 
J 6 =  --[7~i,-z(7)'], 3 $ 

Pi' ' k * 
J8 = - [T($z-$i$a) (T) 

3 $ 

-- 9' ($'-lplg)P; - -P:] 
Qi'  $3' 

The homomorphic energy-momentum tensor T =  W2 is the 
Noether current for transformation of the fields 

or, in terms of p, 

Then 

6s- - J ~ T .  

and 

The most remarkable fact here is that the holomorphic 
operator W, turns out to be a Noether current associated 
with an additional symmetry that leaves the action un- 
changed. In terms of the field $, the effects of this symmetry 
are rather complicated: 

but in terms of p, these same equations simplify: 

[here a,, a*, a, are positive roots of the Lie algebra s1(3), 
while v, and v, are the fundamental weights: 
a ,v ,  = a,v, = 0 (see Fig. 1)  1. Equations (27) come as a 
more or less natural generalization of (23). The variation of 
the action is 

while in terms of the free fields 4 (see Fig. 1 ), 

-, 
(the subscripts )I and 1 identify components of the vector 4 
corresponding to the directions of a, = p andp,; see Fig. 1 ). 

3. In Eq. (30), the operator W, is really just the classical 
approximation to the formula given by Fateev and 
L~k '~anov, '  which was obtained via a Miura quantum 
transformation. In order to appreciate this connection with 
a well-known result, recall how the quantum W, algebra of 
Zamolodchikov' was constructed: 
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c / 3  2 T ( z / 2 )  2 A ( z / 2 )  -- - +------+---y-+0(1). 
z6 z4 z- 

Here 

The free-field representation for Tand W y  becomes2 

The expression in curly brackets in the second of Eqs. (33) is 
not the same as the result obtained by Fateev and 
Luk'yanov,' which was derived from the Miura transforma- 
tion: 

(a-FI) .  . . (a-Fn) 

[here F, = ip, d4/dao, and pa is the fundamental weight of 
thesl(n) algebra; see Fig. 1 for the case n = 31. The resulting 
relationship is then 

3"i 
~ , * ~ = ( a @ ~ ) ~ - 3 a @ , ( a @ , ) ~ + ~ a .  ahl a'@, 

+3.2-" ia ,  a @ ,  d2#11+32-2-'hiao d2@,  a @,, 

+3".2-"iao a'@, 
+3a02 a3@,+3"ao2 ~ 3 @ l l = 6 i ( l - ' S / , a o 2 ) "  WsPZ-3".2'1aiao dT .  

(35) 

Clearly, this is a general phenomenon: the Woperators 
of Fateev and Luk'yanov are not conformal fields, and must 

be (slightly) corrected by terms containing derivatives of 
the "lowest-order" W operators, with coefficients propor- 
tional to the powers of a, (these corrections were recently 
discussed in Ref. 12). In terms of q, = - i$/q, 

where W;' has been defined in (30). Our Noether current 
W';' is then nothing but the classical approximation to the 
W, operator of Fateev and Luk'yanov (i.e., it is correct only 
to leading order in q). Of course, in the same classical ap- 
proximation, the transformations (6)  and (27) may be sup- 
plemented by a general coordinate transformation to obtain 
the linear combination (35), and to represent the classical 
approximation to W:z as a Noether current. Technically, 
however, this is quite difficult to do at the quantum level. 

One important difference between the quantum expres- 
sions (33) for T = W, and the "highest-order" W, opera- 
tors is that negative powers of q appear in the latter case. It 
can be shown to be completely impossible to derive detailed 
expressions for the variation of our action (12), since the 
latter yields only contributions containing q2 and qo = 1. In 
contrast to the general coordinate transformations (23), 
however, which relate to the energy-momentum tensor, 
transformations like (27)-which are responsible for the 
other W operators-are nonlinear, and they induce nontri- 
vial changes in the metric appearing in the functional inte- 
gral. The corresponding Jacobian has a nontrivial depen- 
dence on the q, fields, and it does not reduce to the usual 
anomaly (which would only affect terms of order qO). In- 
stead, a calculation of the Jacobian leads to an infinite per- 
turbation series in q - ' [as in Eq. (33) ] .  Naturally, the exis- 
tence of compact expressions like (33) means that there 
ought to be a way to sum the series; further study is required. 

4. We summarize by formulating the two important 
statements whose validity has been demonstrated here for an 
sl(n) theory with n = 3. 

a )  There exists an sl(n) -invariant action which may be 
written in terms of inhomogeneous holomorphic coordi- 
nates of the type ($',&) in the space C P  - ' . Under sl(n) 
transformations, the corresponding Lagrangian changes by 
a total derivative. The coordinates ($,,$,) comprise the last 
column of one of the Gaussian expansion matrices. These are 
so identified that the Drinfeld-Sokolov Hamiltonian reduc- 
tion expresses all remaining fields 4 and $ locally in terms of 
them (in the gauge x = 0 ) .  For example, $, = $; /$; , but 
t+h2 = dz; $2 and $, are therefore the preferable coordi- 
nates, and the group sl(n) acts precisely upon the latter via 
rational transformations (i.e., simply). 

b) The indicated action also admits of n - 1 other (sur- 
prising?) symmetries of the type (see the Appendix for de- 
tails) 

The first of these, Scp = acp' + pa', is simply a general coor- 
dinate transformation, and the corresponding Noether cur- 
rent is the holomorphic energy-momentum tensor T = W,. 
The generators of the other transformations are the remain- 
ing W, operators, which are known from the theory of W,, 
algebras. We have not derived the quantum equations for 
W, +, . Apart from the Walgebras themselves, the algebra of 
the above transformations may also be of interest. One can 
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also determine the antiholomorphic analog of W, , which is 
identified with trTh + corrections. 

APPENDIX 

We explain here how we derived the equations for the 
transformations that generate the W, operators for arbitrary 
sl(n) algebras. 

In the general case, the $ fields are defined in terms of a 
Gaussian expansion of the g  matrices in the WZW model:" 

g = g = ( ~ )  ( C P ) ~ U  (9)  7 

where g, (x) and g ,  (p) are lower-triangular and diagonal 
matrices, respectively. For s1(3), we make use of a different 
notation for the variables, 

in accordance with the notation of Ref. 1 1, wherein the inter- 
ested reader can find complete information on representa- 
tions of Kac-Moody algebras in terms of free fields. In our 
new notation, the raised index identifies the weight pa for 
the field $cz. 

After the reduction and current conditions J"' = 1 
and J = g - ' dg have been imposed and the gauge condition 
x = 0 has been chosen, the action will depend solely on some 
set of n - 1 fields $. The remaining fields $ and q, can be 
locally expressed in terms of these n - 1 independent vari- 
ables only if they are elements of the last column of the ma- 
trix g, ($): 

The recursion relations (A2)  express any element g ,  ($) in 
terms of an element in the next column. The variables 
$'" -- i' =Yi appearing in the last column may be looked 
upon as inhomogeneous complex coordinates in the space 
cpl -- I [this manifold is just the space required for the ad- 

joint action under s l (n)  ]. 
The group sl(n) operates on these coordinates via 

piecewise-linear transformations, 

The first problem is now to find an action that depends 
only on the holomorphic coordinates \Vi in the space 
CP" I ,  and that is invariant under s l (n) .  It is remarkable 
that such an action exists (and is given by a Kirillov-Kos- 
tant-like reduction), but it is simpler to write it out in terms 
of the unit-weight fields qbi = $ , ( I '  rather than \V, $1" - ": 

rank G 

where KO = (Q - ' )O is the inverse of the Cartan matrix Q,. , 

1 2 1  K=' / ,  for s1(2),  K = - ( ) for ~ 1 ( 3 ) ,  
3 1 2  

3 2 1  
= 1 2 3  4 2) for s l (4) .  ... 

Note, however, that the effect of the group sl(n) on the 
fields $, is a nontrivial one [see ( 19) for a simple example], 
since the only good coordinates in the space CP" are the 
Y, . For variations in either Ti or $, , the action changes by 

n-I  n-r 

Hereafter, we will find it convenient to employ a more com- 
pact notation, similar to that introduced in (A2),  

n-1 n-i 

Then 

where Qij is the inverse Cartan matrix of the s l (n)  algebra 
(i.e., Qii = 2, Qi- = Qi,i+ I = - 1, all other elements 
vanish). 

A direct test of the s l (n)  invariance of the action is an 
arduous exercise which we shall not pursue here. In order to 
understand the symmetry transformations associated with 
the operator W3, we begin by searching for transformations 
of the fields $, that leave (A4) unchanged. Next, it must be 
shown that these transformations turn into local transfor- 
mations of the "good" coordinates Yi (neither of these steps 
is trivial, a prior~l). The desired transformations take the 
form 

n-1 

with some constants ai and Bv.  Then 

and after substitution into (A5) and some manipulation, we 
obtain 

n-, 

- 
i , i , k  

+ terms proportional to t. (A10) 
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For (A8) to be a symmetry of the action, it is necessary that 
the right-hand side of (A10) be equal to t W';' for all E. Thus, 

and the expression in brackets in the second integral in 
(A10) must be a total time derivative: 

Equation (A1 1 )  says that B,, is an antisymmetric matrix 
built up from the vectors a , .  Naturally, a displacement com- 
mon to all the components a,, Sa, = const, leaves the action 
unchanged, and induces the trivial symmetry 6$; 
= const.&'$,'-a general coordinate transformation with 

parameter E' .  In terms of the modulus of these displace- 
ments, Eqs. (A1 1 )  and (A12) admit of a unique solution, 
with a, = i - 1 ,  and 

If we assume that Yo = Y,, =O,  we may rewrite (8)  as 

We shall not go on to calculate W, here; the result agrees 
with the classical part of the expression obtained by Fateev 
and Luk'yanov,%ne a,, has been replaced by q. 

We are still not finished, however. It remains to show 
that the transformations (A14) turn into local transforma- 
tions of the fundamental variables V,, and this is in fact the 
case. Omitting some straightforward calculations, we give 
only the final result for the transformation of all $fields into 
g, ($). Equation (A14) takes care of the case $j = $I1'. In 
general, 

8qj = (j-I) &'qj'+~qjf ( Y ~ L ~ - Y ~ ~ ~ ) ,  
6$j'"'j~'$:~)+E [-$j'$1~+i+$j4,~+i ( Y ~ J - Y L ~ )  I ,  

(2)f 1 6 d 3 '  = ( i + ~ ) ~ ' q ~ ~ ) '  +e[-*j qj+2+q~z)$~+z(~/+i-<+8) 1, 
G$~('+')= (j+k-l) e'$yi)r 

+E[-'II,I~)' @i+k+$:") $ j i k ( ~ / + h - t - ~ J : k + ~ )  T. ( ~ 1 s )  

We obtain (26) from (A15) by an appropriate change of 
notation: 

To  check the consistency of ( A  15) with (A2),  it is necessary 
to use an identity for the inverse of the Cartan matrix for 
s l ( n ) ,  

whereupon we find that 

In similar fashion, one can derive explicit expressions for the 
more complicated field transformations that leave the action 
(A4) unchanged, and for which the corresponding Noether 
currents are consistent with the other operators W, . These 
transformations contain k - 1 derivatives and k - 2 powers 
of Y ,! [compare with (A81 for W , ] .  
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sions, and to A. D. Mironov for assistance with the prepara- 
tion of this paper. 
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