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The problem of light wave propagation in a solid in the heterophase state near the percolation 
threshold is examined. It is demonstrated that in the attainable vicinity of the threshold a 
description of multiple scattering requires analysis of the "strong coupling" state. The effective 
Hamiltonian of the problem is formulated and the renormalization group method is employed to 
calculate the asymptotic form of the average Green's function of a light wave in the medium. 

1. INTRODUCTION 

The problem of describing phase transitions in defect 
solids,has received increasing attention in recent years. Ma- 
terials with a so-called smeared phase transition containing 
large-scale defects represent a broad class of strongly-disor- 
dered solids. In spite of extensive research the issue of the 
nature of internal processes responsible for smeared phase 
transitions, specifically the existence or absence of a "true" 
phase transition in such materials, has remained open. A 
number o experimentally tested properties of materials con- 
taining stneared phase transitions can be described qualita- 
tively oased on concepts in which the disordered material is 
considered to be a set of regions experiencing a local phase 
transition; the characteristic parameters of these regions 
vary from one region to another. If we assume that the most 
significant fluctuations are those that occur in the local tem- 
perature field of the phase transition T, ( x )  whose distribu- 
tion function 9 ( T, ) has a single maximum at T = T, and 
small dispersion (AT: ) <T,, while the correlator 
(AT, (x)AT, (x ' ) )  has a single characteristic scale Ro&rc 
(r, is the radius of thermal fluctuations), such a model pre- 
dicts the existence of a near-percolation-type phase transi- 
tion in the system. 

The model will be entirely equivalent to the continual 
percolation problem if the long-range fields induced by the 
new phase clusters are negligible. The low-level elastic inter- 
action of the clusters corresponds to the weak striction case 
characteristic of a number of magnets, while dipole forces 
are not significant if the screening radius is sufficiently small 
r, <Ro. 

The most characteristic feature of the percolation-type 
phase transition is the growth in the average cluster dimen- 
sion R of the new phase up through the dimensions of the 
specimen at the percolation threshold. In transparent disor- 
dered materials experiencing a percolation-type phase tran- 
sition this will produce a peak in the small-angle light scat- 
tering intensity (Ref. 1 ). 

Recent experiments on light scattering in disordered 
ferroelectric PbSc,,, Ta,,, 0, crystals and in a transparent 
CTSL ferroelectric ceramic (8.5/65/35 composition) have 
revealed sharp small-angle light scattering intensity peaks2f3 
which indicate the presence of percolation-type processes. 

Analysis suggests that under these experimental condi- 
tions light scattering is so strong that it is necessary to ac- 
count for multiple scattering. The temperature and electri- 
cal field range near the percolation threshold then becomes 

quite accessible; for this range the value of the dimensionless 
parameter characterizing scattering multiplicity becomes 
greater than unity. In this strong fluctuation range of the 
medium both ordinary perturbation theory and the latter 
approximation are unsuitable. 

The present study employs the renormalization-group 
(RG)  method for summation of the diagrammatic series for 
the effective refractive index near the percolation threshold. 

This method was first applied to describing critical light 
opalescence near the liquid-gas transition point in Ref. 4. 
However specific analyses have revealed that light scattering 
by thermal density fluctuations in the attainable tempera- 
ture range 7 = ( T - T, )/T, > l o p 6  near this point is com- 
paratively weak and the contribution of multiple scattering 
grows under conditions where the strong coupling state is 
not attained. Light wave damping under actual experimen- 
tal conditions can be calculated within the framework of 
infrared (IR) perturbation t h e ~ r y . ~  Unlike this case in sol- 
ids it is necessary to investigate the strong coupling state in 
order to analyze experimental data on the correlation prop- 
erties of the wave field (optical or acoustical) scattered by 
static heterophase fluctuations near the percolation thresh- 
old. Specifically this class of problems includes the problem 
of determining the effective elastic moduli for solid percola- 
tion-type composites (see, for example, Ref. 6). 

From the theoretical viewpoint a description of the sta- 
tistical structure of a scattered ("random" ) wave field re- 
duces to a calculation of its correlators 

G ~ ~ " " ' ~ ( X ~ ,  t,, . . . ,x,, t,)=(u,(xi, ti). . . . u~(x,, t,) >, 

while a determination of the effective refractive index or the 
effective elasticity moduli is equivalent to a calculation of the 
field-averaged heterophase fluctuations of the retarded 
Green's function G2(x,,t,,x2,t2). In order to use the appara- 
tus of the field theoretical RG to calculate G2 it is first neces- 
sary to formulate the effective Hamiltonian for the wave 
propagating in the percolation medium. 

2. DERIVATION OFTHE EFFECTIVE HAMILTONIAN 
DESCRIBING THE SCATTERED LIGHT FIELD NEAR THE 
PERCOLATION THRESHOLD 

We describe the propagation of a monochromatic wave 
of frequency w in a heterophase material near the percola- 
tion threshold by the stochastic Helmholtz equation: 
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We assume that temporal variations in the states of large- 
scale clusters are sufficiently slow that the random permit- 
tivity field Z(x,t) can be regarded as independent of time. 
Since we do not consider the polarization properties of the 
scattered light in the present study we will limit the analysis 
of the scalar equation ( 1 ). 

The statistics of the field Z(x) in the percolation medi- 
um are known from a solution of the continual problem from 
percolation theory.' When we refer to a percolation-type 
phase transition the random field Z(x) is determined by the 
evolution of the inhomogeneous field of the order parameter 
M(x) from varying external conditions (such as tempera- 
ture). The local values of the random field depending on the 
symmetry of the system will be 

i. ( x )  = ~ ~ + a l M n  ( x )  

with n = 1 or n = 2, while the values of M(x)  are deter- 
mined by the local temperature field of the phase transition 
Tc (x)  whose statistical properties are described in the Intro- 
duction: We note that since ordinarily phase transitions in 
solids are first-order transitions, the condition rc ( R ,  is easi- 
ly achieved and the configurational fluctuations dominate 
over thermal fluctuations when averaging over the field 
E (x)  =B(x)  - E ~ .  Consequently there is no fundamental dif- 
ference between the values n = 1 and n = 2 in the absence of 
long-range forces, since in both cases the spatial relation 

is determined by the indicator function of the new phase: 
8(x)  = 1 or 8(x)  = 0. 

The simplest function describing the correlation prop- 
erties of the scattered field u(x)  and which we will investi- 
gate here is the pair Green's function 

averaged over fluctuations in ~ ( x )  with the operator 

Using the standard representation in terms of Gaussian inte- 
grals we obtain the following expression for this function: 

G ( X  - x' )  = UuDuf {u (x )  ut (x')  exp [-  dxu+lu ] )  < j UUDL+ exp [ - dxuT L U ]  )e 

We will represent the averaging operation (...), in (2)  as a 
functional integral with respect to a certain field p ( x )  with 
the weight multiplier exp[ - H(p) 1. The functional H(p) 
will then, obviously, play the role of the effective Hamilto- 
nian in the problem, thereby making it possible to develop 
the diagrammatic technique for the problem and, if the actu- 
al values of the physical parameters of the problem require, 
apply the theoretical-field RG technique. It will be conven- 
ient for our further analysis to rewrite ( 2 )  using the replica 
method as 

where N-. 0, with the constant c is defined by the expression: 

The canonical representation of the percolation prob- 
lem is given by the Ising lattice model with random bonds as 
T+O (Ref. 8).  The average values (F) in this model are 
calculated from: 

Here J-. + CO, p, = f 1 ,  uxy is a random function of the 
bond, with uxy = 0 independently for each bond with a 
probability 1 -p ;  and summation over x ,  y is carried out 
over the nearest neighbors of the cubic lattice. Taking (5)  
into account we write the effective Hamiltonian for the lat- 
tice analog of our problem as 

m-i 

where Z, is the lattice analog of the operator 
L, = - A - &,k2. - 

We use the replica method to avoid the need to direct 
averaging over the field configurations a,,. The effective 
Hamiltonian can then be given as 

In writing (7) we used the independence of the values of axy 
at different bonds; the angle brackets (( ...)) denote averag- 
ing for the given bond. The limit n -. 0 is assumed in (7) ,  and 
the quantities He and Hi,, are given by the relations 

After averaging over the bonds in (7)  we obtain: 
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Passing to the limit J -  + CQ we have: 

from which we obtain the following expression for He,: 

withI(x,y) = -2- '"+ ' I  ln(1 - p ) ,  ifthenodesx, yare  
nearest neighbors, and I ( x g )  = 0, otherwise. 

The part of (1 1) that is quadratic in p," contains the 
sum of the squares ofp,"pf ...p:, where 1 (a < p <  ... < y<n. 
We denote these asp?', where (a) = (a,P, ...,y) is the or- 
dered multi-index. Introducing the set of fields s?' conju- 
gate to p?' we write the statistical sum as 

Here I -  ' is the inverse operator to I .  We carry out summa- 
tion over @?') and retain only the lowest terms in powers 
ofs'"' describing the interaction between the light wave and 
the percolation field. This routine is justified because the 
interaction term linear in s'"' makes the most contribution 
to the infrared singularities of the perturbation theory. Then 
going over to the continuous fields s'"' (x)  and urn, (x )  we 
obtain the effective Hamiltonian as 

m-i 

We are interested in the behavior of the series near the perco- 
lation threshold where the average cluster dimensions R 
grow without limit. The following analytic expression for 
the effective refractive index for c0kR ) 1 corresponds to the 
first four terms in ( 16): 

Here B;a,,cp,,c,,, denotes summation over the ordered multi- 
indices (a 1, (B), ( y) such that in the set of indices {(a) ,  
( P ) ,  (Y)) each replica is encountered only twice (see Ref. 
8).  In the notation for H 2, , He we have accounted for the 
fact that fields urn, with different a do not mix and setting 
a = 1 we have denoted urn ,  by urn.  The Hamiltonian H,* in 
( 13 ) which depends solely on the fields'"' describes the 2" - 
component Plotts model which corresponds to the continual 
percolation problem as n -0. It is convenient to go over to 
another representation of this problem: 

in which H, and Hi,, are determined by 

where 

summation over repeating characters i, j, k, I from 1 to 
(S - 1 ) is assumed. The limit s- 1 in ( 15) corresponds to 
our percolation problem. 

3. PERTURBATION THEORY AND THE EFFECTIVE 
EXPANSION PARAMETER 

Using the effective Hamiltonian obtained in the preced- 
ing section we obtain a graphical representation of the per- 
turbation series for the averaged retarded Green's function 
G(w,x) : 

nz= 1 + (i/8n) (k ,Ro) ln  (-2ikoR) 
- [ i,' (128x2) ] ( A S )  ' (k,R,) ( k o R )  

~ l n  (-2ikoR) + . . . , (17) 

where we have k i  = E,(w/c)~, AE = and A& is the 
difference in the phase permittivities. The effective refrac- 
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tive index in ( 17) is defined as n = k. /k,, where k., k, are 
the poles of the Fourier transforms of the dressed and bare 
Green's functions G(w,q), G,(w,q). 

We can easily see that the expansions ( 16), ( 17 ) coin- 
cide with the result of direct integration of the Helmholtz 
equation (1); here the relation between the correlators 
(&(xl)  ... E ( X ,  ) ), and the n-tails Kn (x  ,,..., x, ) of the contin- 
uous percolation problem is accounted for. For example, 

where the (...) ., (...), designate averaging over the thermal 
and spatial fluctuations of the field&(x), respectively.' 

It is clear from expression ( 17) that the effective expan- 
sion parameter for k$) 1 is the quantity f defined by the 
expression: 

Unlike the case of light propagation near the liquid-gas 
transformation point when the effective scattering constant 
remains small near attainable values of T> l op6 ,  near the 
percolation phase transition points in solids a transition to 
the strong coupling state ( 1 ) is quite possible. The rea- 
son for this is obvious: The thermal fluctuation radius far 
from the critical point ry' -- 5 -  10- * cmfunctions as the cor- 
relation scale for a liquid, while in solids there are no upper 
limits on the spatial scale R,. For example an experimental 
estimate yields R,- l o p 4  cm for PbMg,,, Nb,,, 0, crystals 
experiencing a smeared phase t ran~it ion.~ The grain size, 
obviously, functions as the characteristic scale for the CTSL 
ferroelectric transparent ceramic; in this case the grain size 
also amounts to several microns. We employ the RG method 
to analyze light propagation in such materials near the per- 
colation threshold when the parameter f > 1. In order to ap- 
ply this method to our problem it is necessary to first discuss 
the renormalizability of the effective Hamiltonian ( 14). 

4. RENORMALIZATION OFTHE EFFECTIVE HAMILTONIAN 
AND THE RENORMALIZATION GROUP EQUATIONS FOR 
INVARIANT CHARGES 

An attempt to apply renormalization directly to Hamil- 
tonian (14) encounters an obvious difficulty: The field-cu- 
bic vertex pi (x )  as well as the interaction vertex p 1 u l 2  are 
dimensionless (logarithmic) with dimensionality d = 6,  
while vertices of the form pppp are dimensionless ford = 4. 
Such a situation has occurred previously in efforts to calcu- 
late the crossover conditions near the tricritical 
and in analyzing the critical behavior of a crystal containing 
extended defects.12 In order to calculate the RG functions as 
expansions in powers of the small parameters Refs. 1 1 and 12 
employed, in place of one of the interaction vertices, an oper- 
ator (dependent on the additional parameter 6) whose di- 
mensions coincide with the initial vertex for 6 = 1, while for 
6 = 0 it is logarithmic with the same dimensions as the re- 
maining vertices. We proceed analogously and rather than 
directly renormalizing the Hamiltonian ( 14) we renormal- 
ize the following effective Hamiltonian: 

He andAHi,, are determined in ( 13), ( 15 ), while the Hamil- 
tonian Hp is expressed by the following formula: 

where the quantity Kpi in momentum space takes the form 

For < = 0 all interaction vertices in Hamiltonian (20) are 
logarithmic ford = 4 and, consequently, it is possible to car- 
ry out of the renormalized quantities in powers of the small 
paramesrs E = (4  - d)/2 and 6. We carry out renormaliza- 
tion of He, by means of the minimum subtraction scheme 
(see, for example, Ref. 13 ) . 

As is well known, in order to determine the form of the 
counterterms necessary for renormalization it is necessary 
to analyze the divergences of diagrams for the 1-irreducible 
Green's functions. Here we observe from the outset that 
since the theory contains no diagrams with closed lges of the 
wave field u, (x),renormalization of the part Hp (p) of 
Hamiltonian (19) which is independent2f the field u, (x)  
will be carried out independently. For Hp (p) the surface 
divergences with integer-valued nonnegative indices S have 
the following 1-irreducible diagrams: Self-energy diagrams 
with S = 2, vertex diagrams with S = 0 for the interactions 
(Kq,)pp, Sq, 4, Fq, and the composite operator diagrams 
(Kp) (Kp) with 6 = 0. Therefore we have determined that 
the Hamiltonian H, (p) is multiplicatively renormalizable. 
We use {e , )  to denote the sets of its bare parameters and we 
employ { e )  to represent its sets of renormalizable param- 
eters: 

where M is the renormalized mass introduced so that the 
dimensions satisfy dim t = dim g = dim A ,! = OAThe gen- 
eral multiplicative renormalizability formula for Hp (p) can 
then be given as 

where Z, is the renormalization constant of the field p i .  
Since we are interested in the behavior of the system in the 
critical range it is convenient to carry out calculations in the 
so-called massless scheme by setting T = t = 0. Here it is not 
necessary to consider diagrams with the substitution lattices 
of the composite operator (Kp) (Kp).  

We obtain the relations between the bare and renormal- 
ized vertices in the standard fashion: 

where Yi is independent ofA,!, and Z, are the corresponding 
renormalization constants. The mass renormalization con- 
stant defined by the equality T, = Z,T is equal to the renor- 
malization constant of the composite operator p 2 :  
z7 = z,, . 

Reference 14 has demonstrated that for 6 = 1 the Sp 4, 
Fp interactions are not significant in describing the percola- 
tion properties in the critical range for d = 6 - E ,  E - 0, and 
extrapolation of the corresponding operator dimensions di- 
rectly to three-dimensional space does not affect the validity 
of this conclusion. We will see that the critical behavior will 
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be determined by g (Kp)pp  in our renormalization scheme 
in (4 - 2.5) -dimensional space. We carry out change of vari- 
ables given by 

and selected so that for A = 0 and we have A, = 0. This 
change of variables was used in Ref. 15. We show that the 
critical region is described by the infrared-stable fixed point 
with coordinates A: = 0. Since Gell-Mann-Low functions 
(GMLF) linearized in A, are sufficient for analyzing the 
stability of this point, it is sufficient to calculate z,, in the 
zeroth order in A,. Here in the lowest order in the matrix 

while for the GMLF we obtain: 

p3=-2 (e-q) hi+z(e+E) hk(agzlk)? (25) 

where pi is the GMLF for the charges A,, a, = a/aA, 
7 = 2DM In Zp, DM = Ma,. 

We find the following values of the renormalization 
constants in the first order in the renormalized interaction 
constant g2 for s = 1: 

We then obtain in the standard fashion: 

Bs=g[- ( ~ + E - ~ / 2 q ) + 4 g ~ l ,  

where p, is the GMLF for vertex g. 
The value of the index v* corresponding to the IR-sta- 

ble fixed point is numerically small (see below) and hence to 
first order in 7* we have for the coordinate g. of the fixed 
point: 

For the critical indices we obtain 

Using (27), (28) we have the following for the stability in- 
dices for the fixed point with coordinates g = g., Ai = 0: 

Since w, and a,,, > 0, this fixed point is IR-stable. We note 
that the coordinates of the fixed point obtained through ex- 
pansion in the small parameters E = ( 4  - d )  /2 and 6 4 1 and 
the corresponding critical indices as 6- 1 are in good agree- 
ment with the values obtained previously for the percolation 
problem within the framework of the 6 - d = 2-expansion 
for 6 = 1, 2 = 2 + 2~ (Ref. 16) and from a comparison to 

the results of a lower approximation of renormalization the- 
ory directly formulated in three-dimensional space when the 
value of the invariant charge at the fixed point is not parame- 
trically small. " 

We note in renormalizing the remaining parts of the 
Hamiltonian ( 19) dependent on the wave field urn (x )  that 
the self-energy diagrams with two vertices w are the only 
ultraviolet-diverging vertices for d = 4 1-irreducible n-tails 
of this field. The divergence index for these is equal to zero, 
and hence such diagrams give rise to additive renormaliza- 
tion Am2 of the squared "mass" of the wave field mi = k i .  
Hence in our minimum subtraction scheme when the polar 
parts in E, 6 are subtracted only from divergent diagrams 
(Ref. 13), Am2 = w2Y (g), where the function Y(g) is a se- 
ries in 2, the renormalization constant of the wave field urn 
is trivial: Z, = 1, while renormalization of the vertex w is 
given by 

where Z, is the previously determined renormalization con- 
stant of the percolation field p i .  

Since any quantities A(m,, w,, {e,)) dependent solely 
on the bare constants of the effective Hamiltonian ( 19) re- 
tain their values with changes in the renormalized mass M, 
the corresponding RG equation takes the following form for 
these quantities 

where the operator is equal to 

D ~ = M a M l m ,  to, ( e l ,  

and the GMLF is equal to 

Using the explicit form of Am2 = w2V (g) we write the RG 
operator in (32) in the following form: 

where the function 6(g) is defined by the relation 

Adzhemyan et u Z . ~  have noted that light scattering by 
thermal density fluctuations near the critical liquid-gas 
transformation point will produce a new invariant charge. 
Precisely the same situation also occurs in our case of light 
scattering by the percolating medium. The reason for the 
similarity is the formally identical nature of the ultraviolet 
and infrared asymptotic forms of the pair Green functions of 
the critical thermal fluctuation field and the percolation 
problem, as well as the linearity of the interaction vertices in 
the scattering field in both cases. Defining the second invar- 
iant charge as in Ref. 4 by the relation w2 = m2v, we can 
represent (33) as an RG operator from doubly-charged the- 
ory: 
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where y, = vS(g), while 0, -the GMLF for the new 
charge v-is equal to 

The functions S (g),  7 (g) are series ingZ, so at the fixed point 
g = g. the value of the Fisher anomalous dimensions index 
of the percolation field is numerically small [see (29) 1. The 
expansion of the function ~ ( g )  begins with g2, while the ex- 
pansion S(g) begins with the constant 
S(g) = ( 1 6 2 )  - ' + O(g2). This fact together with the neg- 
ative value of the Fisher index 7* for the percolation medi- 
um will produce a fixed point for an invariant charge v at 
v. > 0. In a first approximation in the small parameters E, 6 
the value of the coordinate v, is equal to 

Unlike the case of thermal critical fluctuations the Fisher 
index must be accounted for in accordance with (29) as ear- 
ly as the lowest approximation. The GMLF 0, is indepen- 
dent of v and hence one of the stability indices of the fixed 
point with coordinates g = g., u = v, is identical to w, de- 
fined in (30), while the second is equal to 
a, =dp,/dv = 2:-.. Since we have w, >O, w, >O, this 
fixed point is IR-stable, and since we have v. > 0 it can also 
be attained from the range of bare values v, = ( ~ , / m , ) ~ .  
The existence of such a fixed point makes it possible to inves- 
tigate the behavior of the effective refractive index n (k,, R ) 
near the percolation threshold and to calculate its scaling 
function as an expansion in powers of the small parameters E 

and 6. 

5: GENERAL SOLUTION OFTHE RG EQUATION AND THE 
ASYMPTOTIC FORM OF THE EFFECTIVE REFRACTIVE 
INDEX 

As noted above in Sec. 3 the quantity n (k,, R )  is deter- 
mined by the position of the pole k = m, of the exact 
Green's function of the wave field, n2 = m?/m2. Since the 
value of m. is, obviously, determined by the bare constants 
of the HamiltonianA(19) it is a renormalization invariant 
quantity for which Rm, = 0. Hence the RG equation for n2 
takes the following form: 

In (38) we arrived at dimensionless variables y = m2/M2 
and z = r/M2; the functions dm (v,g) = 2 + 2ym, 
d, (g) = 2 + y, are the total dimensions of the quantities m2 
and 7. 

The properties of the solutions of Eq. (38) can easily be 
analyzed using the method that was employed in Ref. 4 to 
formulate a general solution of the RG equation for the wave 
Green's function. For any solution of Eq. (38) we have 

1 

n2 ( g ,  u, y ,  a )  = exp (2 J$ dl' )n2 (3.8,  g ,  i) , (39) 
f 

where g, 6, j ,  Z are normalized first integrals of (38) defined 
by the equations 

and the normalization conditions are hi ( t  = 1, b)  = b, ,  
b = g,v,y,z). In the critical regime for t+O we have 

with d z = dm (g. ,v. ), d, (g. )v; I ,  where v, is the correla- 
tion radius index of the percolation problem. Consequently 
nZ is a scaling function of only the two variables y, z: 

with p = 2yz. 
In a natural way we have two ranges of variables in 

which the asymptotics forms of n are power functions: 

The critical indices a, 0, s are defined by the relations 

while we use the following normalization conditions to find 
P, Q: 

In order to calculate these functions accurate to 
O(w:,w? ,& ) it is sufficient to determine the position of the 
pole k = m, of the renormalized Green's function while ac- 
counting for only the first diagram in ( 16). Using the value 
of the coordinate u, to first order in E, 6 we obtain 

x=sign (o), a= ( 2 ~ - q * )  / (2+2e-q') ,  

where C is Euler's constant. finally the expression of the 
asymptotic forms of the effective refractive index in the 
"short-wave" and "long-wave" regions can be given as 

nZ (koR+m) =P,einxa (koR,)  -2a. 

nYkoR-+O) =Ql (R /Ro)v ,  (46) 

where P,, Q, are real positive constants. By extrapolating 
E+ 1/2, (+ 1 for the critical indices we have a= 1/3, 
p = 1 - 7 * > 1 .  

6. DISCUSSION 

As noted in Sec. 3, n enters the asymptotic conditions 
(42), (46) in the experimentally accessible range near the 
percolation threshold for a number of disordered transpar- 
ent crystals and ceramics. Of course there are other inhomo- 
geneous media in which wave propagation can also be de- 
scribed based on the present conclusion that the wave 
velocity relation has a scaling character. Specifically, a num- 
ber of interesting problems correspond to the case of wave 
propagation in a strongly-fluctuating Gaussian medium.'' 
Since the Hamiltonian of the scattering field H ( p )  is renor- 
malized independently, this situation is described by a fixed 
point with coordinates g. = 0, v. = 1 6 2 ~ . T h e  correspond- 
ing values of the critical indices in the asymptotic forms (46) 
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can be obtained by setting the Fisher index of the scattering 
field equal to zero. 

It is also possible to generalize the RG scheme devel- 
oped in the present study to a stochastic vector wave equa- 
tion and obtain the scaling asymptotic forms for the effective 
elastic moduli of the percolation components. A solution to 
this problem, which has been the focus of significant atten- 
tion in recent years,'9922 will be provided in another paper. 

In conclusion we wish to discuss a few general issues. 
On several occasions there have been comments regarding 
the promise of using field theory to investigate the correla- 
tion functions of a radiation field scattered by a strongly 
fluctuating medium. Moreover the RG method, to the best 
of our knowledge, was used in only the study4 to find the 
average Green's function of a scalar wave scattered near the 
critical liquid-phase transformation point. The values of the 
physical parameters of this problem, of course, are such that 
the resulting critical conditions were wholly unattainable in 
any actual experiment. 

This prompted the authors of Ref. 4 to conclude that 
the RG method was essentially useless and for this reason 
their study dropped the expansions of renormalized pertur- 
bation theory for the scaling asymptotic forms of the Green's 
function and the effective refractive index. However, as dis- 
cussed above, the relative weakness of light scattering by 
thermal fluctuations in no way suggests a lack of physical 
media in which strong coupling can occur, and the results 
from the RG method are quite valuable. We believe it is 
important to emphasize the universality of the method. Spe- 
cifically, this universality is manifested in a number of iden- 
tified common traits of solutions of wave scattering prob- 
lems by percolation clusters and thermal fluctuations. The 
formal relation between both problems lies in the fact that 
the first is obtained from the contribution of the s-compo- 
nent of the Potts model for s+  1 contained in effective Ham- 
iltonian ( 14) while the second is obtained from s = 2 when 
the s-model is equivalent to the Ising modelz3 used in Ref. 4. 
The limit process ins occurs in the last calculation stage and 
hence the description of scattering by thermal clusters and 
percolation clusters is similar. 

The universality of the RG method makes it possible to 
predict a certain similarity of results for a wide range of 
problems for which the effective Hamiltonian describing an 
inhomogeneous medium is renormalizable. In this case the 
values of the critical indices of the scaling functions are close 

to the Gaussian functions accurate to the Fisher index 77*. 

The problem of calculating the average Green's func- 
tion is the first and simplest in a number of problems relating 
to calculation of the correlators of the scattered radiation. 
There is reason to hope that the RG method will prove to be 
successful for calculating such physically important higher 
order correlators and the average intensity of a scattered 
wave and the average squared intensity flu~tuation.'~ 
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lems discussed in the present paper. 
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